10601 Machine Learning

Semi supervised learning

Can Unlabeled Data improve supervised learning?

Important question! In many cases, unlabeled data is plentiful, labeled data expensive

- Medical outcomes (x=<patient,treatment>, y=outcome)
- Text classification (x=document, y=relevance)
- Customer modeling (x=user actions, y=user intent)

• . . .

When can Unlabeled Data help supervised learning?

Consider setting:

- Set X of instances drawn from unknown distribution P(X)
- Wish to learn target function f: X→ Y (or, P(Y|X))
- Given a set H of possible hypotheses for f

Given:

- iid labeled examples $L = \{\langle x_1, y_1 \rangle \dots \langle x_m, y_m \rangle\}$
- iid unlabeled examples $U = \{x_{m+1}, \dots x_{m+n}\}$

Determine:

$$\widehat{f} \leftarrow \arg\min_{h \in H} \Pr_{x \in P(X)}[h(x) \neq f(x)]$$

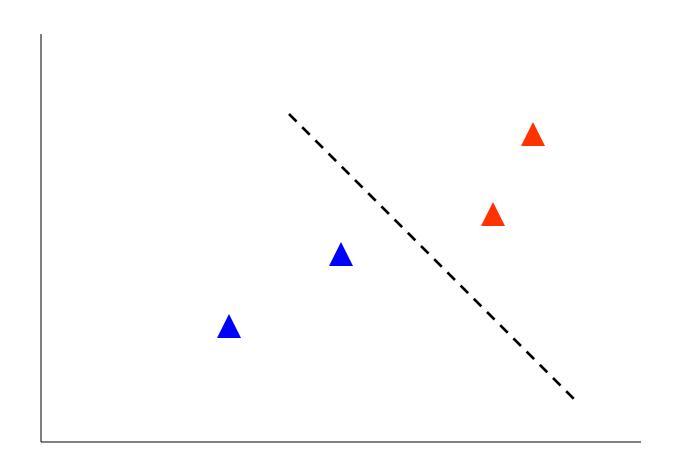
Four Ways to Use Unlabeled Data for Supervised Learning

- 1. Use to re-weight labeled examples
- 2. Use to help EM learn class-specific generative models
- 3. If problem has redundantly sufficient features, use CoTraining
- 4. Use to detect/preempt overfitting

1. Use unlabeled data to reweight labeled examples

- Most machine learning algorithms (neural nets, decision trees) attempt to minimize errors over labeled examples
- But our ultimate goal is to minimize error over future examples drawn from the same underlying distribution
- If we know the underlying distribution, we should weight each training example by its probability according to this distribution
- Unlabeled data allows us to estimate this distribution more accurately, and to reweight our labeled examples accordingly

Example



1. reweight labeled examples

Can use $U \to \hat{P}(X)$ to alter optimization problem

• Wish to find

$$\hat{f} \leftarrow \operatorname*{argmin}_{h \in H} \mathop{\textstyle \sum}_{x \in X} \delta(h(x) \neq f(x)) P(x)$$

Often approximate as

$$\hat{f} \leftarrow \underset{h \in H}{\operatorname{argmin}} \frac{1}{|L|} \sum_{\langle x, y \rangle \in L} \delta(h(x) \neq y)$$

1 if hypothesis

h disagrees

with true

function f,

else 0

1. reweight labeled examples

Can use $U \to \hat{P}(X)$ to alter optimization problem

Wish to find

$$\hat{f} \leftarrow \underset{h \in H}{\operatorname{argmin}} \sum_{x \in X} \delta(h(x) \neq f(x)) P(x)$$

Often approximate as

$$\hat{f} \leftarrow \underset{h \in H}{\operatorname{argmin}} \frac{1}{|L|} \sum_{\langle x, y \rangle \in L} \delta(h(x) \neq y)$$

$$\hat{f} \leftarrow \operatorname*{argmin}_{h \in H} \mathop{\textstyle \sum}_{x \in X} \delta(h(x) \neq f(x)) \frac{n(x,L)}{|L|}$$

1 if hypothesis
h disagrees
with true
function f,
else 0

of times we have x in the labeled set

1. reweight labeled examples

Can use $U \to \hat{P}(X)$ to alter optimization problem

Wish to find

$$\hat{f} \leftarrow \operatorname*{argmin}_{h \in H} \mathop{\textstyle \sum}_{x \in X} \delta(h(x) \neq f(x)) P(x)$$

Often approximate as

$$\hat{f} \leftarrow \underset{h \in H}{\operatorname{argmin}} \frac{1}{|L|} \sum_{\langle x, y \rangle \in L} \delta(h(x) \neq y)$$

$$\hat{f} \leftarrow \operatorname*{argmin}_{h \in H} \mathop{\textstyle \sum}_{x \in X} \delta(h(x) \neq f(x)) \frac{n(x,L)}{|L|}$$

 \bullet Can use U for improved approximation:

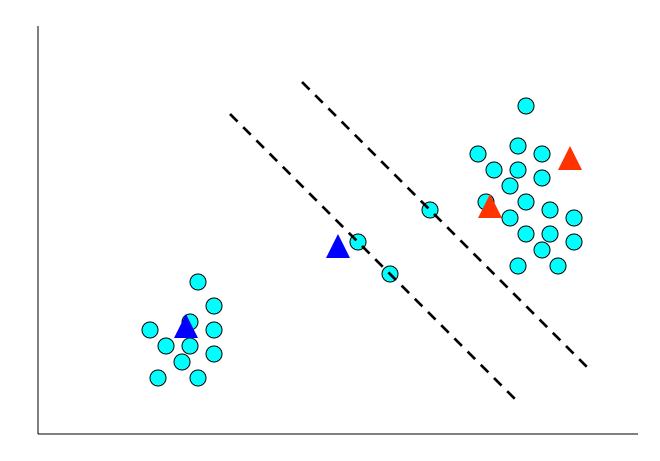
$$\hat{f} \leftarrow \operatorname*{argmin}_{h \in H} \mathop{\textstyle \sum}_{x \in X} \delta(h(x) \neq f(x)) \frac{n(x,L) + n(x,U)}{|L| + |U|}$$

1 if hypothesis
h disagrees
with true
function f,
else 0

of times we have x in the labeled set

of times we have x in the unlabeled set

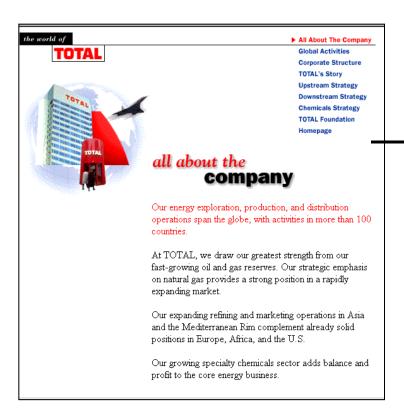
Example



2. Improve EM clustering algorithms

- Consider completely unsupervised clustering, where we assume data X is generated by a mixture of probability distributions, one for each cluster
 - For example, Gaussian mixtures
- Some classifier learning algorithms such as Gaussian Bayes classifiers also assumes the data X is generated by a mixture of distributions, one for each class Y
- Supervised learning: estimate P(X|Y) from labeled data
- Opportunity: estimate P(X|Y) from labeled and unlabeled data, using EM as in clustering

Bag of Words Text Classification



aardvark	0		
about	2		
all	2		
Africa	1		
apple	0		
anxious	0		
•••			
gas	1		
oil	1		
•••			
Zaire	0		

Baseline: Naïve Bayes Learner

Train:

For each class c_j of documents

- 1. Estimate $P(c_j)$
- 2. For each word w_i estimate $P(w_i / c_j)$

Classify (doc):

Assign doc to most probable class

$$\underset{j}{\operatorname{arg max}} P(c_j) \prod_{w_i \in doc} P(w_i \mid c_j)$$

Naïve Bayes assumption: words are conditionally independent, given class

Faculty			
ciate	0.00417		

associate	0.00417
chair	0.00303
member	0.00288
рħ	0.00287
director	0.00282
fax	0.00279
journal	0.00271
recent	0.00260
received	0.00258
award	0.00250

Students

——————————————————————————————————————			
resume	0.00516		
advisor	0.00456		
student	0.00387		
working	0.00361		
stuff	0.00359		
links	0.00355		
homepage	0.00345		
interests	0.00332		
personal	0.00332		
favorite	0.00310		

Courses

0.00413				
0.00399				
0.00388				
0.00385				
0.00381				
0.00374				
0.00371				
0.00370				
0.00364				
0.00355				

Departments

— - <u>r</u> —			
departmental	0.01246		
colloquia	0.01076		
epartment	0.01045		
seminars	0.00997		
schedules	0.00879		
webmaster	0.00879		
events	0.00826		
facilities	0.00807		
eople	0.00772		
postgraduate	0.00764		

Doggarch Projecto

Research Projects			
investigators	0.00256		
group	0.00250		
members	0.00242		
researchers	0.00241		
laboratory	0.00238		
develop	0.00201		
related	0.00200		
arpa	0.00187		
affiliated	0.00184		
project	0.00183		

Others

- Cucio			
type	0.00164		
jan	0.00148		
enter	0.00145		
random	0.00142		
program	0.00136		
net	0.00128		
time	0.00128		
format	0.00124		
access	0.00117		
begin	0.00116		

Expectation Maximization (EM) Algorithm

Use labeled data L to learn initial classifier h

Loop:

- E Step:
 - Assign probabilistic labels to *U*, based on *h*
- M Step:
 - Retrain classifier h using both L (with fixed membership) and assigned labels to U (soft membership)
- Under certain conditions, guaranteed to converge to locally maximum likelihood h

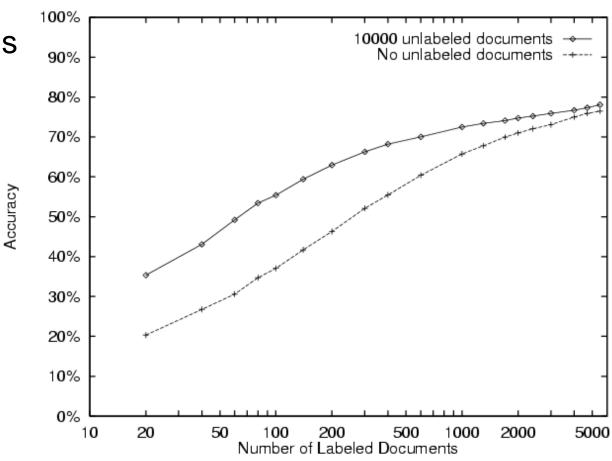
Table 3. Lists of the words most predictive of the course class in the WebKB data set, as they change over iterations of EM for a specific trial. By the second iteration of EM, many common course-related words appear. The symbol D indicates an arbitrary digit.

Iteration 0		Iteration 1	Iteration 2
intelligence		DD	D
DD		D	DD
artificial	Using one	lecture	lecture
understanding	labeled	cc	cc
DDw		D^{\star}	DD:DD
dist	example per	DD:DD	due
identical	•	handout	D^{\star}
rus	class	due	homework
arrange		problem	assignment
games		set	handout
dartmouth		tay	set
natural		DDam	hw
cognitive		yurttas	exam
logic		homework	problem
proving		kfoury	DDam
prolog		sec	postscript
knowledge		postscript	solution
human		exam	quiz
representation		solution	chapter
field		assaf	ascii

Experimental Evaluation

Newsgrop postings

20 newsgroups,1000/group



3. If Problem Setting Provides Redundantly Sufficient Features, use CoTraining

- In some settings, available data features are so redundant that we can train two classifiers using different features
- In this case, the two classifiers should agree on the classification for each unlabeled example
- Therefore, we can use the unlabeled data to constrain training of both classifiers, forcing them to agree

CoTraining

```
learn f: X \to Y

where X = X_1 \times X_2

where x drawn from unknown distribution

and \exists g_1, g_2 \ (\forall x) g_1(x_1) = g_2(x_2) = f(x)
```

Redundantly Sufficient Features

<u>Professor Faloutsos</u>

my advisor

U.S. mail address:

Department of Computer Science University of Maryland College Park, MD 20742 (97-99; on leave at CMU)

Office: 3227 A.V. Williams Bldg.

Phone: (301) 405-2695 **Fax:** (301) 405-6707

Email: christos@cs.umd.edu

Christos Faloutsos

Current Position: Assoc. Professor of Computer Science. (97-98: on leave at CMU)

Join Appointment: Institute for Systems Research (ISR).

Academic Degrees: Ph.D. and M.Sc. (University of Toronto.); B.Sc. (Nat. Tech. U. Ath

Research Interests:

- · Query by content in multimedia databases;
- · Fractals for clustering and spatial access methods;
- · Data mining;

CoTraining Algorithm

[Blum&Mitchell, 1998]

Given: labeled data L,

unlabeled data U

Loop:

Train g1 (hyperlink classifier) using L

Train g2 (page classifier) using L

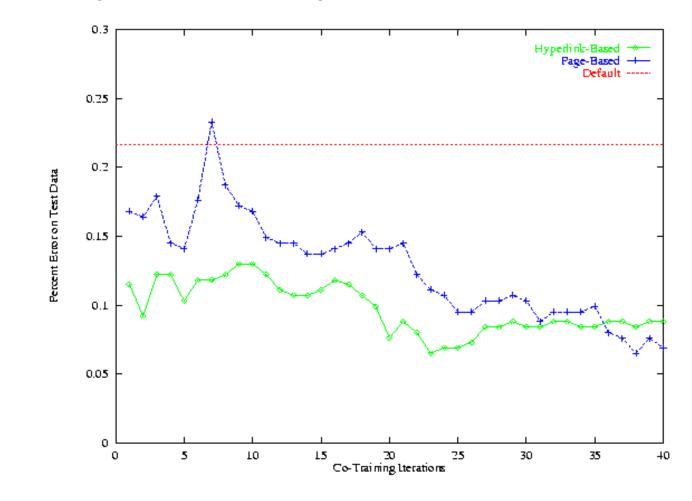
Allow g1 to label p positive, n negative examps from U

Allow g2 to label p positive, n negative examps from U

Add the intersection of the self-labeled examples to L

CoTraining: Experimental Results

- begin with 12 labeled web pages (academic course)
- provide 1,000 additional unlabeled web pages
- average error: learning from labeled data 11.1%;
- average error: cotraining 5.0% (when both agree)

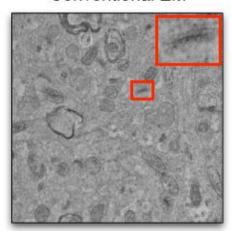


Typical run:

Classifying images: Neural networks

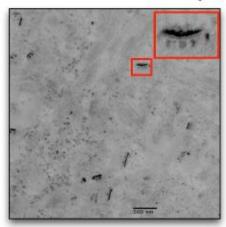
A) Experimental Technique

Conventional EM

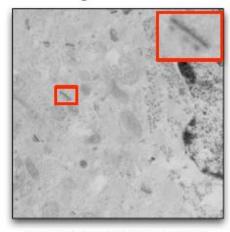


Hard to discern synapses

EPTA Synapse Staining

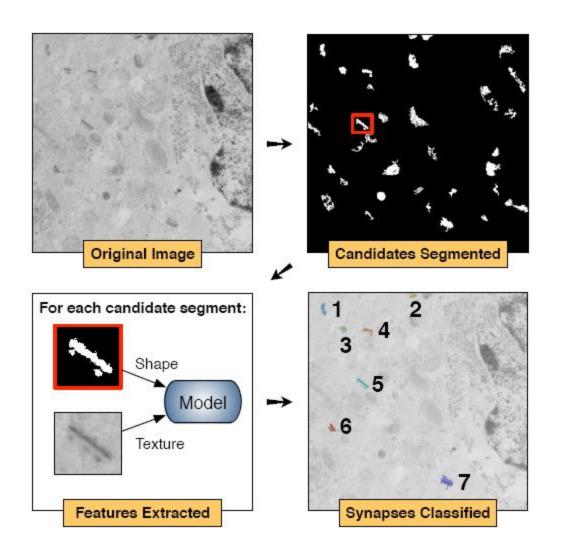


Selectively stains for synapses...



...but with intensity variability and some preservation of other structures.

Co-Training



Accuracy

		—Accuracy—		—AUC—	
Training / Test	Co-training	Positive	Negative	Prec-Recall	ROC
Train P75 / Test P14	No	66.36%	98.20%	-73.65%	96.91%
Train P75 / Test P14	Yes (0.5%)	72.90%	98.60%	75.75%	97.14%
Train P75 / Test P14	Yes (1.5%)	74.77%	96.91%	73.06%	96.65%
Train P14 / Test P75	No	48.78%	98.96%	60.50%	90.38%
Train P14 / Test P75	Yes (0.5%)	60.16%	98.21%	64.23%	92.89%
Train P14 / Test P75	Yes (1.5%)	60.98%	97.55%	63.80%	92.83%

4. Use U to Detect/Preempt Overfitting

- Overfitting is a problem for many learning algorithms (e.g., decision trees, neural networks)
- The symptom of overfitting: complex hypothesis h2 performs better on training data than simpler hypothesis h1, but worse on test data
- Unlabeled data can help detect overfitting, by comparing predictions of h1 and h2 over the unlabeled examples
 - The rate at which h1 and h2 disagree on U should be the same as the rate on L, unless overfitting is occurring

Defining a distance metric

- Definition of distance metric
 - Non-negative $d(f,g) \ge 0$;
 - symmetric d(f,g)=d(g,f);
 - triangle inequality $d(f,g) \cdot d(f,h) + d(h,g)$
- Classification with zero-one loss:

$$d(h_1, h_2) \equiv \int \delta(h_1(x) \neq h_2(x)) p(x) dx$$

Regression with squared loss:

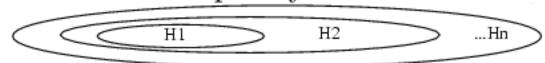
$$d(h_1, h_2) \equiv \sqrt{\int (h_1(x) - h_2(x))^2 p(x) dx}$$

Using the distance metric

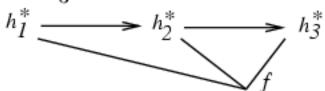
Define metric over $H \cup \{f\}$

$$d(h_1, h_2) \equiv \int \delta(h_1(x) \neq h_2(x)) p(x) dx$$
$$\hat{d}(h_1, f) = \frac{1}{|L|} \sum_{x_i \in L} \delta(h_1(x_i) \neq y_i)$$
$$\hat{d}(h_1, h_2) = \frac{1}{|U|} \sum_{x \in U} \delta(h_1(x) \neq h_2(x))$$

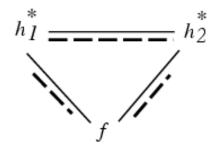
Organize H into complexity classes



Let h_i^* be hypothesis with lowest $\hat{d}(h, f)$ in H_i Prefer h_1^* , h_2^* , or h_3^* ?



Idea: Use U to Avoid Overfitting



Note:

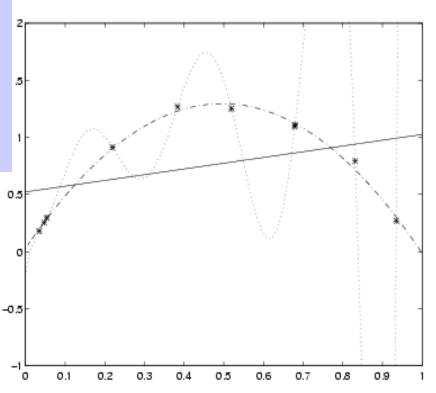
- $\hat{d}(h_i^*, f)$ optimistically biased (too short)
- $\hat{d}(h_i^*, h_i^*)$ unbiased
- Distances must obey triangle inequality!

$$d(h_1, h_2) \le d(h_1, f) + d(f, h_2)$$

\rightarrow Heuristic:

• Continue training until $\hat{d}(h_i, h_{i+1})$ fails to satisfy triangle inequality

Generated y values contain zero mean Gaussian noise ε Y=f(x)+ ε



An example of minimum squared error polynomials of degrees 1, 2, and 9 for a set of 10 training points. The large degree polynomial demonstrates erratic behavior off the training set.

Experimental Evaluation of TRI

[Schuurmans & Southey, MLJ 2002]

- Use it to select degree of polynomial for regression
- Compare to alternatives such as cross validation, structural risk minimization, ...

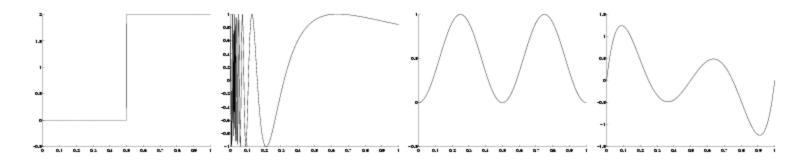


Figure 5: Target functions used in the polynomial curve fitting experiments (in order): $step(x \ge 0.5)$, sin(1/x), $sin^2(2\pi x)$, and a fifth degree polynomial.

Summary

Several ways to use unlabeled data in supervised learning

- 1. Use to reweight labeled examples
- 2. Use to help EM learn class-specific generative models
- 3. If problem has redundantly sufficient features, use CoTraining
- 4. Use to detect/preempt overfitting

Ongoing research area

Acknowledgment

Some of these slides are based in on slides from Tom Mitchell.