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Model selection issues 

• We have seen some of this before … 

• Selecting features (or basis functions) 

– Logistic regression 

– SVMs 

• Selecting parameter value 

– Prior strength  

• Naïve Bayes, linear and logistic regression 

– Regularization strength 

• Linear and logistic regression 

– Decision trees 

• depth, number of leaves 

– Clustering 

• Number of clusters 

• More generally, these are called Model Selection Problems 
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Training and test set error as a function 

of model complexity 



Model selection methods 

-Cross validation 

 

- Regularization 

 

- Information theoretic criteria 



Simple greedy model selection algorithm 

• Pick a dictionary of features 

– e.g., polynomials for linear regression 

• Greedy heuristic: 

– Start from empty (or simple) set of features F0 =  

– Run learning algorithm for current set of features Ft 

• Obtain ht 

– Select next feature Xi
* 

• e.g., Xj is some polynomial transformation of X 

– Ft+1  Ft {Xi
*} 

– Recurse 

5 



Greedy model selection 

• Applicable in many settings: 

– Linear regression: Selecting basis functions 

– Naïve Bayes: Selecting (independent) features P(Xi|Y) 

– Logistic regression: Selecting features (basis functions) 

– Decision trees: Selecting leaves to expand 

• Only a heuristic! 

– But, sometimes you can prove something cool about it 
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Simple greedy model selection algorithm 

• Greedy heuristic: 

– … 

– Select next best feature Xi
* 

• e.g., Xj that results in lowest training error learner 

when learning with Ft  {Xj} 

– Ft+1  Ft {Xi
*} 

– Recurse 
When do you stop??? 

 When training error is low enough? 

 When test set error is low enough?  
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Validation set 
• Thus far: Given a dataset, randomly split it into two parts:  

– Training data – {x1,…, xNtrain} 

– Test data – {x1,…, xNtest} 

• But Test data must always remain independent! 

– Never ever ever ever learn on test data, including for model selection 

• Given a dataset, randomly split it into three parts:  

– Training data – {x1,…, xNtrain} 

– Validation data – {x1,…, xNvalid} 

– Test data – {x1,…, xNtest} 

• Use validation data for tuning learning algorithm, e.g., model selection 

– Save test data for very final evaluation 
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Simple greedy model selection algorithm 

• Greedy heuristic: 

– … 

– Select next best feature Xi
* 

• e.g., Xj that results in lowest training error learner 

when learning with Ft  {Xj} 

– Ft+1  Ft {Xi
*} 

– Recurse 
When do you stop??? 

 When training error is low enough? 

 When test set error is low enough?  

 When validation set error is low enough? 
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Sometimes, but there is an even better option … 



Validating a learner, not a hypothesis 

(intuition only, not proof) 

 

• With a validation set, get to estimate error of 1 hypothesis 

on 1 dataset 

     - e.g. Should I use a polynomial of degree 3 or 4 

 

• Need to estimate error of learner over multiple datasets to 

select parameters 
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(LOO) Leave-one-out cross validation 

• Consider a validation set with 1 example: 

– D – training data 

– D\i – training data with i th data point moved to validation set 

• Learn classifier hD\i with the D\i dataset 

• Estimate true error as: 

– 0 if hD\i classifies i th data point correctly 

– 1 if hD\i is wrong about i th data point 

– Seems really bad estimator, but wait! 

• LOO cross validation: Average over all data points i: 

– For each data point you leave out, learn a new classifier hD\i 

– Estimate error as:  
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LOO cross validation is (almost) 

unbiased estimate of true error! 

• When computing LOOCV error, we only use m-1 data points 

– So it’s not estimate of true error of learning with m data points! 

– Usually pessimistic, though – learning with less data typically gives worse answer 

 

• LOO is almost unbiased! 

– Let errortrue,m-1 be true error of learner when you only get m-1 data points 

– LOO is unbiased estimate of errortrue,m-1: 

 

 

 

• Great news! 

– Use LOO error for model selection!!! 
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Simple greedy model selection algorithm 

• Greedy heuristic: 

– … 

– Select next best feature Xi
* 

• e.g., Xj that results in lowest training error learner 

when learning with Ft  {Xj} 

– Ft+1  Ft {Xi
*} 

– Recurse 
When do you stop??? 

 When training error is low enough? 

 When test set error is low enough?  

 When validation set error is low enough? 

 STOP WHEN errorLOO IS LOW!!! 
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LOO cross validation error 



Computational cost of LOO 

• Suppose you have 100,000 data points 

• You implemented a great version of your learning 

algorithm 

– Learns in only 1 second  

• Computing LOO will take about 1 day!!! 

– If you have to do for each choice of basis functions, it 

will take forever! 
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Solution: Use k-fold cross validation 

• Randomly divide training data into k equal parts 

– D1,…,Dk 

• For each i 

– Learn classifier hD\Di using data point not in Di  

– Estimate error of hD\Di on validation set Di: 

 

 

• k-fold cross validation error is average over data splits: 

 

 

 

• k-fold cross validation properties: 

– Much faster to compute than LOO 

– More (pessimistically) biased – using much less data, only m(k-1)/k 16 



Model selection methods 

-Cross validation 

 

- Regularization 

 

- Information theoretic criteria 



Regularization 

• Regularization 

– Include all possible features! 

– Penalize “complicated” hypothesis 
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Regularization in linear regression 

• Overfitting usually leads to very large parameter choices, e.g.: 

 

 

 

 

 

 

• Regularized least-squares (a.k.a. ridge regression): 

-2.2 + 3.1 X – 0.30 X2 -1.1 + 4,700,910.7 X – 8,585,638.4 X2 + … 
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Other regularization examples 

• Logistic regression regularization 

– Maximize data likelihood minus penalty for large parameters  

 

 

– Biases towards small parameter values 

 

• Naïve Bayes regularization 

– Prior over likelihood of features 

– Biases away from zero probability outcomes 

 

• Decision tree regularization 

– Many possibilities, e.g., Chi-Square test 

– Biases towards smaller trees 

 

• Sparsity: find good solution with few basis functions, e.g.: 

– Simple greedy model selection from earlier in the lecture 

– L1 regularization, e.g.: 
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Regularization and Bayesian learning 

• For example, if we assume a zero mean, Gaussian prior for w 

in a logistic regression classification we would  end up with 

an L2 regularization 

     - Why? 

     - Which value should we use for  (the variance)? 

 

• Similar interpretation for other learning approaches: 

– Linear regression: Also zero mean, Gaussian prior for w 

– Naïve Bayes: Directly defined as prior over parameters 
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How do we pick magic parameter ? 

Cross Validation!!! 
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Model selection methods 

-Cross validation 

 

- Regularization 

 

- Information theoretic criteria 



Occam’s Razor 

• William of Ockham (1285-1349) Principle of Parsimony: 

– “One should not increase, beyond what is necessary, the number of entities 
required to explain anything.”  

• Minimum Description Length (MDL) Principle: 

– minimize length(misclassifications) + length(hypothesis) 

 

• length(misclassifications) – e.g., #wrong training examples 

• length(hypothesis) – e.g., size of decision tree 
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Minimum Description Length Principle 
• MDL prefers small hypothesis that fit data well: 

 

 

– LC1(D|h) – description length of data under code C1 given h 

• Only need to describe points that h doesn’t explain (classify 
correctly) 

– LC2(h) – description length of hypothesis h 

• Decision tree example 

– LC1(D|h) – #bits required to describe data given h 

• If all points correctly classified, LC1(D|h) = 0 

– LC2(h) – #bits necessary to encode tree 

– Trade off quality of classification with tree size 

 
Other popular methods include: BIC, AIC 



Feature selection 

 
• Choose an optimal subset from the set of all N features 

    - Only use a subset of a possible words in a dictionary 

    - Only use a subset of genes 

• Why? 

• Can we use model selection methods to solve this? – 2n 

models 



eg. Microarray data 

 

Courtesy : Paterson 

Institute 



Two approaches: 1. Filter 

• Independent of classifier used 

• Rank features using some criteria based on 
their relevance to the classification task 

• For example, mutual information: 

 

 

 

• Choose a subset based on the sorted scores for 
the criteria used 



2. Wrapper 

• Classifier specific 

• Greedy (large search space) 

• Initialize F = null set 

– At each step, using cross validation or an 

information theoretic criteria, choose a feature 

to add to the subset [ training should be done 

with only features in F + new feature] 

– Add the chosen feature to the subset 

• Repeat until no improvement to CV 

accuracy 



What you need to know about Model 

Selection, Regularization and Cross Validation 

• Cross validation 

– (Mostly) Unbiased estimate of true error 

– LOOCV is great, but hard to compute 

– k-fold much more practical 

– Use for selecting parameter values! 

• Regularization 

– Penalizes for complex models 

– Select parameter with cross validation 

– Really a Bayesian approach 

• Minimum description length 

– Information theoretic interpretation of regularization 

 

30 



Final 

• Open book, open notes 

• GHC 4 1-4pm Monday, 12/10 

• 3 hours 

• Review session today at 6pm in PH100 

• FCEs 


