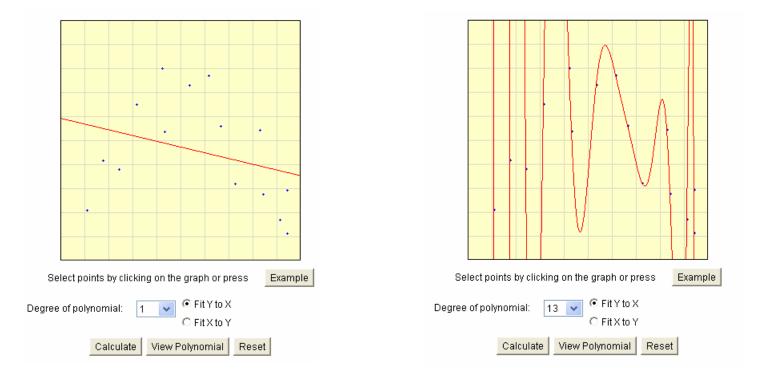
10601 Machine Learning

Model and feature selection

Model selection issues

- We have seen some of this before ...
- Selecting features (or basis functions)
 - Logistic regression
 - SVMs
- Selecting parameter value
 - Prior strength
 - Naïve Bayes, linear and logistic regression
 - Regularization strength
 - Linear and logistic regression
 - Decision trees
 - depth, number of leaves
 - Clustering
 - Number of clusters
- More generally, these are called **Model Selection** Problems

Training and test set error as a function of model complexity



Model selection methods

-Cross validation

- Regularization
- Information theoretic criteria

Simple greedy model selection algorithm

- Pick a dictionary of features
 - e.g., polynomials for linear regression
- Greedy heuristic:
 - Start from empty (or simple) set of features $F_0 = \emptyset$
 - Run learning algorithm for current set of features F_t
 - Obtain $h_{\rm t}$
 - Select next feature X_i^*
 - e.g., X_i is some polynomial transformation of X

$$-F_{t+1} \leftarrow F_t \cup \{X_i^*\}$$

– Recurse

Greedy model selection

- Applicable in many settings:
 - Linear regression: Selecting basis functions
 - Naïve Bayes: Selecting (independent) features $P(X_i|Y)$
 - Logistic regression: Selecting features (basis functions)
 - Decision trees: Selecting leaves to expand
- Only a heuristic!
 - But, sometimes you can prove something cool about it

Simple greedy model selection algorithm

• Greedy heuristic:

. . .

- Select next best feature X^{*}_i
 - e.g., X_j that results in lowest training error learner when learning with $F_t \cup \{X_j\}$
- $F_{t+1} \leftarrow F_t \cup \{X_i^*\}$
- Recurse

When do you stop???

- When training error is low enough?
- When test set error is low enough?

Validation set

- Thus far: Given a dataset, **randomly** split it into two parts:
 - Training data $\{\mathbf{x}_1, \dots, \mathbf{x}_{Ntrain}\}$
 - Test data { $\mathbf{x}_1, \dots, \mathbf{x}_{Ntest}$ }
- But Test data must always remain independent!
 - Never ever ever learn on test data, including for model selection
- Given a dataset, **randomly** split it into three parts:
 - Training data { $\mathbf{x}_1, \dots, \mathbf{x}_{Ntrain}$ }
 - Validation data $\{\mathbf{x}_1, \dots, \mathbf{x}_{Nvalid}\}$
 - Test data { $\mathbf{x}_1, \dots, \mathbf{x}_{Ntest}$ }
- Use validation data for tuning learning algorithm, e.g., model selection
 - Save test data for very final evaluation

Simple greedy model selection algorithm

- Greedy heuristic:
 - Select next best feature X^{*}_i
 - e.g., X_j that results in lowest training error learner when learning with $F_t \cup \{X_j\}$
 - $F_{t+1} \leftarrow F_t \cup \{X_i^*\}$
 - Recurse

When do you stop???

- When training error is low enough?
- When test set error is low enough?
- When validation set error is low enough?

Sometimes, but there is an even better option ...

Validating a learner, not a hypothesis (intuition only, not proof)

- With a validation set, get to estimate error of 1 hypothesis on 1 dataset
 - e.g. Should I use a polynomial of degree 3 or 4

datasets

• Need to estimate error of learner over multiple datasets to select parameters $E_{\{x,y\}}[h_t]$ Expected error over all

(LOO) Leave-one-out cross validation

- Consider a validation set with 1 example:
 - *D* training data
 - $D \mid i training data with i th data point moved to validation set$
- Learn classifier $h_{D\setminus i}$ with the $D\setminus i$ dataset
- Estimate true error as:
 - 0 if $h_{D\setminus i}$ classifies *i* th data point correctly
 - 1 if $h_{D\setminus i}$ is wrong about *i* th data point
 - Seems really bad estimator, but wait!
- LOO cross validation: Average over all data points *i*:
 - For each data point you leave out, learn a new classifier $h_{D\setminus i}$
 - Estimate error as:

$$error_{LOO} = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1} \left(h_{\mathcal{D} \setminus i}(\mathbf{x}^i) \neq y^i \right)$$

LOO cross validation is (almost) unbiased estimate of true error!

- When computing LOOCV error, we only use *m*-1 data points
 - So it's not estimate of true error of learning with *m* data points!
 - Usually pessimistic, though learning with less data typically gives worse answer

• LOO is almost unbiased!

- Let $error_{true,m-1}$ be true error of learner when you only get m-1 data points
- LOO is unbiased estimate of *error*_{true,m-1}:

$$E_{\mathcal{D}}[error_{LOO}] = error_{true,m-1}$$

- Great news!
 - Use LOO error for model selection!!!

Simple greedy model selection algorithm

• Greedy heuristic:

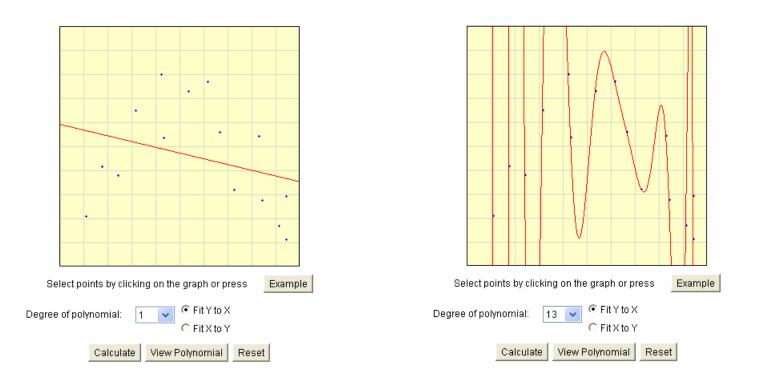
. . .

- Select next best feature X_i^{*}
 - e.g., X_j that results in lowest training error learner when learning with $F_t \cup \{X_j\}$
- $F_{t+1} \leftarrow F_t \cup \{X_i^*\}$
- Recurse

When do you stop???

- When training error is low enough?
- When test set error is low enough?
- When validation set error is low enough?
 - **STOP WHEN error**LOO **IS LOW!!!**

LOO cross validation error



Computational cost of LOO

- Suppose you have 100,000 data points
- You implemented a great version of your learning algorithm
 - Learns in only 1 second
- Computing LOO will take about 1 day!!!
 - If you have to do for each choice of basis functions, it will take forever!

Solution: Use k-fold cross validation

- Randomly **divide training data into** *k* **equal parts**
 - $D_1, ..., D_k$
- For each *i*
 - Learn classifier $h_{D \setminus Di}$ using data point not in D_i
 - Estimate error of $h_{D \setminus Di}$ on validation set D_i :

$$error_{\mathcal{D}_i} = \frac{k}{m} \sum_{(\mathbf{x}^j, y^j) \in \mathcal{D}_i} \mathbb{1} \left(h_{\mathcal{D} \setminus \mathcal{D}_i}(\mathbf{x}^j) \neq y^j \right)$$

• *k*-fold cross validation error is average over data splits:

$$error_{k-fold} = \frac{1}{k} \sum_{i=1}^{k} error_{\mathcal{D}_i}$$

- *k*-fold cross validation properties:
 - Much faster to compute than LOO
 - More (pessimistically) biased using much less data, only m(k-1)/k

Model selection methods

-Cross validation

- Regularization
- Information theoretic criteria

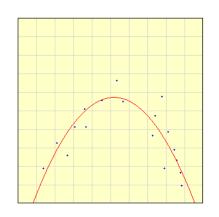
Regularization

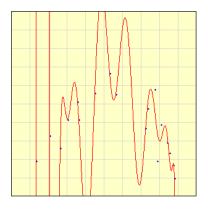
• Regularization

- Include all possible features!
- Penalize "complicated" hypothesis

Regularization in linear regression

Overfitting usually leads to very large parameter choices, e.g.:
-2.2 + 3.1 X - 0.30 X²
-1.1 + 4,700,910.7 X - 8,585,638.4 X² + ...





• Regularized least-squares (a.k.a. ridge regression):

$$w^* = \arg\min_{w} \sum_{j} (w^T x_j - y_j)^2 + \lambda \sum_{i} w_i^2$$

Other regularization examples

- **Logistic regression** regularization
 - Maximize data likelihood minus **penalty for large parameters**

arg max
$$\sum_{i}$$
In $P(y^{j}|\mathbf{x}^{j},\mathbf{w})-\lambda\sum_{i}w_{i}^{2}$

- Biases towards small parameter values
- Naïve Bayes regularization
 - **Prior** over likelihood of features
 - Biases away from zero probability outcomes
- **Decision tree** regularization
 - Many possibilities, e.g., **Chi-Square test**
 - Biases towards smaller trees
- **Sparsity:** find good solution with few basis functions, e.g.:
 - Simple greedy model selection from earlier in the lecture
 - L1 regularization, e.g.:

$$w^* = \arg \min_{w} \sum_{j} (w^T x_j - y_j)^2 + \lambda \sum_{i} |w_i|$$

For example, the Beta distribution we discussed

Regularization and Bayesian learning

$$p(\mathbf{w} \mid Y, \mathbf{X}) \propto P(Y \mid \mathbf{X}, \mathbf{w})p(\mathbf{w})$$

- For example, if we assume a zero mean, Gaussian prior for *w* in a logistic regression classification we would end up with an L2 regularization
 - Why?
 - Which value should we use for λ (the variance)?
- Similar interpretation for other learning approaches:
 - Linear regression: Also zero mean, Gaussian prior for w
 - Naïve Bayes: Directly defined as prior over parameters

How do we pick magic parameter λ ?

Cross Validation!!!

Model selection methods

-Cross validation

- Regularization
- Information theoretic criteria

Occam's Razor

- William of Ockham (1285-1349) *Principle of Parsimony*:
 - "One should not increase, beyond what is necessary, the number of entities required to explain anything."
- Minimum Description Length (MDL) Principle:
 - minimize *length*(misclassifications) + *length*(hypothesis)
- *length*(misclassifications) e.g., #wrong training examples
- *length*(hypothesis) e.g., size of decision tree

Minimum Description Length Principle

• MDL prefers small hypothesis that fit data well:

$$-L_{h}^{h} L_{C_1}(\mathcal{D} \mid h) + L_{C_2}(h) \operatorname{code} C_1 \operatorname{given} h$$

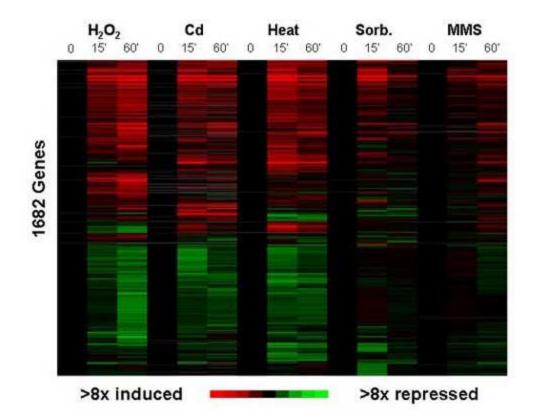
- Only need to describe points that *h* doesn't explain (classify correctly)
- $L_{C2}(h)$ description length of hypothesis *h*
- Decision tree example
 - $L_{C1}(D|h)$ #bits required to describe data given h
 - If all points correctly classified, $L_{C1}(D|h) = 0$
 - $L_{C2}(h)$ #bits necessary to encode tree
 - Trade off quality of classification with tree size

Other popular methods include: BIC, AIC

Feature selection

- Choose an optimal subset from the set of all N features
 - Only use a subset of a possible words in a dictionary
 - Only use a subset of genes
- Why?
- Can we use model selection methods to solve this? 2ⁿ models

eg. Microarray data



Courtesy : Paterson Institute Two approaches: 1. Filter

- Independent of classifier used
- Rank features using some criteria based on their relevance to the classification task
- For example, mutual information:

$$I(X;Y) = \sum_{y \in Y} \sum_{x \in X} p(x,y) \log \left(\frac{p(x,y)}{p_1(x) p_2(y)}\right),$$

• Choose a subset based on the sorted scores for the criteria used

2. Wrapper

- Classifier specific
- Greedy (large search space)
- Initialize F = null set
 - At each step, using cross validation or an information theoretic criteria, choose a feature to add to the subset [training should be done with only features in F + new feature]
 - Add the chosen feature to the subset
- Repeat until no improvement to CV accuracy

What you need to know about Model Selection, Regularization and Cross Validation

- Cross validation
 - (Mostly) Unbiased estimate of true error
 - LOOCV is great, but hard to compute
 - *k*-fold much more practical
 - Use for selecting parameter values!
- Regularization
 - Penalizes for complex models
 - Select parameter with cross validation
 - Really a Bayesian approach
- Minimum description length
 - Information theoretic interpretation of regularization

Final

- Open book, open notes
- GHC 4 1-4pm Monday, 12/10
- 3 hours
- Review session today at 6pm in PH100
- FCEs