10601
Machine Learning

Boosting

Fighting the bias-variance tradeoff

* Simple (a.k.a. weak) learners are good

— e.g., naive Bayes, logistic regression, decision
stumps (or shallow decision trees)

— Low variance, don’t usually overfit

* Simple (a.k.a. weak) learners are bad
— High bias, can’t solve hard learning problems

 Can we make weak learners always good???
— Nolll
— But often yes...

Voting (Ensemble Methods)

 Instead of learning a single (weak) classifier, learn many
weak classifiers that are good at different parts of the

Input space
« Qutput class: (Weighted) vote of each classifier
— Classifiers that are most “sure” will vote with more
conviction
— Classifiers will be most “sure” about a particular part
of the space
— On average, do better than single classifier!

« But how do you ?7??
— force classifiers to learn about different parts of the
iInput space?
— weigh the votes of different classifiers?

Boosting [Schapire, 1989]

ldea: given a weak learner, run it multiple times on (reweighted)
training data, then let the learned classifiers vote

On each iteration t:

— weight each training example by how incorrectly it was
classified

— Learn a hypothesis — h,
— A strength for this hypothesis — a,

Final classifier:

- Alinear combination of the votes of the different classifiers
weighted by their strength

Practically useful
Theoretically interesting

Learning from weighted data

Sometimes not all data points are equal
— Some data points are more equal than others
Consider a weighted dataset
— D(i) — weight of i th training example (x',y)
— Interpretations:
* | th training example counts as D(i) examples

 If | were to “resample” data, | would get more samples of “heavier”
data points

Now, in all calculations, whenever used, i th training example counts as
D(i) “examples”

— e.g., MLE for Naive Bayes, redefine Count(Y=y) to be weighted count

Given: (z1,¥1),.--5 (Tm,Ym) Where z; € X, y; € Y = {-1,+1}
Initialize D (z) = 1/m.
Fort=1,....T:

e Train weak learner using distribution Dy.

e Getweak classifier h; : X — R.

e Choose a; € R.

e Update:

Dy (2) exp(—asyihi(zi))
Zt

Dyt (i) =
where Z; is a normalization factor

m
Zy = > Dy(i) exp(—ay;hi(z;))
=
Output the final classifier: '

T
H(z) = sign (Z c}:tht(m)) :

=1

Figure 1: The boosting algorithm AdaBoost.

What ¢, to choose for hypothesis h,?

[Schapire, 1989]

Training error of final classifier is bounded by:
1 2 1
— > 6(H(zy) #y;) < — > exp(—y; f(z;))
mi=1 mi=1

Where f(x) = Zatht(w); H(x) = sign(f(x))
t

What ¢, to choose for hypothesis h,?

[Schapire, 1989]

Training error of final classifier is bounded by:

m m
% N S(H (x;) # y;) < % > exp(—yif(z)) =] Z
i=1 i=1 t

Where f(x) = Zatht(m) H(z) = sign(f(x))

Z Dy(3) exp(—azy;he(x;))
1 =1

What ¢, to choose for hypothesis h,?

[Schapire, 1989]

Training error of final classifier is bounded by:

m |
% N©S(H (x;) # y;) < %ZGXD(_%JC(%’)) =112
i=1 i t

Where f(x) = Zatht(w); H(x) = sign(f(x))
t

If we minimize [], Z,, we minimize our training error

We can tighten this bound greedily, by choosing «, and h, on each
iteration to minimize Z,

Zi= 3" Dy(i) exp(—amwihe(z))
=1

What ¢, to choose for hypothesis h,?

[Schapire, 1989]

We can minimize this bound by choosing ¢, on each iteration to minimize Z;,

Zi= 3" Dy(i) exp(—amwihe(z))
=1

Define

= 3" Dy()o(he(a) £ vy)

1=1

We can show that:

Z =(1-¢g)exp “+gexp™

What ¢, to choose for hypothesis h,?

[Schapire, 1989]

We can minimize this bound by choosing ¢; on each iteration to minimize Z,

Zi= 3" Dy(i) exp(—amwihe(z))
=1

For boolean target function, this is accomplished by [Freund & Schapire '97]:

1—6,3
et (5

Where:

= 3" Dy()o(he(a) £ vy)

1=1

Given: (z1,¥1),.--5 (Tm,Ym) Where z; € X, y; € Y = {-1,+1}
Initialize D (z) = 1/m.
Fort=1,....T:

Train base learner using distribution Dy.
Get base classifier h; : X — R.

Choose a; € R.
Update:

P
<«

Diyq(i) =

Dy (2) exp(—aryihe(z;))

z

Strong, weak classifiers

If each classifier is (at least slightly) better than random
— §<0.5

With a few extra steps it can be shown that AdaBoost will achieve zero training error
(exponentially fast):

m T
ST S(H(z) Fy) <[[Ze<exp -2 (1/2 — &)?
i t—1

1
Mi=1

Boosting results — Digit recognition
[Schapire, 1989]

.”1lﬂ | 100 o “1I[l)ﬂﬂ
rounds

* Boosting often
— Robust to overfitting
— Test set error decreases even after training error is zero

Boosting: Experimental Results
[Freund & Schapire, 1996]

Comparison of C4.5, Boosting C4.5, Boosting decision stumps
(depth 1 trees), 27 benchmark datasets

error C4.5

0 5 10 15 20 25 30 0 5 10 15 20 25 30
error boosting stumps error boosting C4.5

15

AdaBoost and AdaBoost.MH on Train (left) and Test (right) data from Irvine repository. [Schapire and Singer, ML 1999]

30 20 .
labar /A-, labor promoters 20 -5 promote s
25 <\ N\
| 15 - E 25 - %%
11 ."Il [Wi
5 =0 4 10 I';" 20 Y
AN . -] Bl L
5= / Is 5 IIIII| W :_‘".
4 -] |II) |'.'| 5. !L—. 15 -
2 - LAI1 I".::L e h
o VT “W o LS i
1 10 100 1000 | [[s] 100 10001 10 100 1000 1
20 - 25
hepatitis _ sonar ; i /r\, sonar
15— 2 SVl
{H B : . v "”‘Q{_.
EASN Ry ’ £
o 1-._ \‘\‘_ .L‘I 22 II'\’\.\.:. I
S h = - &
i, N, 4 e,
s R b'1 18 - . W
o - \I\'\\ \1__ 15 - M
| 10 100 10 100 o0 1 o 100 11000
. 18 -)
20 - cleve 5 - f_(cleve :: Lo ioncsphers 5 i1 ".I ionosp here
\ ' Lo [
15 L. s 12 WA WA
:‘“\-\.,:__ _ 24 i 10 - v s, 14 - ".__. W l'v'l'l'\,.._
10 Tr—— 2z i M & L'\ 12 - 3 M
e s 5 - Y , i i,
5 ™ 21 . ,f,j../ Q- N LR ™
" 18 W Jraavar oy N . Sy ppreppiein
o - 18) -‘j e ..:':........__.......__..._...I) ' - il WO "“""‘I(H-.w-wl
1 1000 | 100 1000 1 o 100 1000
d.5 “are 17 -
" 55 - votes | 15 - voiss|
35 - 15 -
3 : 14 -
25 - " 13 P
2 - 45 12 A
15 - 4 - - -1 S
- 10 - | e
| -
05 - 3s F— *-x'-’-.._.w-;’”’f-.
0 - PR Ca
1 1000 1
B 175 -
1d - IT -
12 - > 165
10 - 15 -
a- Fre 15.5 -
& \\ 5
) 14,5~
4 14
2- 13.5
1 10 100 1000 1

Boosting and Logistic Regression

Logistic regression assumes:
1

1+ exp(f(z))

And tries to maximize data likelihood:
m™m
1

P(DIH) = @'1:_[1 1+ exp(—yif(z;))

Py =1|X) =

Equivalent to minimizing log loss

S In(L+ exp(—if (2)))

=1

Boosting and Logistic Regression

Logistic regression equivalent to minimizing log loss

S In(L+ exp(—if (2)))

=1

Boosting minimizes similar loss function!!

=Y exp(—uif) = [[%
1 t

Both smooth approximations of 0/1 loss!

18

Logistic regression and Boosting

Logistic regression: Boosting:
e Minimize loss fn * Minimize loss fn

Z; IN(1 4+ exp(—y;f(z;))) Z exp(—y; f(z;))

i=1
e Define e Define Z
— . f(x) =) oathi(x)
f(.CC) — ijxj ;
’ where h(x;) defined

(not a linear classifier)

* Weights o, learned
incrementally

What you need to know about Boosting

Combine weak classifiers to obtain very strong classifier
— Weak classifier — slightly better than random on training data
— Resulting very strong classifier — can eventually provide zero training error
AdaBoost algorithm
Boosting v. Logistic Regression
— Similar loss functions
— Single optimization (LR) v. Incrementally improving classification (B)
Most popular application of Boosting:
— Boosted decision stumps!
— Very simple to implement, very effective classifier

