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Machine Learning

Boosting



Fighting the bias-variance tradeoff

* Simple (a.k.a. weak) learners are good

— e.g., naive Bayes, logistic regression, decision
stumps (or shallow decision trees)

— Low variance, don’t usually overfit

* Simple (a.k.a. weak) learners are bad
— High bias, can’t solve hard learning problems

 Can we make weak learners always good???
— Nolll
— But often yes...



Voting (Ensemble Methods)

 Instead of learning a single (weak) classifier, learn many
weak classifiers that are good at different parts of the

Input space
« Qutput class: (Weighted) vote of each classifier
— Classifiers that are most “sure” will vote with more
conviction
— Classifiers will be most “sure” about a particular part
of the space
— On average, do better than single classifier!

« But how do you ?7??
— force classifiers to learn about different parts of the
iInput space?
— weigh the votes of different classifiers?



Boosting [Schapire, 1989]

ldea: given a weak learner, run it multiple times on (reweighted)
training data, then let the learned classifiers vote

On each iteration t:

— weight each training example by how incorrectly it was
classified

— Learn a hypothesis — h,
— A strength for this hypothesis — a,

Final classifier:

- Alinear combination of the votes of the different classifiers
weighted by their strength

Practically useful
Theoretically interesting



Learning from weighted data

Sometimes not all data points are equal
— Some data points are more equal than others
Consider a weighted dataset
— D(i) — weight of i th training example (x',y)
— Interpretations:
* | th training example counts as D(i) examples

 If | were to “resample” data, | would get more samples of “heavier”
data points

Now, in all calculations, whenever used, i th training example counts as
D(i) “examples”

— e.g., MLE for Naive Bayes, redefine Count(Y=y) to be weighted count



Given: (z1,¥1),.--5 (Tm,Ym) Where z; € X, y; € Y = {-1,+1}
Initialize D (z) = 1/m.
Fort=1,....T:

e Train weak learner using distribution Dy.

e Getweak classifier h; : X — R.

e Choose a; € R.

e Update:

Dy (2) exp(—asyihi(zi))
Zt

Dyt (i) =
where Z; is a normalization factor

m
Zy = > Dy(i) exp(—ay;hi(z;))
=
Output the final classifier: '

T
H(z) = sign (Z c}:tht(m)) :

=1

Figure 1: The boosting algorithm AdaBoost.



What ¢, to choose for hypothesis h,?

[Schapire, 1989]

Training error of final classifier is bounded by:
1 2 1
— > 6(H(zy) #y;) < — > exp(—y; f(z;))
mi=1 mi=1

Where f(x) = Zatht(w); H(x) = sign(f(x))
t



What ¢, to choose for hypothesis h,?

[Schapire, 1989]

Training error of final classifier is bounded by:

m m
% N S(H (x;) # y;) < % > exp(—yif(z)) =] Z
i=1 i=1 t

Where f(x) = Zatht(m) H(z) = sign(f(x))

Z Dy(3) exp(—azy;he(x;) )
1 =1




What ¢, to choose for hypothesis h,?

[Schapire, 1989]

Training error of final classifier is bounded by:

m |
% N©S(H (x;) # y;) < %ZGXD(_%JC(%’)) =112
i=1 i t

Where f(x) = Zatht(w); H(x) = sign(f(x))
t

If we minimize [], Z,, we minimize our training error

We can tighten this bound greedily, by choosing «, and h, on each
iteration to minimize Z,

Zi= 3" Dy(i) exp(—amwihe(z))
=1



What ¢, to choose for hypothesis h,?

[Schapire, 1989]

We can minimize this bound by choosing ¢, on each iteration to minimize Z;,

Zi= 3" Dy(i) exp(—amwihe(z))
=1

Define

= 3" Dy()o(he(a) £ vy)

1=1

We can show that:

Z =(1-¢g)exp “+gexp™



What ¢, to choose for hypothesis h,?

[Schapire, 1989]

We can minimize this bound by choosing ¢; on each iteration to minimize Z,

Zi= 3" Dy(i) exp(—amwihe(z))
=1

For boolean target function, this is accomplished by [Freund & Schapire '97]:

1—6,3
et (5

Where:

= 3" Dy()o(he(a) £ vy)

1=1




Given: (z1,¥1),.--5 (Tm,Ym) Where z; € X, y; € Y = {-1,+1}
Initialize D (z) = 1/m.
Fort=1,....T:

Train base learner using distribution Dy.
Get base classifier h; : X — R.

Choose a; € R.
Update:

P
<«

Diyq(i) =

Dy (2) exp(—aryihe(z;))

z




Strong, weak classifiers

If each classifier is (at least slightly) better than random
— §<0.5

With a few extra steps it can be shown that AdaBoost will achieve zero training error
(exponentially fast):

m T
ST S(H(z) Fy) <[[Ze<exp -2 (1/2 — &)?
i t—1

1
Mi=1



Boosting results — Digit recognition
[Schapire, 1989]

.”1lﬂ | 100 o “1I[l)ﬂﬂ
# rounds

* Boosting often
— Robust to overfitting
— Test set error decreases even after training error is zero



Boosting: Experimental Results
[Freund & Schapire, 1996]

Comparison of C4.5, Boosting C4.5, Boosting decision stumps
(depth 1 trees), 27 benchmark datasets

error C4.5
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AdaBoost and AdaBoost.MH on Train (left) and Test (right) data from Irvine repository. [Schapire and Singer, ML 1999]
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Boosting and Logistic Regression

Logistic regression assumes:
1

1+ exp(f(z))

And tries to maximize data likelihood:
m™m
1

P(DIH) = @'1:_[1 1+ exp(—yif(z;))

Py =1|X) =

Equivalent to minimizing log loss

S In(L+ exp(—if (2)))

=1



Boosting and Logistic Regression

Logistic regression equivalent to minimizing log loss

S In(L+ exp(—if (2)))

=1

Boosting minimizes similar loss function!!

=Y exp(—uif ) = [[ %
1 t

Both smooth approximations of 0/1 loss!

18



Logistic regression and Boosting

Logistic regression: Boosting:
e Minimize loss fn * Minimize loss fn

Z; IN(1 4+ exp(—y;f(z;))) Z exp(—y; f(z;))

i=1
e Define e Define Z
— . f(x) =) oathi(x)
f(.CC) — ijxj ;
’ where h(x;) defined

(not a linear classifier)

* Weights o, learned
incrementally



What you need to know about Boosting

Combine weak classifiers to obtain very strong classifier
— Weak classifier — slightly better than random on training data
— Resulting very strong classifier — can eventually provide zero training error
AdaBoost algorithm
Boosting v. Logistic Regression
— Similar loss functions
— Single optimization (LR) v. Incrementally improving classification (B)
Most popular application of Boosting:
— Boosted decision stumps!
— Very simple to implement, very effective classifier



