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Machine Learning 

Markov decision processes (MDPs) 



The weeks ahead 

 - Applications of HMM to biology 

 - Dimensionality reduction 

 - SVM 

 - Boosting 

 - Model and feature selection 



Markov decision processes (MDPs) 



What’s missing in HMMs 

• HMMs cannot model important aspects of agent interactions: 

   - No model for rewards 

   - No model for actions which can affect these rewards 

• These are actually issues that are faced by many applications: 

    - Agents negotiating deals on the web 

    - A robot which interacts with its environment  
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Example: Actions 
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Formal definition of MDPs 

• A set of states {s1 … sn} 

• A set of rewards {r1 … rn}  

• A set of actions {a1 .. am} 

• Transition probability 
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One reward for each state 

Number of actions could be 

larger than number of states 



Questions 

• What is my expected pay if I am in state i 

• What is my expected pay if I am in state i and perform 

action a? 



Solving MDPs 

• No actions: Value iterations 

 

• With actions: Value iteration, Policy iteration 



Value computation 
• An obvious question for such models is what is the 

combined expected value for each state 

• What can we expect to earn over our life time if we 

become Asst. prof.? 

• What if we go to industry? 

Before we answer this question, we need to define a 

model for future rewards: 

• The value of a current award is higher than the value 

of future awards 

   - Inflation, confidence 

   - Example: Lottery 



Discounted rewards 

• The discounted rewards model is specified using a 

parameter  

• Total rewards = current reward + 

                              (reward at time t+1) + 

                             2 (reward at time t+2) + 

                             …………. 

                             k (reward at time t+k) + 

                               

                              infinite sum 



Discounted awards 

• The discounted award model is specified using a 

parameter  

• Total awards = current award + 

                              (award at time t+1) + 

                             2 (award at time t+2) + 

                             …………. 

                             k (award at time t+k) + 

                               

                              infinite sum 
 

Converges if 0<<1 

 



Determining the total rewards in a 

state  

• Define J*(si) = expected discounted sum of rewards when 

starting at state si 

• How do we compute J*(si)? 
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How can we solve this? 

Factors expected pay 

for all possible 

transitions for step i 



Computing j*(si)  

))(*)(*)(*()(* 222212122 nn sJpsJpsJprsJ  

))(*)(*)(*()(* 121211111 nn sJpsJpsJprsJ  

• We have n equations with n unknowns  

• Can be solved in close form 
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Iterative approaches 
• Solving in closed form is possible, but may be time consuming. 

• It also doesn’t generalize to non-linear models 

• Alternatively, this problem can be solved in an iterative manner 

• Lets define Jt(si) as the expected discounted rewards after t steps 

• How can we compute Jt(si)? 
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Iterative approaches 

• Solving in closed form is possible, but may be time 

consuming. 

• Alternatively, this problem can be solved in an iterative 

manner 

• Lets define Jk(si) as the expected discounted awards after k 

steps 

• How can we compute Jk(si)? 
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We know how to solve this! 

Lets fill the dynamic programming table 

 

But wait … 

This is a never ending task! 



When do we stop? 
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Remember, we have a converging function 

We can stop when |Jt-1(si)- J
t(si)| <   

Infinity norm selects maximal element 



Example for =0.9 
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Solving MDPs 

• No actions: Value iterations 

 

• With actions: Value iteration, Policy iteration 

 



Adding actions 

A Markov Decision Process: 

• A set of states {s1 … sn} 

• A set of rewards {r1 … rn}  

• A set of actions {a1 .. am} 

• Transition probability 
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Example: Actions 
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Questions for MDPs 

• Now we have actions 

• The question changes as follows: 

 

Given our current state and the possible actions, what is 

the best action for us in terms of long term payment? 



Example: Actions 

Action A: Leave 
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Policy 

• A policy maps sates to 

actions 

• An optimal policy leads to 

the highest expected 

returns 

• Note that this does not 

depend on the start state 
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Solving MDPs with actions 

• It could be shown that for every MDP there exists an 

optimal policy (we won’t discuss the proof). 

• Such policy guarantees that there is no other action that 

is expected to yield a higher payoff  



Computing the optimal policy:  

1. Modified value iteration 

• We can compute it by modifying the value iteration 

method we discussed. 

• Define pk
ij as the probability of transitioning from state i to 

state j when using action k 

• Then we compute: 
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Also known as Bellman’s 

equation 

Use probabilities associated with action k 



Computing the optimal policy:  

1. Modified value iteration 

• We can compute it by modifying the value iteration 

method we discussed. 

• Define pk
ij as the probability of transitioning from state i to 

state j when using action k 

• Then we compute: 
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Run until convergences 



Computing the optimal policy:  

1. Modified value iteration 

• We can compute it by modifying the value iteration 

method we discussed. 

• Define pk
ij as the probability of transitioning from state i to 

state j when using action k 

• Then we compute: 
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• When the algorithm converges, we have 

computed the best outcome for each state 

• We associate states with the actions that 

maximize their return  



Value iteration for =0.9 
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Computing the optimal policy:  

2. Policy iteration 

• We can also compute optimal policies by revising an 

existing policy. 

• We initially select a policy at random (mapping from 

states to actions).  

• We re-compute the expected long term reward at each 

state using the selected policy 

• We select a new policy using the expected rewrads and 

iterate until convergences   



Policy iteration: algorithm 

• Let πt(si) be the selected policy at time t 

1. Randomly chose π0 ; set t = 0  

2. For each state si compute J*(si), the long term 

expected reward using policy πt . 

3. Set πt(si) =  

 

4. Convergence? Yes: output policy. No: t = t + 1, go to 2.  
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Policy iteration: algorithm 

• Let πt(si) be the selected policy at time t 

1. Randomly chose π0 ; set t = 0  

2. For each state si compute J*(si), the long term 

expected reward using policy πt . 

3. Set πt(si) =  

 

4. Convergence? Yes: output policy. No: t = t + 1, go to 2.  
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Once the policy is fixed we 

are back to rewards only 

models, so this can be 

computed using value 

iteration 

Can be computed 

using J*(si) for all 

states 



Value iteration vs. policy iteration 

• Depending on the model and the information at hand: 

    - If you have a good guess regarding the optimal policy 

then policy iteration would converge much faster 

    - similarly, if there are many possible actions, policy 

iteration might be faster 

    - otherwise value iteration is a safer way 



Demo 

 



Reinforcement learning (RL) 



MDP with actions: How do we learn 

the model? 
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From MDPs to Reinforcement 

Learning (RL) 

1. We do not assume we know the Markov model 

2. We learn the model from observations (online) 

 

• Examples: 

    - Game playing 

    - Robot interacting with enviroment 

    - Agents  



What you should know 

• Models that include rewards and actions 

• Value iteration for solving MDPs 

• Policy iteration 


