10-601
 Machine Learning

Markov decision processes (MDPs)

The weeks ahead

- Applications of HMM to biology
- Dimensionality reduction
- SVM
- Boosting
- Model and feature selection

Markov decision processes (MDPs)

What's missing in HMMs

- HMMs cannot model important aspects of agent interactions:
- No model for rewards
- No model for actions which can affect these rewards
- These are actually issues that are faced by many applications:
- Agents negotiating deals on the web
- A robot which interacts with its environment

Example: No actions

Example: Actions

Formal definition of MDPs

- A set of states $\left\{\mathrm{s}_{1} \ldots \mathrm{~s}_{\mathrm{n}}\right\}$
- A set of rewards $\left\{r_{1} \ldots r_{n}\right\}$
- A set of actions $\left\{a_{1} . . a_{m}\right\}$
- Transition probability

$$
P_{i, j}^{k}=P\left(q_{t+1}=s_{j} \mid q_{t}=i \& h_{t}=a_{k}\right)
$$

Questions

- What is my expected pay if I am in state i
- What is my expected pay if I am in state i and perform action a ?

Solving MDPs

- No actions: Value iterations
- With actions: Value iteration, Policy iteration

Value computation

- An obvious question for such models is what is the combined expected value for each state
- What can we expect to earn over our life time if we become Asst. prof.?
- What if we go to industry?

Before we answer this question, we need to define a model for future rewards:

- The value of a current award is higher than the value of future awards
- Inflation, confidence
- Example: Lottery

Discounted rewards

- The discounted rewards model is specified using a parameter γ
- Total rewards = current reward +
$\gamma($ reward at time $\mathrm{t}+1)+$
γ^{2} (reward at time t+2) +
γ^{k} (reward at time t+k) +
infinite sum

Discounted awards

- The discounted award model is specified using a parameter γ
- Total awards = current award +
γ (award at time $t+1)+$
γ^{2} (award at time $\mathrm{t}+2$) +
γ^{k} (award at time $\mathrm{t}+\mathrm{k}$) +
infinite sum
Converges if $0<\gamma<1$

Determining the total rewards in a state

- Define $\mathrm{J}^{*}\left(\mathrm{~s}_{\mathrm{i}}\right)=$ expected discounted sum of rewards when starting at state s_{i}
- How do we compute $\mathrm{J}^{\star}\left(\mathrm{s}_{\mathrm{i}}\right)$?

Factors expected pay
$\begin{aligned} & J *\left(s_{i}\right)=r_{i}+\gamma X \\ &=r_{i}+\gamma\left(p_{i 1} J *\left(s_{1}\right)+p_{i 2} J *\left(s_{2}\right)+\cdots p_{i n} J *\left(s_{n}\right)\right)\end{aligned}$

How can we solve this?

sonn

$$
\begin{aligned}
& J *\left(s_{1}\right)=r_{1}+\gamma\left(p_{11} J^{*}\left(s_{1}\right)+p_{12} J^{*}\left(s_{2}\right)+\cdots p_{1 n} J *\left(s_{n}\right)\right) \\
& J *\left(s_{2}\right)=r_{2}+\gamma\left(p_{21} J *\left(s_{1}\right)+p_{22} J *\left(s_{2}\right)+\cdots p_{2 n} J *\left(s_{n}\right)\right) \\
& J *\left(s_{n}\right)=r_{n}+\gamma\left(p_{n 1} J *\left(s_{1}\right)+p_{n 2} J *\left(s_{2}\right)+\cdots p_{n n} J *\left(s_{n}\right)\right)
\end{aligned}
$$

- We have n equations with n unknowns
- Can be solved in close form

Iterative approaches

- Solving in closed form is possible, but may be time consuming.
- It also doesn't generalize to non-linear models
- Alternatively, this problem can be solved in an iterative manner
- Lets define $\mathrm{J}^{\mathrm{t}}\left(\mathrm{s}_{\mathrm{i}}\right)$ as the expected discounted rewards after t steps
- How can we compute $\mathrm{J}^{\mathrm{t}}\left(\mathrm{s}_{\mathrm{i}}\right)$?

$$
\begin{aligned}
& J^{1}\left(S_{i}\right)=r_{i} \\
& J^{2}\left(S_{i}\right)=r_{i}+\gamma\left(\sum_{k} p_{i, k} J^{1}\left(s_{k}\right)\right) \\
& J^{t+1}\left(S_{i}\right)=r_{i}+\gamma\left(\sum_{k} p_{i, k} J^{t}\left(s_{k}\right)\right)
\end{aligned}
$$

Iterative approaches

- We know how to solve this!
. Lets fill the dynamic programming table
- Lets detine $\mathrm{J}^{\mathrm{K}}\left(\mathrm{s}_{\mathrm{i}}\right)$ as the expected discounted awards atter k steps
- But wait ...

This is a never ending task!

$$
\begin{aligned}
& J^{2}\left(S_{i}\right)=r_{i}+\gamma\left(\sum_{k} p_{i, k} J^{1}\left(s_{k}\right)\right) \\
& J^{t+1}\left(S_{i}\right)=r_{i}+\gamma\left(\sum_{k} p_{i, k} J^{t}\left(s_{k}\right)\right)
\end{aligned}
$$

When do we stop?

$$
\begin{aligned}
& J^{1}\left(S_{i}\right)=r_{i} \\
& J^{2}\left(S_{i}\right)=r_{i}+\gamma\left(\sum_{k} p_{i, k} J^{1}\left(s_{k}\right)\right) \\
& J^{t+1}\left(S_{i}\right)=r_{i}+\gamma\left(\sum_{k} p_{i, k} J^{t}\left(s_{k}\right)\right)
\end{aligned}
$$

Remember, we have a converging function
We can stop when $\left|\mathrm{J}^{\mathrm{t}-1}\left(\mathrm{~s}_{\mathrm{i}}\right)-\mathrm{J}^{\mathrm{t}}\left(\mathrm{s}_{\mathrm{i}}\right)\right|_{\infty}<\varepsilon$

Infinity norm selects maximal element

Example for $\gamma=0.9$

$\mathrm{J}^{2}(\mathrm{Gr})=20+0.9^{*}\left(0.6^{*} 20+0.2^{*} 40\right.$				
$\left.+0.2^{*} 200\right)$				
t	$\mathrm{J}^{\mathrm{t}}(\mathrm{G}$	$\mathrm{t})$	$\mathrm{J}^{\mathrm{t}}(\mathrm{P})$	$\mathrm{J}^{\mathrm{t}}(\mathrm{Goo})$
$\mathrm{J}^{\mathrm{t}}(\mathrm{D})$				
1	20	40	200	0
2	74^{\star}	87	362	0
3	141	135	493	0
4	209	182	600	0

Solving MDPs

- No actions: Value iterations $\sqrt{ }$
- With actions: Value iteration, Policy iteration

Adding actions

A Markov Decision Process:

- A set of states $\left\{\mathrm{s}_{1} \ldots \mathrm{~s}_{\mathrm{n}}\right\}$
- A set of rewards $\left\{r_{1} \ldots r_{n}\right\}$
- A set of actions $\left\{a_{1} . . a_{m}\right\}$
- Transition probability

$$
P_{i, j}^{k}=P\left(q_{t+1}=s_{j} \mid q_{t}=i \& h_{t}=a_{k}\right)
$$

Example: Actions

Questions for MDPs

- Now we have actions
- The question changes as follows:

Given our current state and the possible actions, what is the best action for us in terms of long term payment?

Example: Actions

Action A: Leave to Google
Action B: Stay in academia

Policy

- A policy maps sates to actions
- An optimal policy leads to the highest expected returns
- Note that this does not depend on the start state

Gr	B
Go	A
Asst. Pr.	A
Ten. Pr.	B

Solving MDPs with actions

- It could be shown that for every MDP there exists an optimal policy (we won't discuss the proof).
- Such policy guarantees that there is no other action that is expected to yield a higher payoff

Computing the optimal policy: 1. Modified value iteration

- We can compute it by modifying the value iteration method we discussed.
- Define $\mathrm{p}^{\mathrm{k}}{ }_{\mathrm{ij}}$ as the probability of transitioning from state i to state j when using action k
- Then we compute:

Use probabilities associated with action k

$$
J^{t+1}\left(S_{i}\right)=\max _{k} r_{i}+\gamma\left(\sum_{j} p_{k, j}^{k} J^{t}\left(s_{j}\right)\right)
$$

Computing the optimal policy: 1. Modified value iteration

- We can compute it by modifying the value iteration method we discussed.
- Define p^{k}, as the probability of transitioning from state i to state j when using action k
- Then we compute:

$$
J^{t+1}\left(S_{i}\right)=\max _{k} r_{i}+\gamma\left(\sum_{j} p_{i, j}^{k} J^{t}\left(s_{j}\right)\right)
$$

Run until convergences

Computing the optimal policy: 1. Modified value iteration

- We can compute it by modifying the value iteration method we discussed.
- Define p^{k}, as the probability of transitioning from state i to state j when using action k
- Then we compute:

$$
J^{t+1}\left(S_{i}\right)=\max _{k} r_{i}+\gamma\left(\sum_{j} p_{i, j}^{k} J^{t}\left(s_{j}\right)\right)
$$

- When the algorithm converges, we have computed the best outcome for each state
- We associate states with the actions that maximize their return

Value iteration for $\gamma=0.9$

Computing the optimal policy: 2. Policy iteration

- We can also compute optimal policies by revising an existing policy.
- We initially select a policy at random (mapping from states to actions).
- We re-compute the expected long term reward at each state using the selected policy
- We select a new policy using the expected rewrads and iterate until convergences

Policy iteration: algorithm

- Let $\pi_{t}\left(s_{i}\right)$ be the selected policy at time t

1. Randomly chose $\pi_{0} ;$ set $t=0$
2. For each state s_{i} compute $\mathrm{J}^{\star}\left(\mathrm{s}_{\mathrm{i}}\right)$, the long term expected reward using policy π_{t}.
3. Set $\pi_{\mathrm{t}}\left(\mathrm{s}_{\mathrm{i}}\right)=\max _{k} r_{i}+\gamma\left(\sum_{j} p_{i, j}^{k} J^{*}\left(s_{j}\right)\right)$
4. Convergence? Yes: output policy. No: $\mathrm{t}=\mathrm{t}+1$, go to 2 .

Policy iteration: algorithm

- Let $\pi_{t}\left(s_{i}\right)$ be the selected policy at time t

1. Randomly chose π_{0}; set $t=0$
2. For each state s_{i} compute $\mathrm{J}^{\star}\left(\mathrm{s}_{\mathrm{i}}\right)$, the long term expected reward using policy π_{t}.
3. Set $\pi_{\mathrm{t}}\left(\mathrm{S}_{\mathrm{i}}\right)=\max _{k} r_{i}+\gamma\left(\sum_{j} p_{k j}^{k} J^{*}\left(s_{j}\right)\right)$
4. Convergence? Yes: output policy. No: $t=t+1$, go to 2 .

Once the policy is fixed we are back to rewards only models, so this can be computed using value iteration

Value iteration vs. policy iteration

- Depending on the model and the information at hand:
- If you have a good guess regarding the optimal policy then policy iteration would converge much faster
- similarly, if there are many possible actions, policy iteration might be faster
- otherwise value iteration is a safer way

Demo

Reinforcement learning (RL)

MDP with actions: How do we learn the model?

From MDPs to Reinforcement Learning (RL)

1. We do not assume we know the Markov model
2. We learn the model from observations (online)

- Examples:
- Game playing
- Robot interacting with enviroment
- Agents

What you should know

- Models that include rewards and actions
- Value iteration for solving MDPs
- Policy iteration

