
10-601

Machine Learning

Markov decision processes (MDPs)

The weeks ahead

 - Applications of HMM to biology

 - Dimensionality reduction

 - SVM

 - Boosting

 - Model and feature selection

Markov decision processes (MDPs)

What’s missing in HMMs

• HMMs cannot model important aspects of agent interactions:

 - No model for rewards

 - No model for actions which can affect these rewards

• These are actually issues that are faced by many applications:

 - Agents negotiating deals on the web

 - A robot which interacts with its environment

Example: No actions

Graduate

student

20

Asst. prof

40

Tenured

prof.

100

Google

200

On the

street

0

Dead

0

0.6

0.2

0.7 0.9

0.2

0.1

0.1 0.1
1

0.6

0.1

0.3
0.3

0.1

0.6

0.1

Example: Actions

Graduate

student

20

Asst. prof

40

Tenured

prof.

100

Google

200

On the

street

0

Dead

0

Action A

0.7 0.7 0.9

0.3

0.2

0.1
1

0.1

0.3
0.3

0.1

0.6

0.1
Action

B

0.6

0.1

0.1

Action A: Leave to

Google

Action B: Stay in

academia

0.8

Formal definition of MDPs

• A set of states {s1 … sn}

• A set of rewards {r1 … rn}

• A set of actions {a1 .. am}

• Transition probability

)&|(1, kttjt

k

ji ahiqsqPP  

One reward for each state

Number of actions could be

larger than number of states

Questions

• What is my expected pay if I am in state i

• What is my expected pay if I am in state i and perform

action a?

Solving MDPs

• No actions: Value iterations

• With actions: Value iteration, Policy iteration

Value computation
• An obvious question for such models is what is the

combined expected value for each state

• What can we expect to earn over our life time if we

become Asst. prof.?

• What if we go to industry?

Before we answer this question, we need to define a

model for future rewards:

• The value of a current award is higher than the value

of future awards

 - Inflation, confidence

 - Example: Lottery

Discounted rewards

• The discounted rewards model is specified using a

parameter 

• Total rewards = current reward +

  (reward at time t+1) +

 2 (reward at time t+2) +

 ………….

 k (reward at time t+k) +

 infinite sum

Discounted awards

• The discounted award model is specified using a

parameter 

• Total awards = current award +

  (award at time t+1) +

 2 (award at time t+2) +

 ………….

 k (award at time t+k) +

 infinite sum

Converges if 0<<1

Determining the total rewards in a

state

• Define J*(si) = expected discounted sum of rewards when

starting at state si

• How do we compute J*(si)?

))(*)(*)(*(

)(*

2211 niniii

ii

sJpsJpsJpr

XrsJ









How can we solve this?

Factors expected pay

for all possible

transitions for step i

Computing j*(si)

))(*)(*)(*()(* 222212122 nn sJpsJpsJprsJ  

))(*)(*)(*()(* 121211111 nn sJpsJpsJprsJ  

• We have n equations with n unknowns

• Can be solved in close form

))(*)(*)(*()(* 2211 nnnnnnn sJpsJpsJprsJ  

Iterative approaches
• Solving in closed form is possible, but may be time consuming.

• It also doesn’t generalize to non-linear models

• Alternatively, this problem can be solved in an iterative manner

• Lets define Jt(si) as the expected discounted rewards after t steps

• How can we compute Jt(si)?

ii rSJ )(1









 

k

kkiii sJprSJ)()(1

,

2 









 

k

k

t

kiii

t sJprSJ)()(,

1 

Iterative approaches

• Solving in closed form is possible, but may be time

consuming.

• Alternatively, this problem can be solved in an iterative

manner

• Lets define Jk(si) as the expected discounted awards after k

steps

• How can we compute Jk(si)?

ii rSJ )(1









 

k

kkiii sJprSJ)()(1

,

2 









 

k

k

t

kiii

t sJprSJ)()(,

1 

We know how to solve this!

Lets fill the dynamic programming table

But wait …

This is a never ending task!

When do we stop?

ii rSJ )(1









 

k

kkiii sJprSJ)()(1

,

2 









 

k

k

t

kiii

t sJprSJ)()(,

1 

Remember, we have a converging function

We can stop when |Jt-1(si)- J
t(si)| < 

Infinity norm selects maximal element

Example for =0.9

Graduate

student

20

Asst. prof

40

Google

200

Dead

0

0.9

0.2

0.8

0.2

0.1

0.1

1

0.6

0.1

t Jt(Gr) Jt(P) Jt(Goo) Jt(D)

1 20 40 200 0

2 74 87 362 0

3 141 135 493 0

4 209 182 600 0

J2(Gr)=20+0.9*(0.6*20+0.2*40

+0.2*200)

Solving MDPs

• No actions: Value iterations

• With actions: Value iteration, Policy iteration



Adding actions

A Markov Decision Process:

• A set of states {s1 … sn}

• A set of rewards {r1 … rn}

• A set of actions {a1 .. am}

• Transition probability

)&|(1, kttjt

k

ji ahiqsqPP  

Example: Actions

Graduate

student

20

Asst. prof

40

Tenured

prof.

100

Google

200

On the

street

0

Dead

0

Action A

0.7 0.7 0.9

0.3

0.2

0.1
1

0.1

0.3
0.3

0.1

0.6

0.1
Action

B

0.6

0.1

0.1

Action A: Leave to

Google

Action B: Stay in

academia

0.8

Questions for MDPs

• Now we have actions

• The question changes as follows:

Given our current state and the possible actions, what is

the best action for us in terms of long term payment?

Example: Actions

Action A: Leave

to Google

Action B: Stay in

academia

Graduate

student

20

Asst. prof

40

Google

200

Dead

0

0.9

0.8

0.1

0.1

1

0.1

0.7

0.3

Action

B

Action A

0.8

0.2

So should you leave now (right

after class) or should you stay in

the PhD program?

Policy

• A policy maps sates to

actions

• An optimal policy leads to

the highest expected

returns

• Note that this does not

depend on the start state

Gr B

Go A

Asst. Pr. A

Ten. Pr. B

Solving MDPs with actions

• It could be shown that for every MDP there exists an

optimal policy (we won’t discuss the proof).

• Such policy guarantees that there is no other action that

is expected to yield a higher payoff

Computing the optimal policy:

1. Modified value iteration

• We can compute it by modifying the value iteration

method we discussed.

• Define pk
ij as the probability of transitioning from state i to

state j when using action k

• Then we compute:














 

j

j

tk

i

k

i

t sJprSJ
ji

)()(
,max

1 

Also known as Bellman’s

equation

Use probabilities associated with action k

Computing the optimal policy:

1. Modified value iteration

• We can compute it by modifying the value iteration

method we discussed.

• Define pk
ij as the probability of transitioning from state i to

state j when using action k

• Then we compute:














 

j

j

tk

i

k

i

t sJprSJ
ji

)()(
,max

1 

Run until convergences

Computing the optimal policy:

1. Modified value iteration

• We can compute it by modifying the value iteration

method we discussed.

• Define pk
ij as the probability of transitioning from state i to

state j when using action k

• Then we compute:














 

j

j

tk

i

k

i

t sJprSJ
ji

)()(
,max

1 

• When the algorithm converges, we have

computed the best outcome for each state

• We associate states with the actions that

maximize their return

Value iteration for =0.9

Graduate

student

20

Asst. prof

40

Google

200

Dead

0

0.9

0.8

0.1

0.1

1

0.1

t Jt(Gr) Jt(P) Jt(Goo) Jt(D)

1 20 40 200 0

2 168(A)

51(B)

87 362 0

3 311(A)

149(B)

135 493 0

4 431(A)

252(B)

182 600 0

0.7

0.3

Action

B

Action A

0.8

0.2

J2(Gr) = 20+ 0.9*Max {

0.2*20+0.8*200,

0.7*20+0.3*40}

Computing the optimal policy:

2. Policy iteration

• We can also compute optimal policies by revising an

existing policy.

• We initially select a policy at random (mapping from

states to actions).

• We re-compute the expected long term reward at each

state using the selected policy

• We select a new policy using the expected rewrads and

iterate until convergences

Policy iteration: algorithm

• Let πt(si) be the selected policy at time t

1. Randomly chose π0 ; set t = 0

2. For each state si compute J*(si), the long term

expected reward using policy πt .

3. Set πt(si) =

4. Convergence? Yes: output policy. No: t = t + 1, go to 2.














 

j

j

k

i

k

sJpr
ji

)(*

,max 

Policy iteration: algorithm

• Let πt(si) be the selected policy at time t

1. Randomly chose π0 ; set t = 0

2. For each state si compute J*(si), the long term

expected reward using policy πt .

3. Set πt(si) =

4. Convergence? Yes: output policy. No: t = t + 1, go to 2.














 

j

j

k

i

k

sJpr
ji

)(*

,max 

Once the policy is fixed we

are back to rewards only

models, so this can be

computed using value

iteration

Can be computed

using J*(si) for all

states

Value iteration vs. policy iteration

• Depending on the model and the information at hand:

 - If you have a good guess regarding the optimal policy

then policy iteration would converge much faster

 - similarly, if there are many possible actions, policy

iteration might be faster

 - otherwise value iteration is a safer way

Demo

Reinforcement learning (RL)

MDP with actions: How do we learn

the model?

Graduate

student

20

Asst. prof

40

Tenured

prof.

100

Google

200

On the

street

0

Dead

0

Action A

0.7 0.7 0.9

0.3

0.2

0.1
1

0.1

0.3
0.3

0.1

0.6

0.1
Action

B

0.6

0.1

0.1

0.8

From MDPs to Reinforcement

Learning (RL)

1. We do not assume we know the Markov model

2. We learn the model from observations (online)

• Examples:

 - Game playing

 - Robot interacting with enviroment

 - Agents

What you should know

• Models that include rewards and actions

• Value iteration for solving MDPs

• Policy iteration

