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Machine Learning 10-601 
 Tom M. Mitchell 

Machine Learning Department 
Carnegie Mellon University 

 
September 25, 2012 

Today: 
•  Linear regression 
•  Bias/Variance/Unavoidable 

errors 

Readings: 
 
Required: 
•  Bishop: Chapt. 1 through 1.2.5 
•  Bishop: Chapt. 3 through 3.2 
 
Optional: 
•  Mitchell: Chapt. 6.4 

Regression 
So far, we’ve been interested in learning P(Y|X) where Y has 

discrete values (called ‘classification’) 
 
What if Y is continuous? (called ‘regression’) 
•  predict weight from gender, height, age, … 

•  predict Google stock price today from Google, Yahoo, 
MSFT prices yesterday 

•  predict each pixel intensity in robot’s current camera 
image, from previous image and previous action 
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Regression 
Wish to learn f:XàY, where Y is real, given {<x1,y1>…<xn,yn>} 
 
Approach: 
 
1.  choose some parameterized form for P(Y|X; θ) 

( θ is the vector of parameters) 
 

2.  derive learning algorithm as MLE or MAP estimate for θ 

1. Choose parameterized form for P(Y|X; θ) 
 

Assume Y is some deterministic f(X), plus random noise 
 
 
Therefore Y is a random variable that follows the distribution 
 
 
and the expected value of y for any given x is Ep(x,y)[y]=f(x) 
 

Y 

X 

where 
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Consider Linear Regression 
  

 
E.g., assume f(x) is linear function of x 
 
 
 
 
 
 
Notation: to make our parameters explicit, let’s write 
 
 
 
 

Training Linear Regression 
  

 
How can we learn W from the training data? 
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Training Linear Regression 
  

 
How can we learn W from the training data? 
 
Learn Maximum Conditional Likelihood Estimate! 
 
 
 
 
where 
 
 

Training and Regression 
 Learn Maximum Conditional Likelihood Estimate 

 
 
where 
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Training and Regression 
 Learn Maximum Conditional Likelihood Estimate 

 
 
where 
 
 
 
 
 
so: 
 
 

Training Linear Regression 
 Learn Maximum Conditional Likelihood Estimate 

 
 
Can we derive gradient descent rule for training? 
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Training Linear Regression 
 Learn Maximum Conditional Likelihood Estimate 

 
 
Can we derive gradient descent rule for training? 
 
 
 

And if  

Training Linear Regression 
 Learn Maximum Conditional Likelihood Estimate 

 
 
Can we derive gradient descent rule for training? 
 
 
 
 
 
 
And if                                        … 
 
 
 
Gradient descent rule:  
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How about MAP instead of MLE estimate? 

Let’s assume Gaussian prior: each wi ~ N(0, σ) 
 
 

Then MAP estimate is     

Gradient  
descent: 

Consider Linear Regression 
  

 
E.g., assume f(x) is linear function of x  
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Consider Linear Regression 
  

 
E.g., assume f(x) is linear function of  
 
 
 
 
 
 
 
 
 

Regression – What you should know 
Under general assumption 
 
1.  MLE corresponds to minimizing Sum of Squared prediction Errors 
2.  MAP estimate minimizes SSE plus sum of squared weights 

3.  Again, learning is an optimization problem once we choose our 
objective function 
•  maximize data likelihood 
•  maximize posterior probability, P(W | data) 
 

4.  Again, we can use gradient descent as a general learning algorithm 
•  as long as our objective fn is differentiable wrt W 

5.  Nothing we said here required that f(x) be linear in x -- just linear in W  
6.  Gradient descent is just one algorithm – linear algebra solutions too  
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Decomposition of Error in Learned Hypothesis 
 
1. Bias 
 
2. Variance 
 
3. Unavoidable error 

given some estimator A for some parameter θ, we define 
 
 
 
e.g., θ is probability of heads for a coin, A is the MLE 

estimate for θ, based on n independent coin flips 
A is a random variable, sampled by reflipping the coins 
Expected value is taken over different reflippings 
 
is A biased or unbiased estimator for θ ? 
 
variance decreases as sqrt(1/n) 

Bias and Variance 
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•  Consider simple regression problem f:XàY  

y = f(x) + ε	

	


	


	


	


What is expected error of a hypothesis learned (estimated) 
from randomly drawn training data D? 
  

noise N(0,σ) 

deterministic 

Bias – Variance decomposition of error  
Reading: Bishop chapter 3.2 (different notation) 

learned estimate of f(x), from training data D  

Sources of error 
•  What if we have perfect learner, infinite data? 

– Our learned h(x) satisfies h(x)=f(x) 
– Still have remaining, unavoidable error 

because of ε	

   y = f(x) + ε, 	

 
 
                                 

ε  ∼ N(0,σ) 
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Sources of error 
•  What if we have only n training examples? 
•  What is our expected error 

– Taken over random training sets of size n, 
drawn from distribution D=p(x,y) ?	


	

 

Decomposition of error: y = f(x) + ε;   ε ∼ N(0,σ) 
learned estimate of f(x), from training data D  
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Error Decomposition: Summary 
Expected true error of learned P(y|x) for regression 
(and similarly for classification) has three sources: 
1.  Unavoidable error: even with perfect estimate  

–  non-determinism in world prevents perfect predictions 

2.  Bias: 
–  even with infinite training data, hypothesis h(x) might 

not equal true f(x).  E.g., if learner’s hypothesis 
representation cannot represent the true f(x) 

3.  Variance 
–  Whenever we have only finite training data, the sample 

of just n training examples might represent an empirical 
distribution that varies from the true P(Y|X).  i.e., if we 
collect many training sets of size n, the empirical 
distribution they represent will vary about P(Y|X). 


