
1 

Machine Learning 10-601 
 Tom M. Mitchell 

Machine Learning Department 
Carnegie Mellon University 

 
October 4, 2012 

Today: 

•  Graphical models 
•  Bayes Nets:   

•  Inference 
•  Learning 

Readings: 
 
Required: 
•  Bishop chapter 8 
 

Bayesian Networks Definition 

A Bayes network represents the joint probability distribution 
over a collection of random variables 

 
A Bayes network is a directed acyclic graph and a set of 

conditional probability distributions (CPD’s) 
•  Each node denotes a random variable 
•  Edges denote dependencies 
•  For each node Xi its CPD defines P(Xi | Pa(Xi))	


•  The joint distribution over all variables is defined to be 

Pa(X) = immediate parents of X in the graph 
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Bayesian Network 

StormClouds 

Lightning Rain 

Thunder WindSurf 

What can we say about conditional 
independencies in a Bayes Net? 

One thing is this: 

Each node is conditionally independent of 
its non-descendents, given only its 
immediate parents. 

  
Parents P(W|Pa) P(¬W|Pa) 

L, R  0 1.0 

L, ¬R 0 1.0 

¬L, R 0.2 0.8 

¬L, ¬R 0.9 0.1 

WindSurf 

What You Should Know 
•  Bayes nets are convenient representation for encoding 

dependencies / conditional independence 
•  BN = Graph plus parameters of CPD’s 

–  Defines joint distribution over variables 
–  Can calculate everything else from that 
–  Though inference may be intractable 

•  Reading conditional independence relations from the 
graph 
–  Each node is cond indep of non-descendents, given only its 

parents 

See Bayes Net applet: http://www.cs.cmu.edu/~javabayes/Home/applet.html 
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Inference in Bayes Nets 

•  In general, intractable (NP-complete) 
•  For certain cases, tractable 

–  Assigning probability to fully observed set of variables 
–  Or if just one variable unobserved 
–  Or for singly connected graphs (ie., no undirected loops) 

•  Belief propagation 

•  For multiply connected graphs 
•  Junction tree 

•  Sometimes use Monte Carlo methods 
–  Generate many samples according to the Bayes Net 

distribution, then count up the results 

•  Variational methods for tractable approximate 
solutions 

Example 

•  Bird flu and Allegies both cause Sinus problems 
•  Sinus problems cause Headaches and runny Nose 
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Prob. of joint assignment: easy  

•  Suppose we are interested in joint 
 assignment <F=f,A=a,S=s,H=h,N=n> 
 
What is P(f,a,s,h,n)? 

let’s use p(a,b) as shorthand for p(A=a, B=b) 

Prob. of marginals: not so easy  

•  How do we calculate P(N=n) ? 

 

let’s use p(a,b) as shorthand for p(A=a, B=b) 
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Generating a sample from  
joint distribution: easy  

How can we generate random samples 
drawn according to P(F,A,S,H,N)? 
 

let’s use p(a,b) as shorthand for p(A=a, B=b) 

Generating a sample from  
joint distribution: easy  

 
Note we can estimate marginals 
like P(N=n) by generating many samples 
from joint distribution, then count the fraction of samples 

for which N=n 
 
Similarly, for anything else we care about  

 P(F=1|H=1, N=0) 
 
à weak but general method for estimating any 

probability term… 
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Prob. of marginals: not so easy  
But sometimes the structure of the network allows us to be 

clever à avoid exponential work 
 
eg., chain     A D B C E 

Inference in Bayes Nets 

•  In general, intractable (NP-complete) 
•  For certain cases, tractable 

–  Assigning probability to fully observed set of variables 
–  Or if just one variable unobserved 
–  Or for singly connected graphs (ie., no undirected loops) 

•  Variable elimination 
•  Belief propagation 

•  For multiply connected graphs 
•  Junction tree 

•  Sometimes use Monte Carlo methods 
–  Generate many samples according to the Bayes Net 

distribution, then count up the results 

•  Variational methods for tractable approximate 
solutions 
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Learning of Bayes Nets 
•  Four categories of learning problems 

–  Graph structure may be known/unknown 
–  Variable values may be fully observed / partly unobserved 

•  Easy case: learn parameters for graph structure is 
known, and data is fully observed 

 
•  Interesting case: graph known, data partly known 

•  Gruesome case: graph structure unknown, data partly 
unobserved 

Learning CPTs from Fully Observed Data 

•  Example: Consider learning 
the parameter 

•  MLE (Max Likelihood 
Estimate) is 

•  Remember why? 

Flu Allergy 

Sinus 

Headache Nose 

kth training 
example 
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MLE estimate of         from fully observed data 

•  Maximum likelihood estimate 

•  Our case: 

Flu Allergy 

Sinus 

Headache Nose 

Estimate     from partly observed data 

•  What if FAHN observed, but not S? 
•  Can’t calculate MLE 

•  Let X be all observed variable values (over all examples) 
•  Let Z be all unobserved variable values   
•  Can’t calculate MLE: 
 

Flu Allergy 

Sinus 

Headache Nose 

•   WHAT TO DO? 



9 

Estimate     from partly observed data 

•  What if FAHN observed, but not S? 
•  Can’t calculate MLE 

•  Let X be all observed variable values (over all examples) 
•  Let Z be all unobserved variable values   
•  Can’t calculate MLE: 
 

Flu Allergy 

Sinus 

Headache Nose 

•   EM seeks* to estimate: 

* EM guaranteed to find local maximum 

Flu Allergy 

Sinus 

Headache Nose 

•   EM seeks estimate: 

•   here, observed X={F,A,H,N}, unobserved Z={S} 
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EM Algorithm 

EM is a general procedure for learning from partly observed data 

Given  observed variables X, unobserved Z  (X={F,A,H,N}, Z={S}) 

Define 

Iterate until convergence: 

•  E Step: Use X and current θ to calculate P(Z|X,θ) 

•  M Step: Replace current θ by  

	



	

	



Guaranteed to find local maximum. 
Each iteration increases   

E Step: Use X, θ, to Calculate P(Z|X,θ) 

•  How?  Bayes net inference problem. 

Flu Allergy 

Sinus 

Headache Nose 

observed X={F,A,H,N}, 
unobserved Z={S} 
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EM and estimating   Flu Allergy 

Sinus 

Headache Nose 
observed X = {F,A,H,N}, unobserved Z={S} 

E step:  Calculate P(Zk|Xk; θ) for each training example, k  

M step: update all relevant parameters.  For example: 

Recall MLE was: 

EM and estimating   
Flu Allergy 

Sinus 

Headache Nose More generally,  
Given observed set X, unobserved set Z of boolean values 

E step:  Calculate for each training example, k  

 the expected value of each unobserved variable   

M step: 
Calculate estimates similar to MLE, but 
replacing each count by its expected count 
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Using Unlabeled Data to Help Train  
Naïve Bayes Classifier 

Y

X1 X4 X3 X2 

Y X1 X2 X3 X4 
1 0 0 1 1 
0 0 1 0 0 
0 0 0 1 0 
? 0 1 1 0 
? 0 1 0 1 

Learn P(Y|X) 

E step:  Calculate for each training example, k  

 the expected value of each unobserved variable   
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EM and estimating   

Given observed set X, unobserved set Y of boolean values 

E step:  Calculate for each training example, k  

 the expected value of each unobserved variable Y 

M step: Calculate estimates similar to MLE, but 
replacing each count by its expected count 

let’s use y(k) to indicate value of Y on kth example 

EM and estimating   

Given observed set X, unobserved set Y of boolean values 

E step:  Calculate for each training example, k  

 the expected value of each unobserved variable Y 

M step: Calculate estimates similar to MLE, but 
replacing each count by its expected count 

MLE would be: 
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From [Nigam et al., 2000] 

Experimental Evaluation 

•  Newsgroup postings  
–  20 newsgroups, 1000/group 

•  Web page classification  
–  student, faculty, course, project 
–  4199 web pages 

•  Reuters newswire articles  
–  12,902 articles 
–  90 topics categories 
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20 Newsgroups 

Using one labeled 
example per class 

word w ranked by 
P(w|Y=course) /P
(w|Y ≠ course) 
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20 Newsgroups 

Usupervised clustering 
  

Just extreme case for EM with 
zero labeled examples… 



17 

Clustering 

•  Given set of data points, group them 
•  Unsupervised learning 
•  Which patients are similar? (or which earthquakes, 

customers, faces, web pages, …) 

Mixture Distributions 

Model joint                     as mixture of multiple distributions. 
Use discrete-valued random var Z to indicate which 

distribution is being use for each random draw 
So 
 
 
Mixture of Gaussians: 
•  Assume each data point X=<X1, … Xn> is generated by 

one of several Gaussians, as follows: 
1.  randomly choose Gaussian i, according to P(Z=i) 
2.  randomly generate a data point <x1,x2 .. xn> according 

to N(µi, Σi) 
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EM for Mixture of Gaussian Clustering 

Let’s simplify to make this easier:    
1.  assume X=<X1 ... Xn>, and the Xi are conditionally independent 

given Z.   
 
 

2.  assume only 2 clusters (values of Z), and 

3.  Assume σ known, π1 … πK, µ1i …µKi unknown 

Observed: X=<X1 ... Xn> 
Unobserved: Z 

 

Z

X1 X4 X3 X2 

EM 

Given  observed variables X, unobserved Z   

Define 

where  

Iterate until convergence: 

•  E Step: Calculate P(Z(n)|X(n),θ) for each example X(n). 
Use this to construct  

•  M Step: Replace current θ by  

	



	

	



Z

X1 X4 X3 X2 
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EM – E Step 

Calculate P(Z(n)|X(n),θ) for each observed example X(n) 

X(n)=<x1(n), x2(n), … xT(n)>.   

Z

X1 X4 X3 X2 

EM – M Step  

  

    

Z

X1 X4 X3 X2 

First consider update for π	



π’ has no influence 

Count 
z(n)=1 
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EM – M Step  

  

    

Z

X1 X4 X3 X2 

Now consider update for µji 

µji’ has no influence 

… … … 

Compare above to 
MLE if Z were 
observable: 

EM – putting it together 

Given  observed variables X, unobserved Z   

Define 

where  

Iterate until convergence: 

•  E Step: For each observed example X(n), calculate P(Z(n)|X(n),θ)   

 

•   M Step: Update 

	



	



	

	



Z

X1 X4 X3 X2 
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Mixture of Gaussians applet 

 
Go to: http://www.socr.ucla.edu/htmls/SOCR_Charts.html 
then go to Go to “Line Charts”  à SOCR EM Mixture Chart 
•  try it with 2 Gaussian mixture components (“kernels”) 
•  try it with 4  
  

•  For learning from partly unobserved data 
•  MLE of θ =  
•  EM estimate: θ = 	



Where X is observed part of data, Z is unobserved 

•  EM for training Bayes networks 
•  Can also develop MAP version of EM 
•  Can also derive your own EM algorithm for your own 

problem 
–  write out expression for 
–  E step: for each training example Xk, calculate P(Zk | Xk, θ) 
–  M step: chose new θ to maximize                             

What you should know about EM 
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Learning Bayes Net Structure 
  
  

How can we learn Bayes Net graph structure? 

In general case, open problem 
•  can require lots of data (else high risk of overfitting) 
•  can use Bayesian methods to constrain search 

One key result: 
•  Chow-Liu algorithm: finds “best” tree-structured network   
•  What’s best? 

–  suppose P(X) is true distribution, T(X) is our tree-structured 
network, where X = <X1, … Xn>  

–  Chow-Liu minimizes Kullback-Leibler divergence: 
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Chow-Liu Algorithm 

Key result:  To minimize KL(P || T), it suffices to find the tree 
network T that maximizes the sum of mutual informations 
over its edges 

 
Mutual information for an edge between variable A and B:  
 
 
 
This works because for tree networks with nodes 
 
 

Chow-Liu Algorithm 
1.  for each pair of vars A,B, use data to estimate P(A,B),  

P(A), P(B) 
 
2.  for each pair of vars A,B calculate mutual information 

3.  calculate the maximum spanning tree over the set of 
variables, using edge weights I(A,B) 
 (given N vars, this costs only O(N2) time) 

4.  add arrows to edges to form a directed-acyclic graph 

5.  learn the CPD’s for this graph 
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Chow-Liu algorithm example 
Greedy Algorithm to find Max-Spanning Tree 

1/ 

1/ 

1/ 

1/ 

1/ 

1/ 

1/ 

1/ 

1/ 

1/ 

1/ 

[courtesy A. Singh, C. Guestrin] 

Bayes Nets – What You Should Know 

•  Representation 
–  Bayes nets represent joint distribution as a DAG + Conditional 

Distributions 
–  D-separation lets us decode conditional independence 

assumptions 

•  Inference 
–  NP-hard in general 
–  For some graphs, closed form inference is feasible 
–  Approximate methods too, e.g., Monte Carlo methods, … 

•  Learning 
–  Easy for known graph, fully observed data (MLE’s, MAP est.) 
–  EM for partly observed data, known graph 
–  Learning graph structure: Chow-Liu for tree-structured networks 
–  Hardest when graph unknown, data incompletely observed 

 


