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Today: Readings:

+ Graphical models Required:

+ Bayes Nets: « Bishop chapter 8
* Inference
* Learning

Bayesian Networks Definition

A Bayes network represents the joint probability distribUﬁon
over a collection of random variables

A Bayes network is a directed acyclic graph and a set of
conditional probability distributions (CPD’s)

« Each node denotes a random variable

* Edges denote dependencies

* For each node X; its CPD defines P(X; | Pa(X,))

+ The joint distribution over all variables is defined to be
P(Xq1...Xp) = H P(X;|Pa(X;))

1

Pa(X) = immediate parents of X in the graph




: What can we say about conditional
BayeSIan Network independencies in a Bayes Net?

One thing is this:

Each node is conditionally independent of
w its non-descendents, given only its
immediate parents.

Parents P(W|Pa) P(~W|Pa)
@ L,R 0 1.0
L, "R 0 1.0
L, R 0.2 0.8
L, "R 0.9 0.1

What You Should Know

» Bayes nets are convenient representation for encoding
dependencies / conditional independence
* BN = Graph plus parameters of CPD’s
— Defines joint distribution over variables
— Can calculate everything else from that
— Though inference may be intractable
» Reading conditional independence relations from the
graph

— Each node is cond indep of non-descendents, given only its
parents

See Bayes Net applet: http://www.cs.cmu.edu/~javabayes/Home/applet.html




Inference in Bayes Nets

* In general, intractable (NP-complete)

» For certain cases, tractable
— Assigning probability to fully observed set of variables
— Or if just one variable unobserved

— Or for singly connected graphs (ie., no undirected loops)
» Belief propagation
* For multiply connected graphs
» Junction tree
+ Sometimes use Monte Carlo methods

— Generate many samples according to the Bayes Net
distribution, then count up the results

» Variational methods for tractable approximate
solutions

Example

» Bird flu and Allegies both cause Sinus problems
+ Sinus problems cause Headaches and runny Nose




Prob. of joint assignment: easy @
» Suppose we are interested in joint

assignment <F=f A=a,S=s,H=h,N=n>

What is P(f,a,s,h,n)?

Prob. of marginals: not so easy @
* How do we calculate P(N=n) ?




Generating a sample from ()
joint distribution: easy Q ’
How can we generate random samples @

drawn according to P(F,A,S,H,N)?

Generating a sample from o)

joint distribution: easy :Q ’
Note we can estimate marginals
like P(N=n) by generating many samples

from joint distribution, then count the fraction of samples
for which N=n

Similarly, for anything else we care about
P(F=1|H=1, N=0)

- weak but general method for estimating any
probability term...




Prob. of marginals: not so easy
But sometimes the structure of the network allows us to be
clever - avoid exponential work

eg., chain @ @ @ @ @

Inference in Bayes Nets

In general, intractable (NP-complete)

For certain cases, tractable
— Assigning probability to fully observed set of variables
— Or if just one variable unobserved
— Or for singly connected graphs (ie., no undirected loops)
» Variable elimination
» Belief propagation
For multiply connected graphs
« Junction tree
« Sometimes use Monte Carlo methods
— Generate many samples according to the Bayes Net
distribution, then count up the results
Variational methods for tractable approximate
solutions




Learning of Bayes Nets

» Four categories of learning problems
— Graph structure may be known/unknown
— Variable values may be fully observed / partly unobserved

» Easy case: learn parameters for graph structure is
known, and data is fully observed

* Interesting case: graph known, data partly known

» Gruesome case: graph structure unknown, data partly
unobserved

Learning CPTs from Fully Observed Data

+ Example: Consider learning

the parameter @
* MLE (Max Likelihood

Estimate) is Headache

S8k =dap =g s =1)
slig Si 6(fp = i,a = j)

0

kth training
example

* Remember why?




MLE estimate of 0s);; from fully observed data

« Maximum likelihood estimate 2 Wlera)
0 < arg meax log P(datal6)
« Our case: Héadaghe
K
P(datal0) = [[ P(fi,ak, > his )
k=1

K
P(datal0) = [[ P(fi)P(ar)P(sg|frar)P(hilsg) P(nglsi)
k=1

K

log P(datalf) = _ log P(f,)+1og P(a)+log P(sy|frar)410g P(hy|s;)+log P(ng|s;)
k=1

9log P(datald) _ & 9109 Plsl fyax)
=1

YK o(fy=i,ap =g, s, = 1)

0. —
stig Shy 0(fr =i a, = J)

Estimate ¢ from partly observed data

. What if FAHN observed, but not §? "2,

+ Can'’t calculate MLE
6 — arg mgaxlogHP(fk,ak,sk,hk,nk|0) e
k

» Let X be all observed variable values (over all examples)
* Let Z be all unobserved variable values

» Can'’t calculate MLE:
0 — arg mgax log P(X, Z|0)

WHAT TO DO?




Estimate ¢ from partly observed data

 What if FAHN observed, but not S? :{. Qlerg?

+ Can’t calculate MLE A

H&adach Qose
0 — arg mgaxlogHP(fk,ak,sk,hk,nkW) ©

k

» Let X be all observed variable values (over all examples)
* Let Z be all unobserved variable values

+ Can'’t calculate MLE:
0 — arg méax log P(X, Z|6)

 EM seeks* to estimate:
0 — arg meax EZ|X,9[Iog P(X, Z|9)]

* EM guaranteed to find local maximum

« EM seeks estimate: @ Allergy
0 «— arg meax EZ|X,€[|09 P(X, Z|9)] - m

* here, observed X={F,A,H,N}, unobserved Z={S}

K

log P(X,Z|0) = Y_ log P(fx)+log P(a)+log P(sk|frar)+10g P(hy|sk)+l0g P(ng|sy)
k=1

K 1
Epzix,0) log P(X, Z10) = ZZP(Sk:ﬂfk-,ak,hk,nk)

k=1 i=0
[logP(f})+10g P(ay)+10g P(sg|frar)+109 P(hy|s)+10g P(ny|s;)]




EM Algorithm

EM is a general procedure for learning from partly observed data
Given observed variables X, unobserved Z (X={F,A,H,N}, Z={S}).

Define Q(6'|0) = Ep(z)x,9)llog P(X, Z@/)] aev
Rpeter

Cuive ll\*

Iterate until convergence:
* E Step: Use X and current 0 to calculate P(Z|X,0)

* M Step: Replace current 6 by
6 — arg max Q(0'19)

Guaranteed to find local maximum.
Each iteration increases Ep ; y g)[log P(X, Z|0')]

E Step: Use X, 0, to Calculate P(Z|X,0)

observed X={F A H,N}, @

unobserved Z={S}

GadacDe Qosed

 How? Bayes net inference problem.

P(Sy, = 1|fraphyng, 0) =

P(Sy, = 1, fraphyngl0)
P(Sy, = 1, fraghyng|0) 4+ P(S, = 0, fraihgng|6)

P(Sy, = 1|fraphyng, 0) =

10



EM and estimating ), E e

¢Sinus)
observed X = {F,A,H,N}, unobserved Z={S}

E step: Calculate P(Z,|X,; 8) for each training example, k

P(Sk = 1, fraxhgngl0)
P(Sk = 1 fraxhny, 0) = Els;] =
b= Ukl Pcz[lf{,.a) P(Sk = 1, fraghyny|0) + P(Sy = 0, fraghin|0)

M step: update all relevant parameters. For example:

YK L 0(fr =d,a; =) Els]

0. —
slij Z£(=1 5(fr, = i,a, = j)

Sho1 0k = iyap = jysp = 1)
N pp—
Recall MLE was: 9i; K 6(f = iray = J)

EM and estimating 6
More generally, GadacDe Qose)

Given observed set X, unobserved set Z of boolean values

E step: Calculate for each training example, k

the expected value of each unobserved variable

M step:
Calculate estimates similar to MLE, but
replacing each count by its expected count
6(Y =1) = EyxlY] (Y =0) = (1 - EgxelY])

11



Using Unlabeled Data to Help Train
Naive Bayes Classifier

Learn P(Y|X)

X1 | X2 | X3 (X4

wlv|lolol~a]x
o|lo|jo|o|o
alalola|o
<IN ENE=
~|lojo|o|~

E step: Calculate for each training example, k

the expected value of each unobserved variable

12



EM and estimating 6

Given observed set X, unobserved set Y of boolean values

E step: Calculate for each training example, k

the expected value of each unobserved variable Y

__ Ply(k) = DII; P(ai(k)ly(k) = 1)
> im0 P(y(k) = 5) I1; P(i(k) |y (k) = 5)

Epyix,..xy)y(k)] = P(y(k) = 1|z1(k), ... zn(k); 0)

M step: Calculate estimates similar to MLE, but
replacing each count by its expected count

let's use y(k) to indicate value of ¥ on kth example

EM and estimating 6

Given observed set X, unobserved set Y of boolean values

E step: Calculate for each training example, k
the expected value of each unobserved variable Y

Ply(k) =1)I1; P(zi(k)ly(k) = 1)
k)] = P(y(k) = 1|z1(k),...zN(k);0) = L
Bt 9] = P = U6, - aw(b:0) = - BOL S S8R

M step: Calculate estimates similar to MLE, but
replacing each count by its expected count

Carv vy e Py(k) = mlzi(k) ... zn(k)) 6(zi(k) = 4)
Oijim = P(Xi = j|Y =m) = =& S P(y(k) 1=m|w1(k1:\;...w1v(k))

MLE would be: P(X; = j[¥ = m) = 2= 5((21(2@ ;:gg)A _<z()k) = 4))
k =m
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Inputs: Collections D! of labeled documents and D* of unlabeled documents.
Build an initial naive Bayes classifier, é, from the labeled documents, D', only. Use maximum
a posteriori parameter estimation to find # = arg maxg P(D|0)P(8) (see Equations 5 and 6).

Loop while classifier parameters improve, as measured by the change in (8| D;z) (the com-
plete log probability of the labeled and unlabeled data

. (E-step) Use the current classifier, é, to estimate component membership of each unla-
beled document, i.e., the probability that each mixture component (and class) generated
each document, P(c;j|di;0) (see Equation 7).

e (M-step) Re-estimate the classifier, 8, given the estimated component membership

of each document. Use maximum a posteriori parameter estimation to find § =
arg maxg P(D|6)P(#) (see Equations 5 and 6).

Output: A classifier, @, that takes an unlabeled document and predicts a class label.

From [Nigam et al., 2000]

Experimental Evaluation

* Newsgroup postings
— 20 newsgroups, 1000/group
» Web page classification
— student, faculty, course, project
— 4199 web pages
» Reuters newswire articles
— 12,902 articles
— 90 topics categories

14
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Number of Labeled Documents

Table 3. Lists of the words most predictive of the course class in the WebKB data set, as they
change over iterations of EM for a specific trial. By the second iteration of EM, many common

course-related words appear. The symbol D indicates an arbitrary digit.

Iteration 0

Iteration 1

Iteration 2

intelligence
DD
artificial
understanding
DDw
dist
identical
rus
arrange
games
dartmouth
natural
cognitive
logic
proving
prolog
knowledge
human
representation
field

word w ranked by ’;)D

p(w|y:cour'se) /P lecture

(wlY # course) cc
Dk
DD:DD
handout
due
problem
set
tay
DDam
yurttas
homework
kfoury
sec
postscript
exam
solution
assaf

Using one labeled
example per class

D
DD
lecture
cc
DD:DD
due
D‘k
homework
assignment
handout
set
hw
exam
problem
DDam
postscript
solution
quiz
chapter
ascii
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me
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_,ﬁ" B - i
o A,.,A'"A’

0 1000 3000 5000 7000 9000 11000 13000
Number of Unlabeled Documents

Usupervised clustering

Just extreme case for EM with
zero labeled examples...
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Clustering

» Given set of data points, group them
* Unsupervised learning

» Which patients are similar? (or which earthquakes,
customers, faces, web pages, ...)

Mixture Distributions

Model joint P(X; ... X,)las mixture of multiple distributions.

Use discrete-valued random var Z to indicate which
distribution is being use for each random draw

So P(X.. ZP —4) P(Xi...X|2) (i
Mixture of Gaussians: X - Ka

» Assume each data point X=<X1, ... Xn> is generated by
one of several Gaussians, as follows:

1. randomly choose Gaussian i, according to P(Z=i)

2. randomly generate a data point <x1,x2 .. xn> according
to N(y;, )

17



EM for Mixture of Gaussian Clustering

Let’s simplify to make this easier:
1. assume X=<X, ... X,>, and the .X; are conditionally independent

given Z. -

P(X|Z=j)= HN(XinivUji)

(3

2. assume only 2 clusters (values of Z), and Vi, j, oji=0

2
P(X) = P(Z = j|m) [ N(@ilwji o)
=1 7

J

3. Assume o known, m; ... m uy; ... t; Unknown

Observed: X=<X, ... X,>

Unobserved: Z
®»®®

EM

Given observed variables X, unobserved Z
Define Q(¢'|0) = Eyzxpllog P(X, Z|0N]

where 0 = (7, ;) @ @ @

Iterate until convergence:

* E Step: Calculate P(Z(n)|X(n), 6) for each example X(n).
Use this to construct Q('|6)

* M Step: Replace current 6 by
6 — arg max Q(0'19)

18



EM - E Step

Calculate P(Z(n)|X(n),6) for each observed example X(n

X(n)=<x,(n), Xo(n), ... xx(n)>.
&) &) &)

P(z(n)|z(n) =k,0) P(z(n) = k|0)
Y=o p(@(n)|2(n) = j,6) P(z(n) = j|6)

P(2(n) = klz(n),6) =

[IT; P(zi(n)|2(n) = k,0)] P(2(n) = k|0)
Y101l P(zi(n)]2(n) = j,0) P(z(n) = j|0)

P(z(n) = klz(n),0) =

[T N (i) g )] (kL — m) (A=)
S 1ol N (@i(m)ljno)] (w(1 — m)A=3)

P(z(n) = klz(n),0) =

EM — M Step

First consider update for nt

0 = (m, uj;)
Q(0'16) = Ey x gllog P(X, Z|6")] = E[log I:(X|Z, 0")+log P(Z2|6")]

7’ has no influence

Count @
z(n)=1
B

Eg|x9 [0 P(Z|7)] = Bz g [log (n' 207" (1 — 7/) 21 =2(0))

T« arg mﬂgx EZ|X79[Iog P(Z|")]

&) &)

=Ezix0 {(Z z(n)) log ' + (Z(l — z(n))) log(1l — W')}
— (Z EZ\X,O[Z(”)]> log vr'+(z Byxpl1 - z(nm) l0a (1)

OFE log P(Z|n' E
20O PO _ (5 o) 2 o =60 2

1—m

Sy Blz(n)] _ 1S5 o
(01 El)]) + (S0, (1 - Blz(n)) Nn; )

T —

19



EM — M Step

Now consider update for w;
Q0'16) = Bz x gllog P(X, 2|6")] = Ellog P(X|Z, 9/”'?9 P(2]0")]

0= <7T’ sz)

w;i has no influence

juj; < arg n;/a_w_x Egz|x gllog P(X|Z,6")] @ @ @

Je

. Ta= PG() = jla(n),0) zi(n)
Ynzq P(e(n) = jlz(n),0)

i

SN 8(z(n) =35) xi(n)
YN 6(2(n) =)

Compare above to  pj; +—
MLE if Z were
observable:

- =

EM — putting it together ‘?ﬁ

Given observed variables X, unobserved Z
Define Q(6'|0) = Ey xllog P(X, Z|0")]

where 0 = (7, uj;)

&) &) &

Iterate until convergence:

* E Step: For each observed example X(n), calculate P(Z(n)|X(n),0)

[T N (@i(m) | i )] (wF(1 = m)A=R))

z(n) =k|xz(n),0) = : i
P(z(n) | z(n),0) Zjl‘zo[HiN(xi(n)mj,i’U)] (71-](1_71-)(1—])))

* M Step: Update 0 « arg max Q0'16)

’I/”O N

(, 1 Y P(2(n) = jla(n),0) wi(n)
— E . Zn=1

(5 N X Bl b e = e )

n=

20



Mixture of Gaussians applet

Go to: http://www.socr.ucla.edu/htmls/SOCR Charts.html
then go to Go to “Line Charts” - SOCR EM Mixture Chart
« try it with 2 Gaussian mixture components (“kernels”)

* try it with 4

What you should know about EM

» For learning from partly unobserved data

* MLEof6= arg max log P(datal®)

 EM estimate: 6 = arg mgasz\X,o[log P(X, Z|6)]
Where X is observed part of data, Z is unobserved

* EM for training Bayes networks

» Can also develop MAP version of EM

+ Can also derive your own EM algorithm for your own
problem
— write out expression for EZ|X79[Iog P(X, Z|0)]
— E step: for each training example XX, calculate P(Z¥ | Xk, 0)
— M step: chose new 8 to maximize EZ|X79[Iog P(X, Z]0)]

21



Learning Bayes Net Structure

How can we learn Bayes Net graph structure?

In general case, open problem
+ can require lots of data (else high risk of overfitting)
+ can use Bayesian methods to constrain search

One key result:
» Chow-Liu algorithm: finds “best” tree-structured network

 What's best?

— suppose P(X) is true distribution, T(X) is our tree-structured
network, where X = <X, ... X;>

— Chow-Liu minimizes Kullback-Leibler divergence:

P(X =k)

KL(P(X) || T(X))= )  P(X=k)log X=h)

22



Chow-Liu Algorithm

Key result: To minimize KL(P || T), it suffices to find the tree
network T that maximizes the sum of mutual informations
over its edges

Mutual information for an edge between variable A and B:

[(A,B)=Y"Y P(a,b)log P](Dé;l;’()b)
a b

This works because for tree networks with nodes x = (x,...x,)

P(X =k)
T(X = k)

= =) I(Xi,Pa(X)))+ Y H(X:)— H(X;...X,)

KL(P(X) || T(X)) = Y PX=k)log

Chow-Liu Algorithm

1. for each pair of vars A,B, use data to estimate P(A,B),
P(A), P(B)

2. for each pair of vars A.B calculate nzutu)al information
P(a,b
I(A,B) = Ea Eb P(a’b)logP(a)P(b)

3. calculate the maximum spanning tree over the set of
variables, using edge weights /(4,B)
(given N vars, this costs only O(N2) time)

4. add arrows to edges to form a directed-acyclic graph

5. learn the CPD’s for this graph

23



Chow-Liu algorithm example

Greedy Algorithm to find Max-Spanning Tree

[courtesy A. Singh, C. Guestrin]

Bayes Nets — What You Should Know

* Representation

— Bayes nets represent joint distribution as a DAG + Conditional
Distributions

— D-separation lets us decode conditional independence
assumptions
* Inference
— NP-hard in general
— For some graphs, closed form inference is feasible
— Approximate methods too, e.g., Monte Carlo methods, ...

* Learning

Easy for known graph, fully observed data (MLE’s, MAP est.)
EM for partly observed data, known graph

Learning graph structure: Chow-Liu for tree-structured networks
Hardest when graph unknown, data incompletely observed
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