Machine Learning 10-601

Tom M. Mitchell
Machine Learning Department
Carnegie Mellon University

October 2, 2012

Today:

- · Graphical models
- Bayes Nets:
 - Representing distributions
 - Conditional independencies
 - Simple inference
 - · Simple learning

Readings:

Required:

• Bishop chapter 8, through 8.2

Graphical Models

- Key Idea:
 - Conditional independence assumptions useful
 - but Naïve Bayes is extreme!
 - Graphical models express sets of conditional independence assumptions via graph structure
 - Graph structure plus associated parameters define joint probability distribution over set of variables

• Two types of graphical models:

today

- Directed graphs (aka Bayesian Networks)
- Undirected graphs (aka Markov Random Fields)

Graphical Models – Why Care?

- Among most important ML developments of the decade
- Graphical models allow combining:
 - Prior knowledge in form of dependencies/independencies
 - Prior knowledge in form of priors over parameters
 - Observed training data
- Principled and ~general methods for
 - Probabilistic inference
 - Learning
- Useful in practice
 - Diagnosis, help systems, text analysis, time series models, ...

Conditional Independence

Definition: X is conditionally independent of Y given Z, if the probability distribution governing X is independent of the value of Y, given the value of Z

$$(\forall i, j, k) P(X = x_i | Y = y_i, Z = z_k) = P(X = x_i | Z = z_k)$$

Which we often write P(X|Y,Z) = P(X|Z)

E.g., P(Thunder|Rain, Lightning) = P(Thunder|Lightning)

Marginal Independence

Definition: X is marginally independent of Y if

$$(\forall i, j) P(X = x_i, Y = y_j) = P(X = x_i) P(Y = y_j)$$

Equivalently, if

$$(\forall i, j) P(X = x_i | Y = y_j) = P(X = x_i)$$

Equivalently, if

$$(\forall i, j) P(Y = y_i | X = x_j) = P(Y = y_i)$$

Bayes Nets define Joint Probability Distribution in terms of this graph, plus parameters

Benefits of Bayes Nets:

- Represent the full joint distribution in fewer parameters, using prior knowledge about dependencies
- · Algorithms for inference and learning

Bayesian Networks <u>Definition</u>

A Bayes network represents the joint probability distribution over a collection of random variables

A Bayes network is a directed acyclic graph and a set of conditional probability distributions (CPD's)

- · Each node denotes a random variable
- Edges denote dependencies
- For each node X_i its CPD defines $P(X_i \mid Pa(X_i))$
- · The joint distribution over all variables is defined to be

$$P(X_1 ... X_n) = \prod_i P(X_i | Pa(X_i))$$

Pa(X) = immediate parents of X in the graph

Bayesian Network

Nodes = random variables

A conditional probability distribution (CPD) is associated with each node N, defining P(N | Parents(N))

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1

WindSurf

The joint distribution over all variables:

$$P(X_1 ... X_n) = \prod_i P(X_i | Pa(X_i))$$

Bayesian Networks

• CPD for each node X_i describes $P(X_i \mid Pa(X_i))$

Parents	P(W Pa)	P(¬W Pa)		
L, R	0	1.0		
L, ¬R	0	1.0		
¬L, R	0.2	0.8		
¬L, ¬R	0.9	0.1		
W				

P(AB) = P(A) P(B)A)

Chain rule of probability says that in general:

$$P(S, L, R, T, W) = P(S)P(L|S)P(R|S, X)P(T|S, L, R)P(W|S, L, R, Y)$$

But in a Bayes net: $P(X_1 ... X_n) = \prod P(X_i | Pa(X_i))$

$$P(s, L, R, T, w) = P(s) P(L(s) P(R(s) P(T(L)) P(w|LR))$$

To define joint distribution in general? $2^{-1} = 3$

To define joint distribution for this Bayes Net? = | (

N Bayes & = 9 param

$$P(S=1, L=0, R=1, T=0, W=1) = P(S=1) P(L=0|S=1) P(R=1|S=1) P(F=0|L=0)$$

$$P(W=1|L=0, R=1)$$

Consider learning when graph structure is given, and data = { <s,l,r,t,w> } What is the MLE solution? MAP?

Algorithm for Constructing Bayes Network

- Choose an ordering over variables, e.g., X₁, X₂, ... X_n
- For i=1 to n
 - Add X_i to the network
 - Select parents $Pa(X_i)$ as minimal subset of $X_1 \dots X_{i-1}$ such that

$$P(X_i|Pa(X_i)) = P(X_i|X_1,...,X_{i-1})$$

Notice this choice of parents assures

$$P(X_1 ... X_n) = \prod_i P(X_i | X_1 ... X_{i-1})$$
 (by chain rule)
$$= \prod_i P(X_i | Pa(X_i))$$
 (by construction)

Example

- Bird flu and Allegies both cause Nasal problems
- Nasal problems cause Sneezes and Headaches

What is the Bayes Network for X1,...X4 with NO assumed conditional independencies?

P(x, x2 x3 x4) = P(x1) P(x2(x1) P(x3 | x, x2) P(x1(x1 x2 x3)

What is the Bayes Network for Naïve Bayes?

Bayes Network for a Hidden Markov Model

Implies the future is conditionally independent of the past, given the present

$$P(S_{t-2},O_{t-2},S_{t-1},\dots,O_{t+2}) =$$

What You Should Know

- Bayes nets are convenient representation for encoding dependencies / conditional independence
- BN = Graph plus parameters of CPD's
 - Defines joint distribution over variables
 - Can calculate everything else from that
 - Though inference may be intractable
- Reading conditional independence relations from the graph
 - Each node is cond indep of non-descendents, given only its parents
 - 'Explaining away'

See Bayes Net applet: http://www.cs.cmu.edu/~javabayes/Home/applet.html

Inference in Bayes Nets

- In general, intractable (NP-complete)
- · For certain cases, tractable
 - Assigning probability to fully observed set of variables
 - Or if just one variable unobserved
 - Or for singly connected graphs (ie., no undirected loops)
 - · Belief propagation
- For multiply connected graphs
 - Junction tree
- Sometimes use Monte Carlo methods
 - Generate many samples according to the Bayes Net distribution, then count up the results
- Variational methods for tractable approximate solutions

Example

- Bird flu and Allegies both cause Sinus problems
- · Sinus problems cause Headaches and runny Nose

Prob. of joint assignment: easy

 Suppose we are interested in joint assignment <F=f,A=a,S=s,H=h,N=n>

What is P(f,a,s,h,n)?

let's use p(a,b) as shorthand for p(A=a, B=b)

Prob. of marginals: not so easy

• How do we calculate P(N=n)?

let's use p(a,b) as shorthand for p(A=a, B=b)

Generating a sample from joint distribution: easy

How can we generate random samples drawn according to P(F,A,S,H,N)?

let's use p(a,b) as shorthand for p(A=a, B=b)

let's use p(a,b) as shorthand for p(A=a, B=b)

Generating a sample from joint distribution: easy

Flu Allergy
Sinus Nose

Note we can estimate marginals
like P(N=n) by generating many samples
from joint distribution, then count the fract

from joint distribution, then count the fraction of samples for which N=n

Similarly, for anything else we care about P(F=1|H=1, N=0)

→ weak but general method for estimating <u>any</u> probability term...

let's use p(a,b) as shorthand for p(A=a, B=b)

Prob. of marginals: not so easy

But sometimes the structure of the network allows us to be clever → avoid exponential work

eg., chain

Inference in Bayes Nets

- In general, intractable (NP-complete)
- · For certain cases, tractable
 - Assigning probability to fully observed set of variables
 - Or if just one variable unobserved
 - Or for singly connected graphs (ie., no undirected loops)
 - · Variable elimination
 - · Belief propagation
- For multiply connected graphs
 - Junction tree
- Sometimes use Monte Carlo methods
 - Generate many samples according to the Bayes Net distribution, then count up the results
- Variational methods for tractable approximate solutions