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Recall From Last Time

Bayesian expected loss is

ρ(π, a) = Eπ[L(θ, a)] =
∫

L(θ, a) dFπ(θ)

Conditioned on evidence in data X, we average with
respect to the posterior:

ρ(π, a |X) = Eπ(· |X)[L(θ, a)] =
∫

L(θ, a) p(θ |X)

Classical formulation: δ : X −→ A a decision rule, risk
function

R(θ, δ) = EX[L(θ, δ(X)] =
∫

X
L(θ, δ(X)) dFX(x)
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Bayes Risk

For a prior π, the Bayes risk of a decision function is

r(π, δ) = Eπ[R(θ, δ)] = Eπ [EX[L(θ, δ(X))]]

Therefore, the classical and Bayesian approaches define
different risks, by averaging:

• Bayesian expected loss: Averages over θ

• Risk function: Averages over X

• Bayes risk: Averages over both X and θ
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Example

Take X ∼ N (θ, 1), and problem of estimating θ under
square loss L(θ, a) = (a − θ)2. Consider decision rules
of the form δc(x) = cx.

A calculation gives that

R(θ, δc) = c2 + (1− c)2θ2

Then δc is inadmissible for c > 1, and admissible for 0 ≤
c ≤ 1.
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Example (cont.)
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Risk R(θ, δc) for admissible decision functions δc(x) = cx, c ≤ 1, as a

function of θ. The color corresponds the associated minimum Bayes

risk.
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Example (cont.)

Consider now π = N (0, τ2). Then the Bayes risk is

r(π, δc) = c2 + (1− c)2τ2

Thus, the best Bayes risk is obtained by the Bayes
estimator δc∗ with

c∗ =
τ2

1 + τ2

(This is the same value of the Bayes risk of π.) That is,
each δc is Bayes for the N (0, τ2

c ) prior with

τc =
√

c

1− c
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Example (cont.)
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At a larger scale, it becomes clearer that the decision function with

c = 1 is minimax. It corresponds to the (improper) prior N (0, τ2) with

τ →∞.
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Bayes Actions

δπ(x) is a posterior Bayes action for x if it minimizes

∫

Θ

L(θ, a) p(θ |x) dθ

Equivalently, it minimizes

∫

Θ

L(θ, a) p(x | θ) π(θ) dθ

Need not be unique.
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Equivalence of Bayes actions and Bayes
decision rules

A decision rule δπ minimizing the Bayes risk r(π, δ) can be
found “pointwise,” by minimizing

∫

Θ

L(θ, a) p(x | θ) π(θ) dθ

for each x. So, the two problems are equivalent.
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Classes of Loss Function

Three distinguished classes of problems/loss functions

• Regression: squared loss and relatives

• Classification: zero-one loss

• Density estimation: log-loss
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Special Case: Squared Loss

For L(θ, a) = (θ − a)2, the Bayes decision rule is the
posterior mean

δπ(x) = E[θ |x]
For weighted squared loss, L(θ, a) = w(θ)(θ − a)2, the
Bayes decision rule is weighted posterior mean (when a

is unrestricted):

δπ(x) =

∫
Θ

θ w(θ) f(x | θ) π(θ) dθ∫
Θ

w(θ) f(x | θ)π(θ) dθ

Note: w acts like a prior here

We will see later how L2 case—posterior mean—applies to some

classification problems, in particular learning with labeled/unlabeled
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data.
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Special Case: Linear Loss

For L(θ, a) = |θ − a|, the Bayes decision rule is a posterior
median.

More generally, for

L(θ, a) =

{
c0(θ − a) θ − a ≥ 0

c1(a− θ) θ − a < 0

a c0
c0+c1

-fractile of posterior p(θ |x) is a Bayes estimate.
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Generic Learning Problem

In machine learning we’re often interested in prediction.

Given input X ∈ X , what is output Y ∈ Y
Incur loss L(X,Y, f(X)) due to predicting f(X) when input
is X and true output is Y .
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Generic Learning Problem (cont.)

Given a training set (X1, Y1), . . . (Xn, Yn) and possibly
unlabeled data (X ′

1, . . . X
′
m) determine f : X −→ Y from

some family F .

Thus, a learning algorithm is a mapping

A :
⋃

n≥0

(X × Y)n −→ F

in the supervised case and

A :
⋃

n≥0,m≥0

(X × Y)n ×Xm −→ F

in the semi-supervised case of labeled/unlabeled data.
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Criterion for Success

Average loss on new data

R[f ] = E[L(X, Y, f(X))]

=
∫

X×Y
L(x, y, f(x)) dP (x, y)

for some (unknown) measure P on X × Y.

Generalization error of a learning algortithm A is

R[A]− inf
f∈F

R[f ]

Note: not assuming correctness of the model–risk may be
greater than the Bayes error rate.
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Empirical Risk

Since P is not typically known, can’t compute the risk, and
work instead with the empirical risk

Remp[f ] = Remp[f, (xn, yn)] =
1
n

n∑

i=1

L(xi, yi, f(xi))

How might this be modified to take into account unlabeled
data (X ′

1, . . . , X
′
m)?
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Standard Example

Consider F = {f(x) = 〈x,w, }〉, the set of linear functions,
and squared error L(x, y, f(x)) = (y − f(x))2.

Minimizing empirical risk:

Remp[f ] = min
w

1
n

n∑

i=1

(yi − 〈w, xi〉)2

Solution w = (X>X)−1X>y.

Note: can use a set of basis functions φi(x).
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Other Loss Functions (cont.)

Most natural loss function for classification is 0-1 loss:

L(x, y, f(x)) =

{
0 if f(x) = y

1 otherwise

Can specify other off-diagonal costs, e.g. distance function
d(y, f(x)).
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Other Loss Functions (cont.)

L2 loss strongly affected by outliers. L1 loss more
“forgiving,” though not differentiable. Again assume a linear
model

min
w

Remp[f ] = min
w

1
n

n∑

i=1

|yi − 〈w, xi〉|

Can transform to a linear program:

minimize
1
n

n∑

i=1

(zi + z∗i )

subject to yi − 〈xi, w〉 ≤ zi

yi − 〈xi, w〉 ≥ −z∗i
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Other Loss Functions (cont.)

Median property: at an optimal solution, an equal number
of points will have yi − f(xi) > 0 and yi − f(xi) < 0.
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Other Loss Functions (cont.)

Huber’s “robust loss” combines L2 and L1 for large errors

Lσ(x, y, f(x)) =

{
1
2σ(y − f(x))2 if |y − f(x)| ≤ σ

|y − f(x)| − σ
2 otherwise

(As we’ll see, regularization is generally to be preferred over changing

the loss function...but many learning algorithms do both)
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Comparison of Loss Functions
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Comparison of L2 (green), L1 (red) and Huber’s robust loss (blue)
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Probabilistic Error Models

Suppose we assume Y = f(X) + ξ where ξ ∼ pθ.

Then conditional probability p(Y | f,X) can be computed in
terms of pθ(Y − f(X)).

Note: error distribution could depend on X
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Probabilistic Error Models (cont.)

Assume log-loss for the errors:

L(x, y, f(x) = − log pθ(y − f(x))

Then under the iid assumption, we have that

Remp[f ] =
1
n

∑

i

L(xi, yi, f(xi))

= −1
n

∑

i

log pθ(yi − f(xi)) + constant

Looked at differently, the conditional distribution of y is
given by

p(y |x, f) ∝ exp (−L(x, y, f(x)))

24



Consistency

For a consistent learning algorithm, we require that

lim
n→∞

P (R [A(Xn, Y n)]−R[f∗] > ε) = 0

where the probability is w.r.t. the choice of training sample
and f∗ = arg min f∈F R[f ] achieves the minimum risk.

Relying on Remp alone may require very large sample size
to achieve small generalization error.

May also lead to ill-posed problems (non-unique, poorly
conditioned). A small change in training data can lead to
classifiers with very different expected risks (high variance)
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Consistency (cont.)

Empirical risk Remp[f ] converges to R[f ] for any fixed
function f (e.g., McDiarmid’s inequality)

But minimizing empirical risk gives different function for
each sample. Showing consistency requires uniform
convergence arguments.

As we’ll discuss, such results and rates of convergence
involve measures of complexity such as VC dimension or
covering numbers (or some more recent notions...)
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Regularization

Idea: want to restrict f ∈ F to some compact subset, e.g.,
Ω[f ] ≤ c. May lead to difficult optimization problem.

Regularized risk is given by

AΩ,λ(Xn, Y n) = arg min
f∈F

(Remp[f ] + λΩ[f ])

where Ω : F −→ R is some (typically convex) function.

Then for appropriate choice of λ → 0, regularization will
achieve optimal risk R[f∗] as n →∞
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Bayesian Connection

If we assume a prior distribution on classifiers given by

π(f) ∝ exp (−nλΩ[f ])

then the posterior is given by

P (f | (Xn, Y n)) ∝ exp

(
−

n∑

i=1

L(Xi, Yi, f(Xi))

)
exp (−nλΩ[f ])

= exp (−Remp[f ]− λΩ[f ])

so regularization corresponds to MAP estimation

We’ll return to this when we discuss generative vs. discriminative
models for learning, model selection
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