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Decision Theory

Statistical decision theory – making decisions in the
presence of statistical knowledge.

Example (Berger): A drug company is deciding whether or
not to market a new pain reliever. Two important factors:

1. Proportion of people θ1 for whom the drug will be
effective

2. Market share θ2 the drug will capture

θ = (θ1, θ2) are unknown, but the company needs to decide
whether to market the drug, the price, etc.
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Decision Theory

For each in a set of actions a ∈ A, if the parameter is θ, a
loss L(a, θ) is associated with choosing action a.

The risk is the expected loss:

R =
∫

Θ

L(a, θ) dF (θ)

and one chooses the action that minimizes the risk.
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Simple Example

Suppose that the company wants to estimate market
share θ2.

The “action” chosen is to use a certain estimate of this in
further management decisions.

Suppose

L(θ2, a) =

{
2(θ2 − a) if θ2 − a ≥ 0,

a− θ2 if θ2 − a ≤ 0

An underestimate is penalized more than an overestimate
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Simple Example (cont.)

Suppose that the company does a study, interviews n

people and finds X people would buy the drug.

Assume X = Binom(n, θ2). Then

f(θ2 |x) ∝
(

n

x

)
θx
2 (1− θ2)n−x f(θ2)

f(θ2) might be affected by previous drugs marketed, etc.,
and is very important in this case.
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Example from Information Retrieval

1. Two parts of IR problem: modeling documents and
queries

2. Making a decision on what documents to present to the
user

Naturally cast in framework of statistical decision theory.

(C. Zhai CMU thesis, 2002).
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Some Definitions

θ ∈ Θ: “state of nature” — hidden, random

a ∈ A: possible actions

X ∈ X : observables, experiments – info about θ

Bayesian expected loss is

ρ(π, a) = Eπ[L(θ, a)] =
∫

L(θ, a) dFπ(θ)

Conditioned on evidence in data X, we average with
respect to the posterior:

ρ(π, a |X) = Eπ(· |X)[L(θ, a)] =
∫

L(θ, a) p(θ |X)
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Frequentist formulation, δ : X −→ A a decision rule, risk
function

R(θ, δ) = EX[L(θ, δ(X)] =
∫

X
L(θ, δ(X)) dFX(x)
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Bayes Risk

For a prior π, the Bayes risk of a decision function is defined
by

r(π, δ) = Eπ[R(θ, δ)] = Eπ [EX[L(θ, δ(X))]]

Therefore, the classical and Bayesian approaches define
different risks, by averaging:

• Bayesian expected loss: Averages over θ

• Risk function: Averages over X

• Bayes risk: Averages over both X and θ
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Admissibility

A decision rule δ1 is R-better than δ2 in case

R(θ, δ1) ≤ R(θ, δ2) for all θ ∈ Θ

R(θ, δ1) < R(θ, δ2) for some θ ∈ Θ

δ is admissible if there exists no R-better decision rule.
Otherwise, it’s inadmissible.
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Example

Take X ∼ N (θ, 1), and problem of estimating θ under
square loss L(θ, a) = (a − θ)2. Consider decision rules
of the form δc(x) = cx.

A calculation gives that

R(θ, δc) = c2 + (1− c)2θ2

Then δc is inadmissible for c > 1, and admissible for 0 ≤
c ≤ 1.
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Example (cont.)
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Risk R(θ, δc) for admissible decision functions δc(x) = cx, c ≤ 1, as a

function of θ. The color corresponds the associated minimum Bayes

risk.
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Example (cont.)

Consider now π = N (0, τ2). Then the Bayes risk is

r(π, δc) = c2 + (1− c)2τ2

Thus, the best Bayes risk is obtained by the Bayes
estimator δc∗ with

c∗ =
τ2

1 + τ2

and this is the same value of the Bayes risk of π. That is,
each δc is Bayes for the conjugate N (0, τ2

c ) prior with

τc =
√

c

1− c
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Example (cont.)
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At a larger scale, it becomes clearer that the decision function with

c = 1 is minimax. It corresponds to the (improper) conjugate prior

N (0, τ2) with τ →∞.

13



Simplifying

Basic fact: When loss is convex and there is a sufficient
statistic T for θ, only non-randomized decision rules based
on T need be considered.

See Berger, Chap. 1 for details and examples.
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Bayes Actions

δπ(x) is a posterior Bayes action for x if it minimizes

∫

Θ

L(θ, a) p(θ |x) dθ

Equivalently, it minimizes

∫

Θ

L(θ, a) f(x | θ) π(θ) dθ

Need not be unique.
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Equivalence of Bayes actions and Bayes
decision rules

A decision rule δπ minimizing the Bayes risk r(π, δ) can be
found “pointwise,” by minimizing

∫

Θ

L(θ, a) p(x | θ) π(θ) dθ

for each x. So, the two problems are equivalent.
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Special Case: Squared Loss

For L(θ, a) = (θ− a)2, the Bayes rule is the posterior mean

δπ(x) = E[θ |x]

For weighted squared loss, L(θ, a) = w(θ)(θ − a)2, the
Bayes rule is weighted posterior mean:

δπ(x) =

∫
Θ

θ w(θ) f(x | θ) π(θ) dθ∫
Θ

θ w(θ) f(x | θ) π(θ) dθ

Note: w acts like a prior here

We will see later how L2 case—posterior mean—applies to some

classification problems, in particular learning with labeled/unlabeled

data.
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Special Case: L1 Loss

For L(θ, a) = |θ − a|, the Bayes rule is a posterior median.

More generally, for

L(θ, a) =

{
c0(θ − a) θ − a ≥ 0

c1(a− θ) θ − a < 0

a c0
c0+c1

-fractile of posterior p(θ |x) is a Bayes estimate.
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Conjugacy

Note that if X ∼ exponential family under square loss,
restricting to linear estimators can turn out to be equivalent
to using a conjugate prior – by Diaconis and Ylvisaker.

See Berger, §4.7.9 for discussion and examples
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Problem 1: Channel Capacity

1010010001 −→ Q(y |x) −→ 1011010101

What is the maximum rate at which information can be sent
with arbitrarily small probability of error?

For a code C with M codewords of length n bits,

Rate(C) =
log2 M

n
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Problem 2: Minimax Risk

I choose model θ, generate iid examples y = y1, . . . , yn

according to Q(· | θ). You predict using estimate
P̂ (yt | yt−1).

Risk (expected loss) after n steps:

Rn,P̂ (θ∗) def=
n∑

k=1

∫

Yk
Qk(yk | θ∗) log

Q(yk | θ∗)
P̂ (yk | yk−1)

dyk

= D(Qn
θ∗ ‖ P̂ )

Minimax risk:

Rminimax
n

def= inf
P̂

sup
θ∗∈Θ

Rn,P̂ (θ∗)
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Problem 3: Non-informative Priors

• In Bayesian statistics, a “non-informative” prior is one
that is “most objective,” encoding the least amount of
prior knowledge.

• With a non-informative prior, even moderate amounts of
data should dominate the prior information.

• Many contend there is no truly “objective” prior that
represents ignorance.
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Connections Between These Problems

Shannon showed that the engineering notion of channel
capacity is the same as the information capacity :

C(Q) = sup
P

I(X,Y )

Where sup is over all distributions P (X) on the input to
the channel.
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Connections Between These Problems (cont)

Theorem (Haussler, 1997). The minimax risk is equal to
the information capacity:

Rminimax
n = sup

P
RBayes

n,P = sup
P

I(Θ, Y n)

Moreover, the minimax risk can be written as a minimax
with respect to Bayes strategies:

Rminimax
n = inf

P
sup
θ∗∈Θ

Rn,PBayes(θ
∗)

where PBayes denotes the predictive distribution (Bayes
strategy) for P ∈ ∆Θ.
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Connections Between These Problems (cont)

Can use information-theoretic measures to define reference
priors (Bernardo et al.)

For a parametric family {Q(y | θ)}θ∈Θ, define

πk = argmaxP I(Θ, Y k)

where

I(Θ, Y k) =
∫

Θ

∫

Yk
P (θ)Qk(yk | θ) log

Qk(yk | θ)
M(yk)

dyk dθ
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Connections Between These Problems (cont)

Bernardo (1979) proposed reference priors defined by

π(θ) = lim
k→∞

πk(θ)

when this exists.

Thus, channel capacity, minimax risk, and reference priors
all given by maximizing mutual information.
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Jeffreys Priors

For Θ ⊂ R, if the posterior is asymptotically normal, the
limiting reference prior is given by Jeffreys’ rule:

π(θ) ∝ h(θ)1/2

h(θ) =
∫

X
Q(x | θ)

(
− ∂2

∂θ2
log Q(x | θ)

)
dx
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Jeffreys Priors
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Finite Sample Sizes

For finite k, little is known about the reference prior πk.

If Q(· | θ) is from the exponential family, then πk is a finite
discrete measure.

(Berger, Bernardo, and Mendoza, 1989)

“Solving for πk explicitly is not easy....Numerical solution is
needed .”
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Blahut-Arimoto Algorithm

• In information theory, input to channel is typically
discrete.

• Convex optimization problem

• Simple iterative algorithm discovered independently in
early 1970s by Blahut and Arimoto.

• Allows easy calculation of capacity for arbitrary channels
(even with constraints).
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Blahut-Arimoto Algorithm

Initialize: Let P (0) be arbitrary, t = 0.

Iterate until convergence:

1. M (t)(y) =
∑

x P (t)(x)Q(y |x)

2. P (t+1)(x) = P (t)(x) C(t)(x)P
x P (t)(x) C(t)(x)

where C(t)(x) = exp
(∑

y∈Y Q(y |x) log Q(y |x)
M (t)(y)

)

3. t ← t + 1

MCMC version developed in (L. and Wasserman, 2001)
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