Statistical Approaches to Learning and Discovery

Week 3: Elements of Decision Theory

January 29, 2003

Decision Theory

Statistical decision theory - making decisions in the presence of statistical knowledge.

Example (Berger): A drug company is deciding whether or not to market a new pain reliever. Two important factors:

1. Proportion of people θ_{1} for whom the drug will be effective
2. Market share θ_{2} the drug will capture
$\theta=\left(\theta_{1}, \theta_{2}\right)$ are unknown, but the company needs to decide whether to market the drug, the price, etc.

Decision Theory

For each in a set of actions $a \in \mathcal{A}$, if the parameter is θ, a loss $L(a, \theta)$ is associated with choosing action a.

The risk is the expected loss:

$$
R=\int_{\Theta} L(a, \theta) d F(\theta)
$$

and one chooses the action that minimizes the risk.

Simple Example

Suppose that the company wants to estimate market share θ_{2}.

The "action" chosen is to use a certain estimate of this in further management decisions.

Suppose

$$
L\left(\theta_{2}, a\right)= \begin{cases}2\left(\theta_{2}-a\right) & \text { if } \theta_{2}-a \geq 0 \\ a-\theta_{2} & \text { if } \theta_{2}-a \leq 0\end{cases}
$$

An underestimate is penalized more than an overestimate

Simple Example (cont.)

Suppose that the company does a study, interviews n people and finds X people would buy the drug.

Assume $X=\operatorname{Binom}\left(n, \theta_{2}\right)$. Then

$$
f\left(\theta_{2} \mid x\right) \propto\binom{n}{x} \theta_{2}^{x}\left(1-\theta_{2}\right)^{n-x} f\left(\theta_{2}\right)
$$

$f\left(\theta_{2}\right)$ might be affected by previous drugs marketed, etc., and is very important in this case.

Example from Information Retrieval

1. Two parts of IR problem: modeling documents and queries
2. Making a decision on what documents to present to the user

Naturally cast in framework of statistical decision theory.
(C. Zhai CMU thesis, 2002).

Some Definitions

$\theta \in \Theta$: "state of nature" - hidden, random
$a \in \mathcal{A}$: possible actions
$X \in \mathcal{X}$: observables, experiments - info about θ
Bayesian expected loss is

$$
\rho(\pi, a)=E_{\pi}[L(\theta, a)]=\int L(\theta, a) d F^{\pi}(\theta)
$$

Conditioned on evidence in data X, we average with respect to the posterior:

$$
\rho(\pi, a \mid X)=E_{\pi(\cdot \mid X)}[L(\theta, a)]=\int L(\theta, a) p(\theta \mid X)
$$

Frequentist formulation, $\delta: \mathcal{X} \longrightarrow \mathcal{A}$ a decision rule, risk function

$$
R(\theta, \delta)=E_{X}\left[L(\theta, \delta(X)]=\int_{\mathcal{X}} L(\theta, \delta(X)) d F^{X}(x)\right.
$$

Bayes Risk

For a prior π, the Bayes risk of a decision function is defined by

$$
r(\pi, \delta)=E_{\pi}[R(\theta, \delta)]=E_{\pi}\left[E_{X}[L(\theta, \delta(X))]\right]
$$

Therefore, the classical and Bayesian approaches define different risks, by averaging:

- Bayesian expected loss: Averages over θ
- Risk function: Averages over X
- Bayes risk: Averages over both X and θ

Admissibility

A decision rule δ_{1} is R-better than δ_{2} in case

$$
\begin{aligned}
& R\left(\theta, \delta_{1}\right) \leq R\left(\theta, \delta_{2}\right) \quad \text { for all } \theta \in \Theta \\
& R\left(\theta, \delta_{1}\right)<R\left(\theta, \delta_{2}\right) \text { for some } \theta \in \Theta
\end{aligned}
$$

δ is admissible if there exists no R-better decision rule. Otherwise, it's inadmissible.

Example

Take $X \sim \mathcal{N}(\theta, 1)$, and problem of estimating θ under square loss $L(\theta, a)=(a-\theta)^{2}$. Consider decision rules of the form $\delta_{c}(x)=c x$.

A calculation gives that

$$
R\left(\theta, \delta_{c}\right)=c^{2}+(1-c)^{2} \theta^{2}
$$

Then δ_{c} is inadmissible for $c>1$, and admissible for $0 \leq$ $c \leq 1$.

Example (cont.)

Risk $R\left(\theta, \delta_{c}\right)$ for admissible decision functions $\delta_{c}(x)=c x, c \leq 1$, as a function of θ. The color corresponds the associated minimum Bayes risk.

Example (cont.)

Consider now $\pi=\mathcal{N}\left(0, \tau^{2}\right)$. Then the Bayes risk is

$$
r\left(\pi, \delta_{c}\right)=c^{2}+(1-c)^{2} \tau^{2}
$$

Thus, the best Bayes risk is obtained by the Bayes estimator $\delta_{c^{*}}$ with

$$
c^{*}=\frac{\tau^{2}}{1+\tau^{2}}
$$

and this is the same value of the Bayes risk of π. That is, each δ_{c} is Bayes for the conjugate $\mathcal{N}\left(0, \tau_{c}^{2}\right)$ prior with

$$
\tau_{c}=\sqrt{\frac{c}{1-c}}
$$

Example (cont.)

At a larger scale, it becomes clearer that the decision function with $c=1$ is minimax. It corresponds to the (improper) conjugate prior $\mathcal{N}\left(0, \tau^{2}\right)$ with $\tau \rightarrow \infty$.

Simplifying

Basic fact: When loss is convex and there is a sufficient statistic T for θ, only non-randomized decision rules based on T need be considered.

See Berger, Chap. 1 for details and examples.

Bayes Actions

$\delta^{\pi}(x)$ is a posterior Bayes action for x if it minimizes

$$
\int_{\Theta} L(\theta, a) p(\theta \mid x) d \theta
$$

Equivalently, it minimizes

$$
\int_{\Theta} L(\theta, a) f(x \mid \theta) \pi(\theta) d \theta
$$

Need not be unique.

Equivalence of Bayes actions and Bayes decision rules

A decision rule δ^{π} minimizing the Bayes risk $r(\pi, \delta)$ can be found "pointwise," by minimizing

$$
\int_{\Theta} L(\theta, a) p(x \mid \theta) \pi(\theta) d \theta
$$

for each x. So, the two problems are equivalent.

Special Case: Squared Loss

For $L(\theta, a)=(\theta-a)^{2}$, the Bayes rule is the posterior mean

$$
\delta^{\pi}(x)=E[\theta \mid x]
$$

For weighted squared loss, $L(\theta, a)=w(\theta)(\theta-a)^{2}$, the Bayes rule is weighted posterior mean:

$$
\delta^{\pi}(x)=\frac{\int_{\Theta} \theta w(\theta) f(x \mid \theta) \pi(\theta) d \theta}{\int_{\Theta} \theta w(\theta) f(x \mid \theta) \pi(\theta) d \theta}
$$

Note: w acts like a prior here
We will see later how L^{2} case-posterior mean-applies to some classification problems, in particular learning with labeled/unlabeled data.

Special Case: L^{1} Loss

For $L(\theta, a)=|\theta-a|$, the Bayes rule is a posterior median.
More generally, for

$$
L(\theta, a)= \begin{cases}c_{0}(\theta-a) & \theta-a \geq 0 \\ c_{1}(a-\theta) & \theta-a<0\end{cases}
$$

a $\frac{c_{0}}{c_{0}+c_{1}}$-fractile of posterior $p(\theta \mid x)$ is a Bayes estimate.

Conjugacy

Note that if $X \sim$ exponential family under square loss, restricting to linear estimators can turn out to be equivalent to using a conjugate prior - by Diaconis and Ylvisaker.

See Berger, §4.7.9 for discussion and examples

Problem 1: Channel Capacity

$$
1010010001 \longrightarrow Q(y \mid x) \longrightarrow 1011010101
$$

What is the maximum rate at which information can be sent with arbitrarily small probability of error?

For a code \mathbb{C} with M codewords of length n bits,

$$
\operatorname{Rate}(\mathbb{C})=\frac{\log _{2} M}{n}
$$

Problem 2: Minimax Risk

I choose model θ, generate iid examples $\mathbf{y}=y_{1}, \ldots, y_{n}$ according to $Q(\cdot \mid \theta)$. You predict using estimate $\hat{P}\left(y_{t} \mid y^{t-1}\right)$.

Risk (expected loss) after n steps:

$$
\begin{aligned}
R_{n, \hat{P}}\left(\theta^{*}\right) & \stackrel{\text { def }}{=} \sum_{k=1}^{n} \int_{\mathcal{Y}^{k}} Q^{k}\left(y^{k} \mid \theta^{*}\right) \log \frac{Q\left(y_{k} \mid \theta^{*}\right)}{\hat{P}\left(y_{k} \mid y^{k-1}\right)} d y^{k} \\
& =D\left(Q_{\theta^{*}}^{n} \| \hat{P}\right)
\end{aligned}
$$

Minimax risk:

$$
R_{n}^{\operatorname{minimax}} \stackrel{\text { def }}{=} \inf _{\hat{P}} \sup _{\theta^{*} \in \Theta} R_{n, \hat{P}}\left(\theta^{*}\right)
$$

Problem 3: Non-informative Priors

- In Bayesian statistics, a "non-informative" prior is one that is "most objective," encoding the least amount of prior knowledge.
- With a non-informative prior, even moderate amounts of data should dominate the prior information.
- Many contend there is no truly "objective" prior that represents ignorance.

Connections Between These Problems

Shannon showed that the engineering notion of channel capacity is the same as the information capacity:

$$
C(Q)=\sup _{P} I(X, Y)
$$

Where sup is over all distributions $P(X)$ on the input to the channel.

Connections Between These Problems (cont)

Theorem (Haussler, 1997). The minimax risk is equal to the information capacity:

$$
R_{n}^{\operatorname{minimax}}=\sup _{P} R_{n, P}^{\text {Bayes }}=\sup _{P} I\left(\Theta, Y^{n}\right)
$$

Moreover, the minimax risk can be written as a minimax with respect to Bayes strategies:

$$
R_{n}^{\text {minimax }}=\inf _{P} \sup _{\theta^{*} \in \Theta} R_{n, P_{\text {Bayes }}}\left(\theta^{*}\right)
$$

where $P_{\text {Bayes }}$ denotes the predictive distribution (Bayes strategy) for $P \in \Delta_{\Theta}$.

Connections Between These Problems (cont)

Can use information-theoretic measures to define reference priors (Bernardo et al.)

For a parametric family $\{Q(y \mid \theta)\}_{\theta \in \Theta}$, define

$$
\pi_{k}=\operatorname{argmax}_{P} I\left(\Theta, Y^{k}\right)
$$

where

$$
I\left(\Theta, Y^{k}\right)=\int_{\Theta} \int_{\mathcal{Y}^{k}} P(\theta) Q^{k}\left(y^{k} \mid \theta\right) \log \frac{Q^{k}\left(y^{k} \mid \theta\right)}{M\left(y^{k}\right)} d y^{k} d \theta
$$

Connections Between These Problems (cont)

Bernardo (1979) proposed reference priors defined by

$$
\pi(\theta)=\lim _{k \rightarrow \infty} \pi_{k}(\theta)
$$

when this exists.
Thus, channel capacity, minimax risk, and reference priors all given by maximizing mutual information.

Jeffreys Priors

For $\Theta \subset \mathbb{R}$, if the posterior is asymptotically normal, the limiting reference prior is given by Jeffreys' rule:

$$
\begin{aligned}
\pi(\theta) & \propto h(\theta)^{1 / 2} \\
h(\theta) & =\int_{\mathcal{X}} Q(x \mid \theta)\left(-\frac{\partial^{2}}{\partial \theta^{2}} \log Q(x \mid \theta)\right) d x
\end{aligned}
$$

Jeffreys Priors

Finite Sample Sizes

For finite k, little is known about the reference prior π_{k}.
If $Q(\cdot \mid \theta)$ is from the exponential family, then π_{k} is a finite discrete measure.
(Berger, Bernardo, and Mendoza, 1989)
"Solving for π_{k} explicitly is not easy....Numerical solution is needed."

Blahut-Arimoto Algorithm

- In information theory, input to channel is typically discrete.
- Convex optimization problem
- Simple iterative algorithm discovered independently in early 1970s by Blahut and Arimoto.
- Allows easy calculation of capacity for arbitrary channels (even with constraints).

Blahut-Arimoto Algorithm

Initialize: Let $P^{(0)}$ be arbitrary, $t=0$.
Iterate until convergence:

1. $M^{(t)}(y)=\sum_{x} P^{(t)}(x) Q(y \mid x)$
2. $P^{(t+1)}(x)=\frac{P^{(t)}(x) C^{(t)}(x)}{\sum_{x} P^{(t)}(x) C^{(t)}(x)}$
where $C^{(t)}(x)=\exp \left(\sum_{y \in \mathcal{Y}} Q(y \mid x) \log \frac{Q(y \mid x)}{M^{(t)}(y)}\right)$
3. $t \leftarrow t+1$

MCMC version developed in (L. and Wasserman, 2001)

