
Statistical Approaches to
Learning and Discovery

Week 2: Some Basics of Exponential
Families and Bayesian Inference

January 22, 2003



The Exponential Family

Setup:

• Sample space X (σ-finite measure µ for X )

• Statistics tk : X −→ R, k = 1, 2, . . . , n

• Default, or carrier density p0 on X , p0(x) ≥ 0

(X , µ, t, p0) determines an exponential family

p(x | θ) = p0(x) e 〈θ,t(x)〉−ψ(θ)
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The Exponential Family (cont.)

density p(x | θ) = p0(x) exp (〈θ, t(x)〉 − ψ(θ))

cumulant ψ(θ) = log
∫

X
p0(x) e〈θ,t(x)〉dµ(x) = log Z(θ)

function

natural Θ =
{

θ ∈ Rn |
∫

X
p0(x) e〈θ,t(x)〉µ(dx) < ∞

}

param. space

2



Example: Gaussian

Let X ∼ N (µ, σ2). Completing square, find that density has
parameterization

f(x | θ) = exp
(
θ1 x + θ2 x2 −Ψ(θ)

)

Sufficient statistics t1(x) = x and t2(x) = x2.

In terms of standard param., θ1 = µ
σ2 and θ2 = − 1

2σ2

Dimension two. Domain (natural parameter space)

Θ = {(θ1, θ2) ∈ R2 | θ2 < 0}
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Calculus of the Exponential Family

Mean and variance obtained from derivatives of the
cumulant function:

∂ψ(θ)
∂θk

=
∂ log Z(θ)

∂θk

=
1

Z(θ)

∫

X
p0(x)e〈θ,t(x)〉tk(x)µ(dx)

= Eθ[tk]

∂2ψ(θ)
∂θj∂θk

= Eθ[tj tk]− Eθ[tj] Eθ[tk]
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Calculus of the Exponential Family (cont.)

Fisher information matrix J(θ), variance of the score:

Jjk(θ) = Eθ[
∂ log p(X | θ)

∂θj

∂ log p(X | θ)
∂θk

]

= Eθ [(tj − Eθ[tj])(tk − Eθ[tk])]

⇒ J(θ) = ∇2ψ(θ)

∇2ψ is positive-definite (assuming dimΘ = n)
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They’re Everywhere

Exponential models are everywhere – though often a
reduction by sufficiency & reparameterization is required

Standard example: Bernoulli

p(x |π) = πx(1− π)1−x

Let θ1 = log π, θ2 = log(1− π)

Then p(x | θ) = eθ1 x+θ2 (1−x)

This not a natural (canonical) parameterization, because
there is a constraint:

eθ1 + eθ2 = 1
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Standard Parameterization of a Bernoulli

θ = log
(

π

1− π

)

t(x) = x

p0(x) = 1

ψ(θ) = log
(
1 + eθ

)

π =
1

1 + e−θ
(logistic)
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Logistic Parameterization of a Multinomial

p(x1, . . . , xp+1) = πx1
1 · · ·πxp+1

p+1

θk =





log πk
πp+1

k 6= p + 1

0 k = p + 1

tk(x) =

{
xk k 6= p + 1

0 k = p + 1

ψ(θ) = log

(
1 +

p∑

k=1

eθk

)

There are other possible parameterizations...
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Expectation Parameterization

We’ve seen that

g(θ) def= ∇ψ(θ) = Eθ[t]
def= µ

The cumulant function is convex, and so we can invert this.

Many distributions are usually parameterized in terms of
the expectation parameter µ.

We’ll return to this when we talk about duality.
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Maximum Likelihood Estimation

Again under some “regularity” conditions, the likelihood
function is strictly concave for exponential families, and the
MLE exists and is unique.

Several common exponential family models have closed
form MLEs...examples?

However, calculating the MLE generally involves numerical
methods. For large scale problems, the particular
numerical methods chosen can be important.

Moment equations characterizing the MLE:

1
N

N∑

i=1

tk(xi) =
∫

X
tk(x) p(x | θ) dµ(x)
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Hybrid Exponential Models

Can use the carrier density p0 to form a kind of semi-
parametric exponential family.

Take p̂0(x) to be a kernel density estimate (for example).
Then, form model

p(x | θ) = p̂0(x) exp (〈θ, t(x)〉 − ψ(θ))

where θ is fit to maximize likelihood—e.g., to match
moments

∫
t(x)p(x | θ) dx =

1
N

N∑

i=1

t(xi)
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Hybrid Exponential Models (cont.)

Two views: exponential model with data-dependent p0,
or non-parametric density estimate “corrected” to match
moments

B. Efron and R. Tibshirani, “Using specially designed exponential families for density estimation,” Annals of Statistics, 24(6),

pp. 2431–2461, 1996
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Conjugacy (will return to this...)

Write our exponential model in the form (by reduction from
sufficiency)

p(x | θ) = e〈θ,x〉−ψ(θ)

A prior is conjugate if it is closed under sampling.
Conjugate priors have the following form:

p(θ |α, γ) = ce〈θ,γ〉−αψ(θ)

for some α ∈ R and γ ∈ Rd.
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Conjugacy (cont.)

More suggestive form:

p(θ |n0, x0) = cen0〈θ,x0〉−n0ψ(θ)

Let X1, . . . , Xn be a sample from p(· | θ) under this prior.
Then the posterior distribution is

p
(
θ

∣∣∣ n0 + n, n0x0+nX
n0+n

)

where X is the sample mean.
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Conjugacy (cont.)

The conjugate prior is suitable for Bayesian estimation of
the expectation parameters, due to the following property:

E[∇ψ] =
∫

Θ

∇ψ(θ) p(θ |n0, x0) dθ = x0

The converse is also true: the posterior expectation
E[∇ψ |X1] is linear in X1 if and only if

p(θ) = ce〈θ,γ〉−αψ(θ)

Persi Diaconis and Donald Ylvisaker, “Conjugate priors for exponential families,” Annals of Statistics 7, 269-281, 1979.
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Conjugacy (cont.)

Conjugacy is often motivated by computational considerations.

However, recent results give additional justification in terms
of independence properties.

Conjugacy is typically not needed (or desired) when using
MCMC methods, as we’ll discuss.

D. Geiger, D. Heckerman, “A characterization of the Dirichlet distribution through global and local independence,” Annals

of Statistics 25, pp. 1344–1369, 1997.
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