Sequential Decisions

A Basic Theorem of (Bayesian) Expected Utility Theory:
If you can postpone a terminal decision 1n order to
observe, cost free, an experiment whose outcome
might change your terminal decision, then it 1s
strictly better to postpone the terminal decision in

order to acquire the new evidence.

The analysis also provides a value for the new evidence, to answer:

How much are you willing to "pay" for the new information?



An agent faces a current decision:
« with k terminal options D = {d,, ..., d*, ..., di} (d* is the best of these)

« and one sequential option: first conduct experiment X, with outcomes
{x1, ..., Xy that are observed, then choose from D.



Terminal decisions (acts) as functions from states to outcomes
The canonical decision matrix: decisions X states
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di(s;) = outcome o;;.
What are “outcomes’?

That depends upon which version of expected utility you consider.

We will allow arbitrary outcomes, providing that they admit a von Neumann-
Morgenstern cardinal utility U(e).



A central theme of Subjective Expected Utility [SEU] is this:
e axiomatize preference < over decisions so that
dy < dy iff 2 P(s;)U(o;) < % P(s;)U(0y)),
for one subjective (personal) probability P(e) defined over states
and one cardinal utility U(e) defined over outcomes.
e Then the decision rule is to choose that (an) option that maximizes SEU.

Note: In this version of SEU, which is the one that we will use here:

(1) decisions and states are probabilistically independent, P(s;) = P(s; | d)).
Aside: This is necessary for a fully general dominance principle. That is, assume (simple)
Dominance: dy < dy if U(Olj) < U(ozj) G=1,...,n).

Note well that if P(Sj) # P(Sj | d;), then dominance may fail.

(2) Utility 1s state-independent, Uj(0; ;) = Up(0g 1), 1f 0; ;= 04 .

Here, Uj(0,;) is the conditional utility for outcomes, given state s;.

(3) (Cardinal) Utility 1s defined up to positive linear transformations,
U'(e) =alU(e) + b (a>0) is also the same utility function for purposes of SEU.

Note: More accurately, under these circumstances with act/state prob. independence,
utility is defined up to a similarity transformation: Uj'(O) = an(O) + bj.



Defn: The decision problem is said to be in regret form when the bj are chosen so

0' .o =
that, for each state S}, Max ) UJ (0;;) = 0.

Then, all utility is measured as a “loss,” with respect to the best that can be obtained

in a given state.

Example: squared error ({(X) — 0)% used as a loss function to assess a point estimate

#(X) of a parameter 0 is a decision problem in regret form.



Reconsider the value of new, cost-free evidence when decisions conform to SEU.
Recall, the decision maker faces a choice now between k-many terminal options
D={d,, .. d*, .. dJ} (d* maximizes SEU among these k options) and there is one

sequential option: first conduct experiment X, with sample space {x, ..., X}, and
then choose from D. Options in red maximize SEU at the respective choice nodes.
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By the law of conditional expectations: E(Y)=FE (E [Y|X]).

With Y the Utility of an option U(d), and X the outcome of the experiment,
Max,_, E(U(d)) = E (U(d¥))
=E (E (U(d¥)| X))
< E Max 4., E(U) | X))
= U(sequential option).

e Hence, the academician’s first-principle:
Never decide today what you might postpone until tomorrow
in order to learn something new.

o E(U(d*)) = U(sequential option) if and only if the new evidence Y never
leads you to a different terminal option.

o U(sequential option) - E (U(d*)) is the value of the experiment: what you
will pay (at most) in order to conduct the experiment prior to making a
terminal decision.



Example: Choosing sample size, fixed versus adaptive sampling (DeGroot, chpt. 12)

The statistical problem has a terminal choice between two options, D = { dy, d,}.
There are two states S = {s;, s,}, with outcomes that form a regret matrix:

U(dy(s1)) = Uldy(sy)) =0, U(d(s2)) = U(dy(sy)) =-b<0.

A 52
dq 0 -b
d, -b 0

Obviously, according to SEU, d* = d; if and only if P(s)) >.5 (i=1, 2).

Assume, for simplicity that P(s;) = p <.5, so that d* = d, with E(U(d,)) = -pb.



The sequential option: There is the possibility of observing a random variable
X = {1, 2, 3}. The statistical model for X is given by:

P(X=1|s)=P(X=2|s)=1-o0.
P(X=1]|s)=P(X=2]s)=0.

PX=3|s5))=P(X=3]|sy)=0.
Thus, X =1 or X = 2 identifies the state, which outcome has conditional
probability 1-o. on a given trial; whereas X =3 is an irrelevant datum, which
occurs with (unconditional) probability o.

Assume that X may be observed repeatedly, at a cost of c-units per observation,
where repeated observations are conditionally iid, given the state s.

e First, we determine what is the optimal fixed sample-size design, N =n".
e Second, we show that a sequential (adaptive) design is better than the best
fixed sample design, by limiting ourselves to samples no larger than n*.
o Third, we solve for the global, optimal sequential design as follows:
o We use Bellman’s principle to determine the optimal sequential
design bounded by N < k trials.
o By letting k —oo, we solve for the global optimal sequential design in
this decision problem.



o The best, fixed sample design.

~~

Assume that we have taken n > 0 observations: X = (x, ..., x,,)

The posterior prob., P(s; | X)=1(P(s;| X)=1 x;=2)if x; =1 for some i =1,
..., n. Then, the terminal choice is made at no loss, but nc units are paid out for
the experimental observation costs.

Otherwise, P(s; | X) = P(s;) = p, when all the x; =3 (i = 1, ..., n), which occurs
with probability a. Then, the terminal choice is the same as would be made
with no observations, d,, having the same expected loss, -pb, but with nc units

paid out for the experimental observation costs.
That is, the pre-trial (SEU) value of the sequential option to sample n-times and

then make a terminal decision is:

E(sample n times before deciding) = -[pbo* + cn].
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Assume that c is sufficiently small (relative to (1-o), p and /) to make it worth

sampling at least once, i.e. — pb < -[ pbo. + ¢|, or ¢ < (1-a)pb

you are here!

Payoffs are reduced

\ by nc units.

At least one

At least one
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Thus, with the pre-trial value of the sequential option to sample n-times and

then make a terminal decision:

E(sample n times before deciding) = -[pba* + cn].

e then the optimal fixed sample size design is, approximately (obtained by
treating n as a continuous quantity):

= —log[ pblog(1/ )/ c]
1/1log(1/ ex)

e and the SEU of the optimal fixed-sample design is approximately
E(sample n* times then decide) = - (c¢/log(1/0)) [1 + log [pb log(1/a) / c] ]

> — pb = E(decide without experimenting)
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e Next, consider the plan for bounded sequential stopping, where we have
the option to stop the experiment after each trial, up to n* many trials.
At each stage, n, prior to the n*%h, evidently, it matters for stopping only
whether or not we have already observed X =1 or X = 2.
e For if we have then we surely stop: there is no value in future observations.
e If we have not, then it pays to take at least one more observation, if we may
(if n < n*), since we have assumed that ¢ < (1-a)pb.
If we stop after n-trials (n < n*), having seen X =1, or X = 2, our loss is solely
the cost of the observations taken, nc, as the terminal decision incurs no loss.
Then, the expected number of observations NV from bounded sequential
stopping (which follows a fruncated negative binomial distn) is:
EWV) = (1-0™)/(1-0)) < n*.
Thus, the Subjective Expected Utility of (bounded) sequential stopping is:
-[pba* + cE(N)| > -[pbo™ + cn*].
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e What of the unconstrained sequential stopping problem?
With the terminal decision problem D = { dq, d3}, what is the global, optimal
experimental design for observing X subject to the constant cost, c-units/trial

and the assumption that ¢ < (1-a)pbh?

Using the analysis of the previous case, we see that if the sequential decision is for

bounded, optimal stopping, with NV < k, the optimal stopping rule is to continue

sampling until either X; # 3, or IV =k, which happens first. Then, we see that
Eni(N) = (1-0%)/(1-cr) and the SEU of this stopping rule is -[pbot + c(1-0X)/(1-ar)],

which is monotone increasing in k.
Thus the global, optimal stopping rule is the unbounded rule: continue with

experimentation until X =1 or = 2, which happens with probability 1.
E(N) = 1/(1-0) and the SEU of this stopping rule is -[¢/(1-00)].

Note: Actual costs here are unbounded!

14



The previous example illustrates a basic technique for finding a global optimal

sequential decision rule:

1) Find the optimal, bounded decision rule 4; when stopping is mandatory at N =k.

In principle, this can be achieved by backward induction, by considering
what is an optimal terminal choice at each point when N = k, and then using that

result to determine whether or not to continue from each point at N = k-1, etc.

2) Determine whether the sequence of optimal, bounded decision rules converge as

k—>oo, to the rule 4.

3) Verify that 4., is a global optimum.
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Let us illustrate this idea in an elementary setting: the Monotone case (Chow et al, chpt. 3.5)

e Denote by ¥, , the expected utility of the terminal decision d (inclusive of all
costs) at stage n in the sequential problem.

e Denote by X 2 = Xy, ..., X,), the data available upon proceeding to the n” stage.

e Denote by A, = {X,,: E[¥; ,.11%,] < E[Y, ,1X,]}, the set of data points X,

where i1t does not pay to continue the sequential decision one more trial, from n to

n+1 observations, before making a terminal decision.

Define the Monotone Case where: A;c A, c..., and U, A;= Q.

Thus, in the monotone case, once we enter the 4-sequence, our expectations

never go up from our current expectations.
e An intuitive rule for the monotone case is 6*: Stop collecting data and

make a terminal decision the first time you enter the 4-sequence.
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e An experimentation plan § is a stopping rule if it halts, almost surely.

e Denote by y~ = - min{y, 0}; and y* = max{y, 0}.

e Say that the loss is essentially bounded under stopping rule d if E 5[ Y] < oo,
the gain is essentially bounded if E 5[Y+ ] < e, and for short say that J is

essentially bounded in value if both hold.

Theorem: In the Monotone Case, if the intuitive stopping rule 0 is essentially
bounded, and if its conditional expected utility prior to stopping is also
bounded, i.e.,

if lim inf, E5[ Y5 .1 | 8(X,) is to continue sampling] < oo

then 0 is best among all stopping rules that are essentially bounded.

Example: Our sequential decision problem, above, is covered by this result

about the Monotone Case.
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Counter-example 1: Double-or-nothing with incentive.

~

Let X =X, ..., X,;, ...) be iid flips of a fair coin, outcomes {-1, 1} for {H, T}:
PX;=1)=PX;=-1)=.5

Upon stopping after the n” toss, the reward to the decision maker is
Y, =[2n/(n+D)] [T, (X;+1).

In this problem, the decision maker has only to decide when to stop, at which

point the reward is Y, : there are no other terminal decisions to make.

Note that for the fixed sample size rule, halt after n flips: E,_ [Y,] =2n/(n+1).

However, E[Y;_,.11%,] = [(0n+1)?/nm+2)] y, = y,.
Moreover, ElY,;,_,.11X,] <y,if and only if y, =0,
In which case ElY ;—,01%,41] £y =0,

e Thus, we are in the Monotone Case.
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Alas, the intuitive rule for the monotone case, 6*, here means halting at the first

outcome of a “tail” (x, = -1), with a sure reward Yg+ =0, which is the worst

possible strategy of all! This is a proper stopping rule since a tail occurs,

eventually, with probability 1.

This stopping problem has NO (global) optimal solutions, since the value of the

fixed sample size rules have a Lu.b. of 2 = lim,,_,_ 2n/(n+1), which cannot be

achieved.

When stopping is mandatory at N =k, the optimal, bounded decision rule,
d Z= flip k-times,
agrees with the payoff of the truncated version of the intuitive rule:
o Z flip until a tail, or stop after the k™ flip.

But here the value of limiting (intuitive) rule, SEU(6*) = 0, is not the limit of the

values of the optimal, bounded rules, 2 = lim ,_,_,2n/(n+1).
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Counter example 2: For the same fair-coin data, as in the previous example, let
Y, =min[1, ;7:1 X;] — (n/n+1).
Then ElY;—,+11%,] <y, foralln=1,2,....

Thus, the Monotone Case applies trivially, i.e., 0* = stop after 1 flip.
Then SEU(0*)=-1/2 (=.5(-1.5) +.5(0.5) ).

However, by results familiar from simple random walk,

with probability 1, >, X; = 1, eventually.

Let d be the stopping rule: halt the first time >, X;= 1.

Thus, 0 < SEU(d).
Here, the Monotone Case does not satisfy the requirements of being essentially
bounded for d.
Remark: Nonetheless, d is globally optimal!
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Example: The Sequential Probability Ratio Tests, Wald’s SPRT (Berger, chpt. 7.5)

Let X = Xq5 ey X ...) be iid samples from one of two unknown distributions,
H,: f=fy,or H;: f=f,. The terminal decision is binary: either d, accept H,

or d| accept H;, and the problem is in regret form with losses:

H, H,
d, 0 b
dl -a 0

The sequential decision problem allows repeated sampling of X, subject to a
constant cost per observation of, say, 1 unit each.

A sequential decision rule 0= (d, s), specifies a stopping size S, and a terminal
decision d, based on the observed data.

The conditional expected loss for o = a0y + Ey[S], given H,
= bo, + E[S], given H;
where o, = is the probability of a type 1 error (falsely accepting H)

and  where o, =is the probability of a type 2 error (falsely accepting H).
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For a given stopping rule, s, it is easy to give the Bayes decision rule

accept H, if and only if P(H,| X )a < (P(H,| X )b

and  accept H, if and only if P(Hy| X )a > (P(H,| X ))b.

Thus, at any stage in the sequential decision, it pays to take at least one more
observation if and only if the expected value of the new data (discounted by a
unit’s cost for looking) exceeds the expected value of the current, best terminal
option. By the techniques sketched here (backward induction for the truncated
problem, plus taking limits), the global optimal decision has a simple rule:

e stop if the posterior probability for / is sufficiently high: P(H0|)? )= ¢,
e stop if the posterior probability for / is sufficiently high: P(H0|)? )< ¢

e and continue sampling otherwise, if ¢; < P(H0|)? ) < ¢

Since these are iid data, the optimal rule can be easily reformulated in terms of

cutoffs for the likelihood ratio P(X |H,) / P(X |H,): Wald’s SPRT.
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A final remark — based on Wald’s 1940s analysis. (See, e.g. Berger, chpt 4.8.):

e A decision rule is admissible if it is not weakly dominated by the partition
of the parameter values, i.e. if its risk function is not weakly dominated by

another decision rule.

e In decision problems when the loss function is (closed and) bounded and
the parameter space is finite, the class of Bayes solutions is complete: it
includes all admissible decision rules. That is, non-Bayes rules are

inadmissible.

Aside: For the infinite case, the matter 1s more complicated and, under some useful
conditions a complete class is given by Bayes and limits of Bayes solutions — the latter

relating to “improper” priors!
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