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Sequential Decisions 
 

A Basic Theorem of (Bayesian) Expected Utility Theory: 

If you can postpone a terminal decision in order to 

 observe, cost free, an experiment whose outcome 

 might change your terminal decision, then it is 

 strictly better to postpone the terminal decision in 

 order to acquire the new evidence. 
 

The analysis also provides a value for the new evidence, to answer:  

 How much are you willing to "pay" for the new information? 
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An agent faces a current decision:  
• with k terminal options D = {d1, ..., d*, ..., dk}  (d* is the best of these) 

• and one sequential option: first conduct experiment X, with outcomes    
{x1, ..., xm} that are observed, then choose from D. 
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Terminal decisions (acts) as functions from states to outcomes 
The canonical decision matrix: decisions × states 
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di(sj) = outcome oij. 

 
What are “outcomes”?   
That depends upon which version of expected utility you consider.   
We will allow arbitrary outcomes, providing that they admit a von Neumann-
Morgenstern cardinal utility U(•).   
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A central theme of Subjective Expected Utility [SEU] is this: 
• axiomatize preference <<<<  over decisions so that  

d1 <<<<  d2   iff   Σj P(sj)U(o1j)  ≤  Σj P(sj)U(o2j), 
for  one subjective (personal) probability P(•) defined over states  
and  one cardinal utility U(•) defined over outcomes. 

• Then the decision rule is to choose that (an) option that maximizes SEU. 
 
Note:  In this version of SEU, which is the one that we will use here:    
 

(1) decisions and states are probabilistically independent, P(sj) = P(sj | di).  
Aside:  This is necessary for a fully general dominance principle.  That is, assume (simple) 
Dominance: d1 <<<<  d2   if  U(o1j)  <  U(o2j) (j = 1, …, n).   
Note well that if P(sj) ≠ P(sj | di), then dominance may fail.   

 (2) Utility is state-independent,  Uj(oi,j) = Uh(og,h), if oi,j = og,h.   
Here, Uj(o•j) is the conditional utility for outcomes, given state sj.  
 (3) (Cardinal) Utility is defined up to positive linear transformations,  
U'(•) = aU(•) + b  (a > 0) is also the same utility function for purposes of SEU. 

Note: More accurately, under these circumstances with act/state prob. independence, 
utility is defined up to a similarity transformation: Uj'(•) = aUj(•) + bj. 
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Defn: The decision problem is said to be in regret form when the bj are chosen so 

that, for each state sj, maxD Uj'(oij) = 0. 

 

Then, all utility is measured as a “loss,” with respect to the best that can be obtained 

in a given state.  

 

Example: squared error (t(X) – θ)2 used as a loss function to assess a point estimate 

t(X) of a parameter θ is a decision problem in regret form. 
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Reconsider the value of new, cost-free evidence when decisions conform to SEU. 
Recall, the decision maker faces a choice now between k-many terminal options  
D = {d1, ..., d*, ..., dk}  (d* maximizes SEU among these k options) and there is one 
sequential option: first conduct experiment X, with sample space {x1, ..., xm}, and 
then choose from D.  Options in red maximize SEU at the respective choice nodes. 
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By the law of conditional expectations:  E(Y) = E (E [Y | X] ). 

 

With Y the Utility of an option U(d), and X the outcome of the experiment,  

  Maxd∈∈∈∈D  E(U(d))  = E (U(d*)) 

    = E (E (U(d*)| X)) 

    ≤≤≤≤ E (Max d∈∈∈∈D  E(U(d) | X)) 

    = U(sequential option). 
 

• Hence, the academician’s first-principle: 
Never decide today what you might postpone until tomorrow  
in order to learn something new. 
 

• E(U(d*)) = U(sequential option) if and only if the new evidence Y never 
leads you to a different terminal option. 

 
• U(sequential option) - E (U(d*))  is the value of the experiment: what you 

will pay (at most) in order to conduct the experiment prior to making a 
terminal decision.  
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Example:  Choosing sample size, fixed versus adaptive sampling  (DeGroot, chpt. 12) 

 
The statistical problem has a terminal choice between two options, D = { d1, d2}. 

There are two states S = {s1, s2}, with outcomes that form a regret matrix: 

U(d1(s1)) =  U(d2(s2)) = 0, U(d1(s2)) =  U(d2(s1)) = -b < 0. 

 

   s1 s2 

  d1  0 -b 

  d2  -b  0 

 

Obviously, according to SEU, d* = di if and only if P(si) > .5  (i = 1, 2).   

 

Assume, for simplicity that P(s1) = p < .5, so that d* = d2 with E(U(d2)) = -pb.  
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The sequential option: There is the possibility of observing a random variable  
X = {1, 2, 3}.  The statistical model for X is given by:  

P(X = 1 | s1) = P(X = 2 | s2) = 1 – αααα. 

P(X = 1 | s2) = P(X = 2 | s1) = 0. 

P(X = 3 | s1) = P(X = 3 | s2) = αααα. 
Thus, X = 1 or X = 2 identifies the state, which outcome has conditional 
probability 1-αααα on a given trial; whereas X = 3 is an irrelevant datum, which 
occurs with (unconditional) probability αααα. 
 
Assume that X may be observed repeatedly, at a cost of c-units per observation, 
where repeated observations are conditionally iid, given the state s. 
 

• First, we determine what is the optimal fixed sample-size design, N = n*. 
• Second, we show that a sequential (adaptive) design is better than the best 

fixed sample design, by limiting ourselves to samples no larger than n*. 
• Third, we solve for the global, optimal sequential design as follows:  

o We use Bellman’s principle to determine the optimal sequential 
design bounded by N < k  trials.  

o By letting k →→→→∞∞∞∞, we solve for the global optimal sequential design in 
this decision problem.  
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• The best, fixed sample design.   

Assume that we have taken n > 0 observations: X~  = (x1, …, xn) 
 

The posterior prob., P(s1 | X~ ) = 1 (P(s2 | X~ ) = 1  xi = 2) if xi = 1 for some i = 1, 

…, n.  Then, the terminal choice is made at no loss, but nc units are paid out for 

the experimental observation costs. 

Otherwise, P(s1 | X~ ) = P(s1) = p, when all the xi = 3 (i = 1, …, n), which occurs 

with probability ααααn.  Then, the terminal choice is the same as would be made 

with no observations, d2, having the same expected loss, -pb, but with nc units 

paid out for the experimental observation costs.   

That is, the pre-trial (SEU) value of the sequential option to sample n-times and 

then make a terminal decision is: 

E(sample n times before deciding) = -[pbααααn + cn]. 
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Assume that c is sufficiently small (relative to (1-α), p and b) to make it worth 

sampling at least once, i.e. – pb < -[ pbαααα    + c], or c < (1-α)pb 
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Thus, with the pre-trial value of the sequential option to sample n-times and 

then make a terminal decision: 

E(sample n times before deciding) = -[pbααααn + cn]. 

 

• then the optimal fixed sample size design is, approximately (obtained by 

treating n as a continuous quantity): 

n* =  )/1log(/1
]/)/1log(log[

α
α cpb−  

 

• and the SEU of the optimal fixed-sample design is approximately 

 E(sample n* times then decide)  = - (c/ log(1/α)) [1 + log [pb log(1/α) / c] ] 

> – pb = E(decide without experimenting) 
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• Next, consider the plan for bounded sequential stopping, where we have 

the option to stop the experiment after each trial, up to n* many trials. 

At each stage, n, prior to the n*th, evidently, it matters for stopping only 

whether or not we have already observed X = 1 or X = 2.   

• For if we have then we surely stop: there is no value in future observations.   

• If we have not, then it pays to take at least one more observation, if we may 

(if n < n*), since we have assumed that c < (1-α)pb. 

If we stop after n-trials (n < n*), having seen X = 1, or X = 2, our loss is solely 

the cost of the observations taken, nc, as the terminal decision incurs no loss. 

Then, the expected number of observations N from bounded sequential 

stopping (which follows a truncated negative binomial distn) is:   

E(N) = (1-ααααn*)/(1-αααα)  <  n*. 

Thus, the Subjective Expected Utility of (bounded) sequential stopping is: 

-[pbααααn* + cE(N)]  >  -[pbααααn* + cn*]. 
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• What of the unconstrained sequential stopping problem?  

With the terminal decision problem D = { d1, d2}, what is the global, optimal 

experimental design for observing X subject to the constant cost, c-units/trial 

and the assumption that c < (1-αααα)pb?  

 

Using the analysis of the previous case, we see that if the sequential decision is for 

bounded, optimal stopping, with N < k, the optimal stopping rule is to continue 

sampling until either Xi  ≠≠≠≠ 3, or N = k, which happens first. Then, we see that  

EN<k(N) = (1-αk)/(1-α) and the SEU of this stopping rule is -[pbαk + c(1-αk)/(1-α)], 

which is monotone increasing in k.  

Thus the global, optimal stopping rule is the unbounded rule: continue with 

experimentation until X = 1 or = 2, which happens with probability 1. 

E(N) = 1/(1-α) and the SEU of this stopping rule is -[c/(1-α)].   

Note: Actual costs here are unbounded! 
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The previous example illustrates a basic technique for finding a global optimal 

sequential decision rule: 

 

1) Find the optimal, bounded decision rule d k
*  when stopping is mandatory at N = k.  

 In principle, this can be achieved by backward induction, by considering 

what is an optimal terminal choice at each point when N = k, and then using that 

result to determine whether or not to continue from each point at N = k-1, etc. 

 

2) Determine whether the sequence of optimal, bounded decision rules converge as 

k→∞, to the rule d *
∞ . 

 

3) Verify that d *
∞  is a global optimum. 
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Let us illustrate this idea in an elementary setting: the Monotone case (Chow et al, chpt. 3.5)   

• Denote by ndY ,  the expected utility of the terminal decision d (inclusive of all 

costs) at stage n in the sequential problem.    

• Denote by nX~  = (X1, …, Xn), the data available upon proceeding to the nth stage.   

• Denote by An = { nx~ : E[ 1, +ndY | nx~ ]  <  E[ ndY , | nx~ ] }, the set of data points nX~  

where it does not pay to continue the sequential decision one more trial, from n to 

n+1 observations, before making a terminal decision.   

 

Define the Monotone Case where:    A1 ⊂  A2  ⊂ …,  and   ∪i Ai = ΩΩΩΩ. 

Thus, in the monotone case, once we enter the Ai-sequence, our expectations 

never go up from our current expectations. 

• An intuitive rule for the monotone case is δδδδ*:  Stop collecting data and 

make a terminal decision the first time you enter the Ai-sequence. 
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• An experimentation plan δδδδ is a stopping rule if it halts, almost surely. 

• Denote by y- = - min{y, 0}; and  y+ = max{y, 0}. 

• Say that the loss is essentially bounded under stopping rule δδδδ if Eδ [Y-] < ∞∞∞∞, 

the gain is essentially bounded if Eδ [Y+] < ∞∞∞∞, and for short say that δδδδ is 

essentially bounded in value if both hold. 

 

Theorem:  In the Monotone Case, if the intuitive stopping rule δ is essentially 

bounded, and if its conditional expected utility prior to stopping is also 

bounded,  i.e.,  

if lim infn Eδ [ 1, +δ nY  | δδδδ( nx~ ) is to continue sampling] < ∞∞∞∞ 

then δ is best among all stopping rules that are essentially bounded.  

 

Example: Our sequential decision problem, above, is covered by this result 

about the Monotone Case. 
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Counter-example 1: Double-or-nothing with incentive. 

Let  X~  = (X1, …, Xn, …) be iid flips of a fair coin, outcomes {-1, 1} for {H, T}:   

P(Xi = 1) = P(Xi = -1) = .5 

Upon stopping after the nth toss, the reward to the decision maker is 

     Yn = [2n/(n+1)] ∏ =
n
i 1 (Xi +1). 

In this problem, the decision maker has only to decide when to stop, at which 

point the reward is Yn: there are no other terminal decisions to make. 

Note that for the fixed sample size rule, halt after n flips:  Ed=n[Yn] = 2n/(n+1). 

However,    E[ 1+=ndY | nx~ ]  = [(n+1)2/n(n+2)] yn  ≥≥≥≥  yn. 

Moreover,   E[ 1+=ndY | nx~ ]  ≤≤≤≤ yn if and only if  yn = 0, 

In which case   E[ 2+=ndY | 1
~

+nx ]  ≤≤≤≤ yn+1 = 0, 

 

• Thus, we are in the Monotone Case. 
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Alas, the intuitive rule for the monotone case, δδδδ*, here means halting at the first 

outcome of a “tail” (xn = -1), with a sure reward *δY  = 0, which is the worst 

possible strategy of all!  This is a proper stopping rule since a tail occurs, 

eventually, with probability 1. 

 

This stopping problem has NO (global) optimal solutions, since the value of the 

fixed sample size rules have a l.u.b. of 2 = limn→→→→∞∞∞∞ 2n/(n+1), which cannot be 

achieved. 

When stopping is mandatory at N = k, the optimal, bounded decision rule, 

d k
* = flip k-times, 

agrees with the payoff of the truncated version of the intuitive rule:  

   δ *
k  flip until a tail, or stop after the kth flip.   

But here the value of limiting (intuitive) rule, SEU(δ*) = 0, is not the limit of the 

values of the optimal, bounded rules, 2 = lim n→→→→∞∞∞∞ 2n/(n+1). 
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Counter example 2: For the same fair-coin data, as in the previous example, let  

Yn = min[1, ∑ =
n
i 1 Xi] – (n/n+1). 

Then      E[ 1+=ndY | nx~ ]  ≤≤≤≤ yn   for all n = 1, 2, … . 

Thus, the Monotone Case applies trivially, i.e., δδδδ* = stop after 1 flip. 

Then     SEU(δδδδ*) = -1/2     (= .5(-1.5) + .5(0.5) ). 

 

However, by results familiar from simple random walk,  

with probability 1, ∑ =
n
i 1 Xi  =  1, eventually. 

Let d be the stopping rule: halt the first time ∑ =
n
i 1 Xi =  1.   

Thus, 0 < SEU(d). 

Here, the Monotone Case does not satisfy the requirements of being essentially 

bounded for d. 

Remark:  Nonetheless, d is globally optimal! 
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Example: The Sequential Probability Ratio Tests, Wald’s SPRT (Berger, chpt. 7.5) 

Let X~  = (X1, …, Xn, …) be iid samples from one of two unknown distributions, 

H0: f = f0 or  H1: f = f1.  The terminal decision is binary: either do accept H0 

or d1 accept H1, and the problem is in regret form with losses: 

   H0 H1 

  do  0 -b 

  d1  -a  0 

The sequential decision problem allows repeated sampling of X, subject to a 
constant cost per observation of, say, 1 unit each. 
A sequential decision rule δδδδ = (d, s), specifies a stopping size S, and a terminal 
decision d, based on the observed data.  
The conditional expected loss for δδδδ  = aαααα0 + E0[S], given H0 

    = bαααα1 + E1[S], given H1 

 where αααα0 = is the probability of a type 1 error (falsely accepting H1)  

and where αααα1 = is the probability of a type 2 error (falsely accepting H0).   
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For a given stopping rule, s, it is easy to give the Bayes decision rule  

 accept H1 if and only if  P(H0| X~ s)a  ≤≤≤≤  (P(H1| X~ s))b 

and accept H0 if and only if  P(H0| X~ s)a  >  (P(H1| X~ s))b. 

 

Thus, at any stage in the sequential decision, it pays to take at least one more 
observation if and only if the expected value of the new data (discounted by a 
unit’s cost for looking) exceeds the expected value of the current, best terminal 
option.  By the techniques sketched here (backward induction for the truncated 
problem, plus taking limits), the global optimal decision has a simple rule:  
• stop if the posterior probability for H0 is sufficiently high:  P(H0| X~ ) >  c0 

• stop if the posterior probability for H1 is sufficiently high:  P(H0| X~ ) <  c1 

• and continue sampling otherwise, if  c1  < P(H0| X~ ) <  c0. 

 

Since these are iid data, the optimal rule can be easily reformulated in terms of 

cutoffs for the likelihood ratio P( X~ |H0) / P( X~ |H1): Wald’s SPRT. 
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A final remark – based on Wald’s 1940s analysis. (See, e.g. Berger, chpt 4.8.):   

 

• A decision rule is admissible if it is not weakly dominated by the partition 

of the parameter values, i.e. if its risk function is not weakly dominated by 

another decision rule. 

 

• In decision problems when the loss function is (closed and) bounded and 

the parameter space is finite, the class of Bayes solutions is complete: it 

includes all admissible decision rules.  That is, non-Bayes rules are 

inadmissible. 

 

Aside: For the infinite case, the matter is more complicated and, under some useful 
conditions a complete class is given by Bayes and limits of Bayes solutions – the latter 
relating to “improper” priors! 
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