Automatic Causal Discovery

Richard Scheines Peter Spirtes, Clark Glymour

Dept. of Philosophy & CALD Carnegie Mellon

Outline

- 1. Motivation
- 2. Representation
- 3. Discovery
- 4. Using Regression for Causal Discovery

1. Motivation

Non-experimental Evidence

	Day Care	Aggressivenes
John	A lot	A lot
Mary	None	A little
•	•	•
•	•	•

Typical Predictive Questions

- Can we predict aggressiveness from Day Care
- Can we predict crime rates from abortion rates 20 years ago

Causal Questions:

- Does attending Day Care cause Aggression?
- Does abortion reduce crime?

Causal Estimation

When and how can we use non-experimental data to tell us about the effect of an intervention?

Manipulated Probability P(Y | X set = x, Z=z)

from

Unmanipulated Probability P(Y | X = x, Z = z)

Conditioning vs. Intervening

$$P(Y | X = x_1) vs. P(Y | X set = x_1)$$

⇒ Stained Teeth Slides

2. Representation

- Representing causal structure, and connecting it to probability
- 2. Modeling Interventions

Causation & Association

X and Y are associated iff $\exists x_1 \neq x_2 P(Y \mid X = x_1) \neq P(Y \mid X = x_2)$

X is a cause of Y iff $\exists x_1 \neq x_2 P(Y \mid X \text{ set} = x_1) \neq P(Y \mid X \text{ set} = x_2)$

Direct Causation

X is a direct cause of Y relative to S, iff $\exists z, x_1 \neq x_2 P(Y \mid X \text{ set} = x_1, Z \text{ set} = z)$ $\neq P(Y \mid X \text{ set} = x_2, Z \text{ set} = z)$

where $Z = S - \{X, Y\}$

 $X \longrightarrow Y$

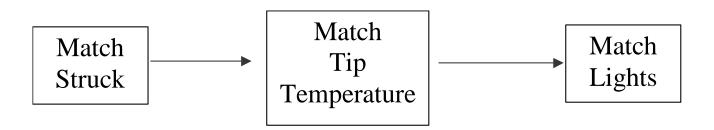
Association

X and Y are associated iff $\exists x_1 \neq x_2 P(Y \mid X = x_1) \neq P(Y \mid X = x_2)$ $X \not \perp Y$

X and Y are independent iff X and Y are not associated

Causal Graphs

Causal Graph G = $\{V, E\}$ Each edge X \rightarrow Y represents a direct causal claim: X is a direct cause of Y relative to V



Modeling Ideal Interventions

Ideal Interventions (on a variable X):

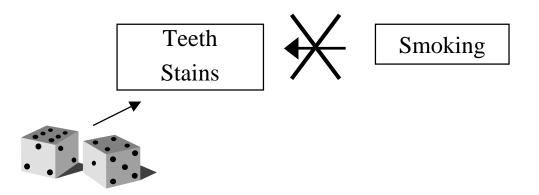
- Completely *determine* the value or distribution of a variable X
- Directly Target only X

 (no "fat hand")
 E.g., Variables: Confidence, Athletic Performance
 Intervention 1: hypnosis for confidence
 Intervention 2: anti-anxiety drug (also muscle relaxer)

Modeling Ideal Interventions

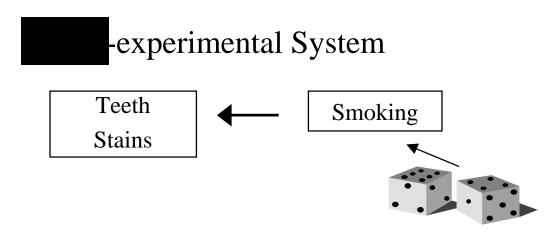
Interventions on the Effect

experimental System



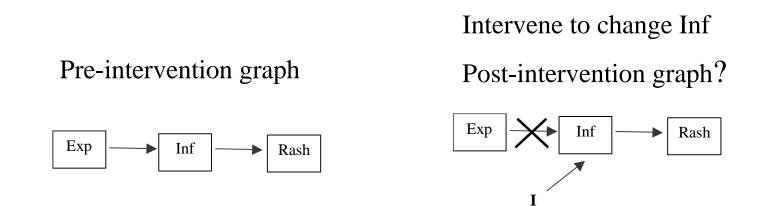
Modeling Ideal Interventions

Interventions on the Cause

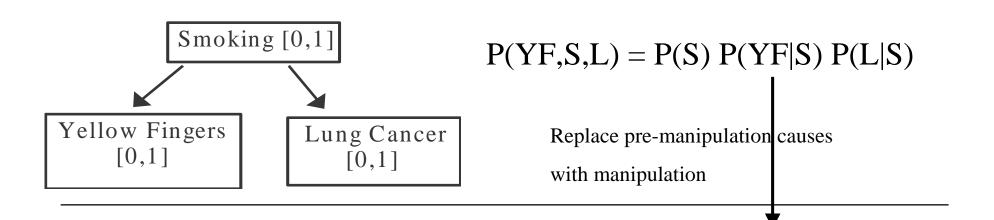


Interventions & Causal Graphs

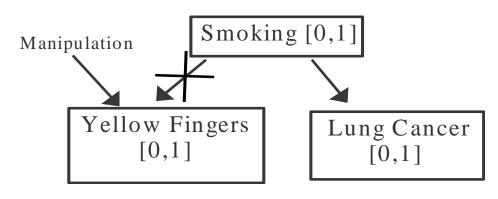
- Model an ideal intervention by adding an "intervention" variable outside the original system
- Erase all arrows pointing into the variable intervened upon



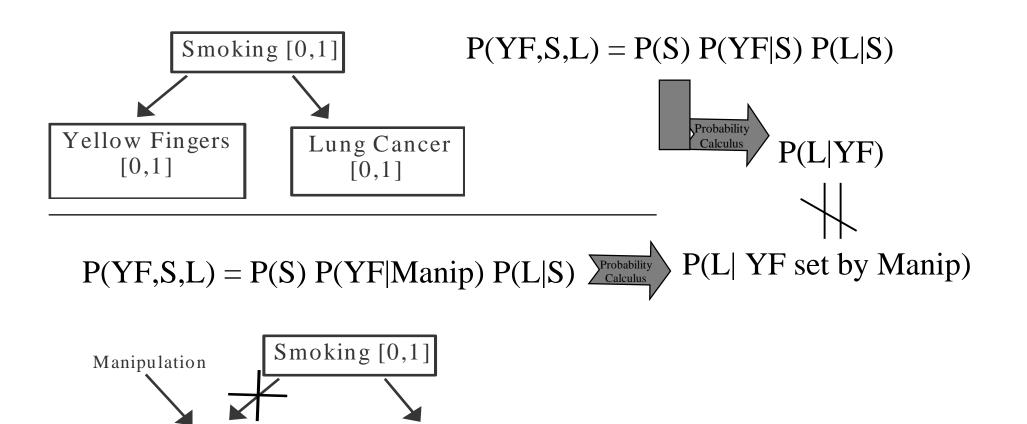
Calculating the Effect of Interventions



 $P(YF,S,L)_m = P(S) P(YF|Manip) P(L|S)$



Calculating the Effect of Interventions



Lung Cancer

[0,1]

Yellow Fingers

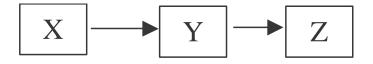
[0,1]

16

The Markov Condition

Causal Graphs

Independence



X _||_ Z | Y i.e., P(X | Y) = P(X | Y, Z)

Causal Markov Axiom

In a Causal Graph G, each variable V is

independent of its non-effects, conditional on its direct causes

in every probability distribution that G can parameterize (generate)

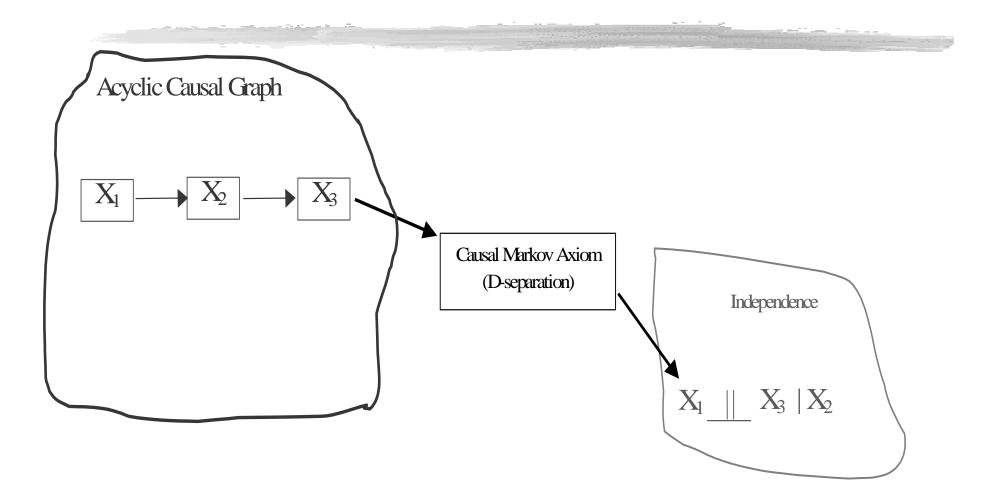
Causal Graphs \Rightarrow Independence

Acyclic causal graphs: d-separation \Leftrightarrow Causal Markov axiom

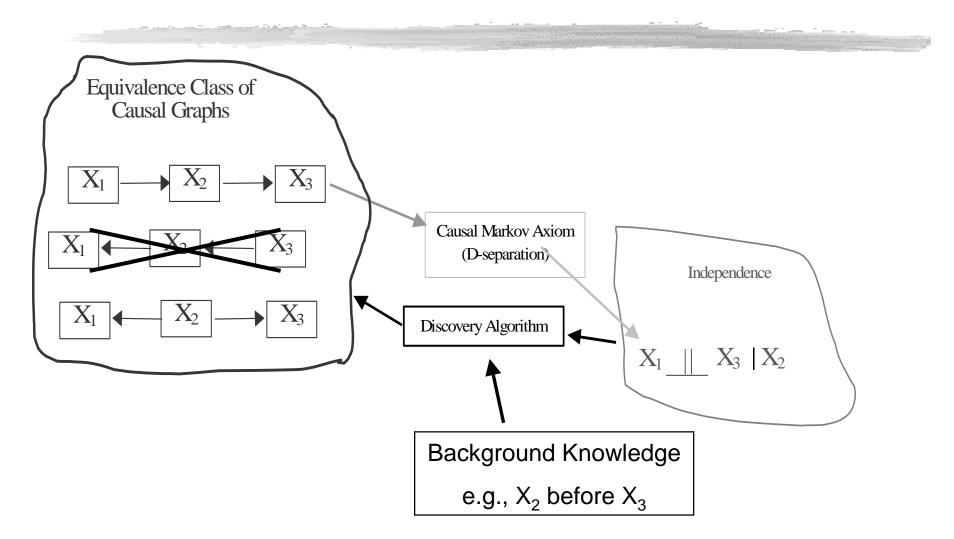
Cyclic Causal graphs:

- Linear structural equation models : d-separation, *not* Causal Markov
- For some discrete variable models: d-separation, not Causal Markov
- Non-linear cyclic SEMs : neither

Causal Structure \Rightarrow Statistical Data



Causal Discovery Statistical Data \Rightarrow Causal Structure



Equivalence Classes

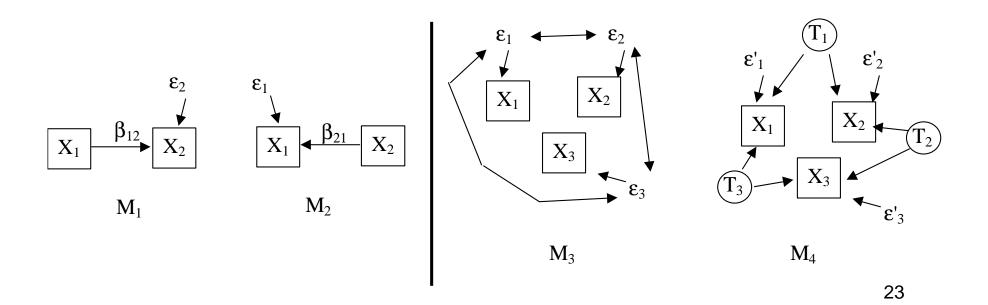
- D-separation equivalence
- D-separation equivalence over a set O
- Distributional equivalence
- Distributional equivalence over a set **O**

Two causal models M_1 and M_2 are distributionally equivalent iff for any parameterization θ_1 of M_1 , there is a parameterization θ_2 of M_2 such that $M_1(\theta_1) = M_2(\theta_2)$, and vice versa.

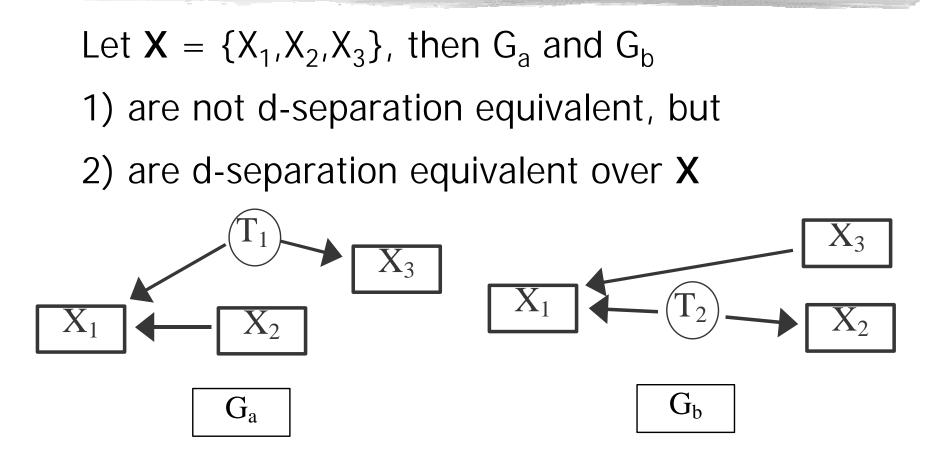
Equivalence Classes

For example, interpreted as SEM models

 M_1 and M_2 : d-separation equivalent & distributionally equivalent M_3 and M_4 : d-separation equivalent & *not* distributionally equivalent



D-separation Equivalence Over a set X



D-separation Equivalence

D-separation Equivalence Theorem (Verma and Pearl, 1988)

Two acyclic graphs over the same set of variables are d-separation equivalent iff they have:

- the same adjacencies
- the same unshielded colliders

Representations of D-separation Equivalence Classes

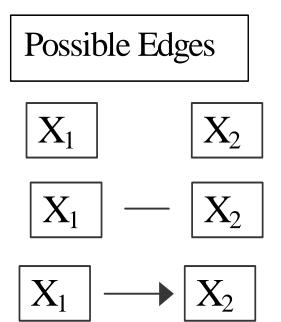
We want the representations to:

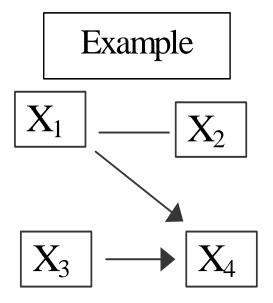
- Characterize the Independence Relations Entailed by the Equivalence Class
- Represent causal features that are shared by every member of the equivalence class

Patterns & PAGs

• <u>Patterns</u> (Verma and Pearl, 1990): graphical representation of an acyclic d-separation equivalence - no latent variables.

 <u>PAGs</u>: (Richardson 1994) graphical representation of an equivalence class including *latent variable models* and *sample selection bias* that are d-separation equivalent over a set of measured variables X





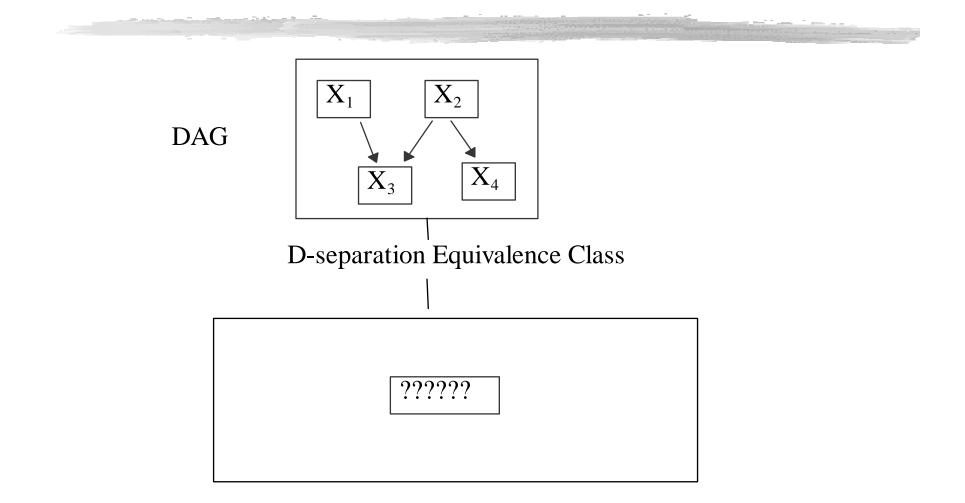
Patterns: What the Edges Mean

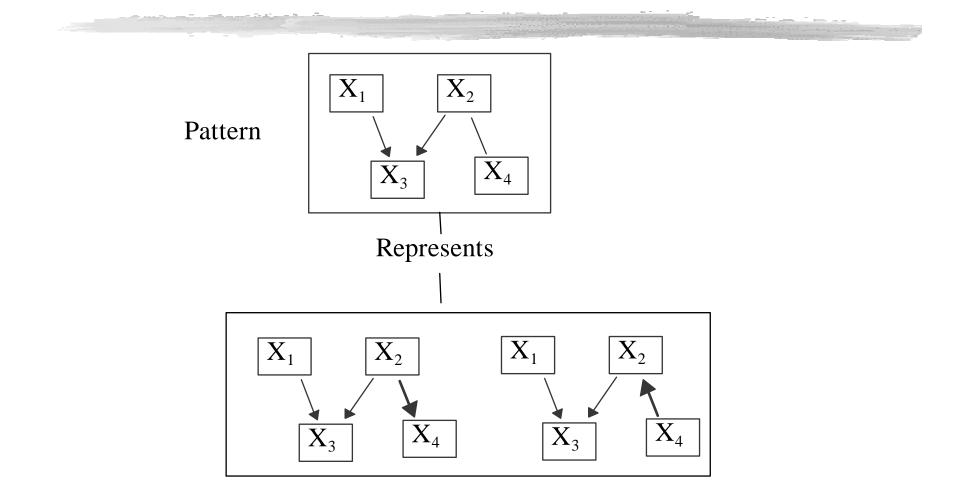
 X_1 and X_2 are not adjacent in any member of the equivalence class

 $X_1 \rightarrow X_2 (X_1 \text{ is a cause of } X_2)$ in every member of the equivalence class.

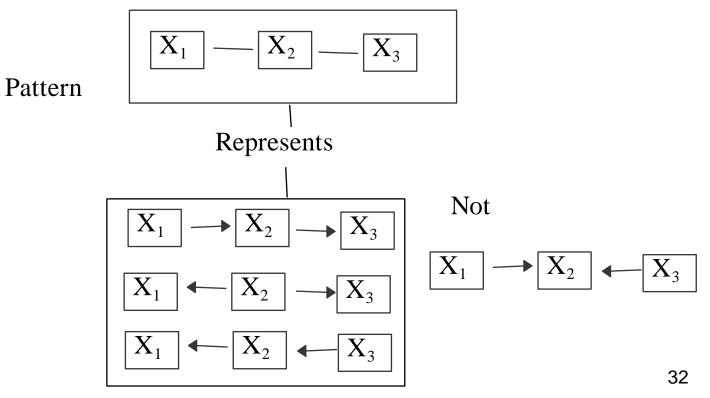
$$X_1$$
 — X_2

 $X_1 \rightarrow X_2$ in some members of the equivalence class, and $X_2 \rightarrow X_1$ in others.





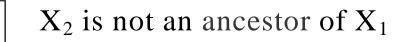
Not all boolean combinations of orientations of unoriented pattern adjacencies occur in the equivalence class.

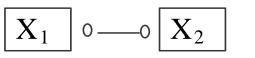


PAGs: Partial Ancestral Graphs

What PAG edges mean.

 X_2 X₁ and X₂ are not adjacent



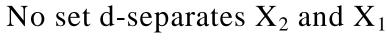


0

 \mathbf{X}_2

 \mathbf{X}_1

 \mathbf{X}_1

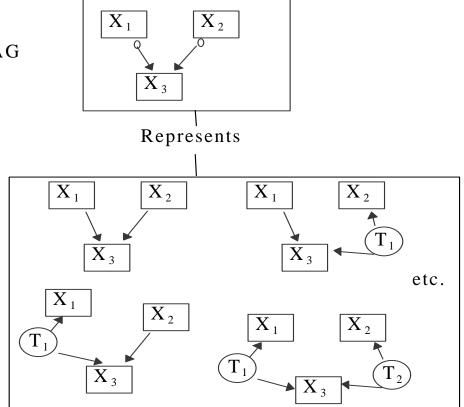


 X_1 is a cause of X_2

There is a latent common cause of X_1 and X_2

PAGs: Partial Ancestral Graph

PAG



Search Difficulties

- z The number of graphs is super-exponential in the number of observed variables (if there are no hidden variables) or infinite (if there are hidden variables)
- z Because some graphs are equivalent, can only predict those effects that are the same for every member of equivalence class
 - y Can resolve this problem by outputting equivalence classes

What Isn't Possible

- z Given just data, and the Causal Markov and Causal Faithfulness Assumptions:
 - y Can't get probability of an effect being within a given range without assuming a prior distribution over the graphs and parameters

What Is Possible

- z Given just data, and the Causal Markov and Causal Faithfulness Assumptions:
 - y There are procedures which are asymptotically correct in predicting effects (or saying "don't know")

Overview of Search Methods

- Constraint Based Searches
 - TETRAD
- Scoring Searches
 - Scores: BIC, AIC, etc.
 - Search: Hill Climb, Genetic Alg., Simulated Annealing
 - Very difficult to extend to latent variable models

Heckerman, Meek and Cooper (1999). "A Bayesian Approach to Causal Discovery" chp. 4 in Computation, Causation, and Discovery, ed. by Glymour and Cooper, MIT Press, pp. 141-166

Constraint-based Search

- Construct graph that most closely implies conditional independence relations found in sample
- Doesn't allow for comparing how much better one model is than another
- It is important not to test all of the possible conditional independence relations due to speed and accuracy considerations – FCI search selects subset of independence relations to test

Constraint-based Search

- Can trade off informativeness versus speed, without affecting correctness
- Can be applied to distributions where tests of conditional independence are known, but scores aren't
- Can be applied to hidden variable models (and selection bias models)
- Is asymptotically correct

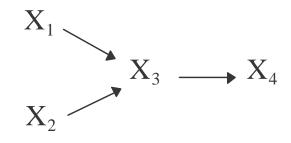
Search for Patterns

Adjacency:

•X and Y are <u>adjacent</u> if they are dependent conditional on *all* subsets that don't include X and Y

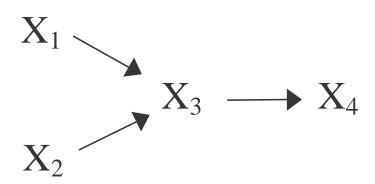
•X and Y are <u>not adjacent</u> if they are independent conditional on <u>any</u> subset that doesn't include X and Y

Search



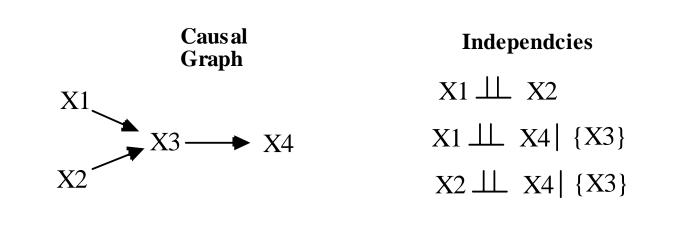
Independencies entailed???

Search

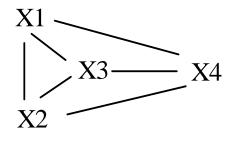


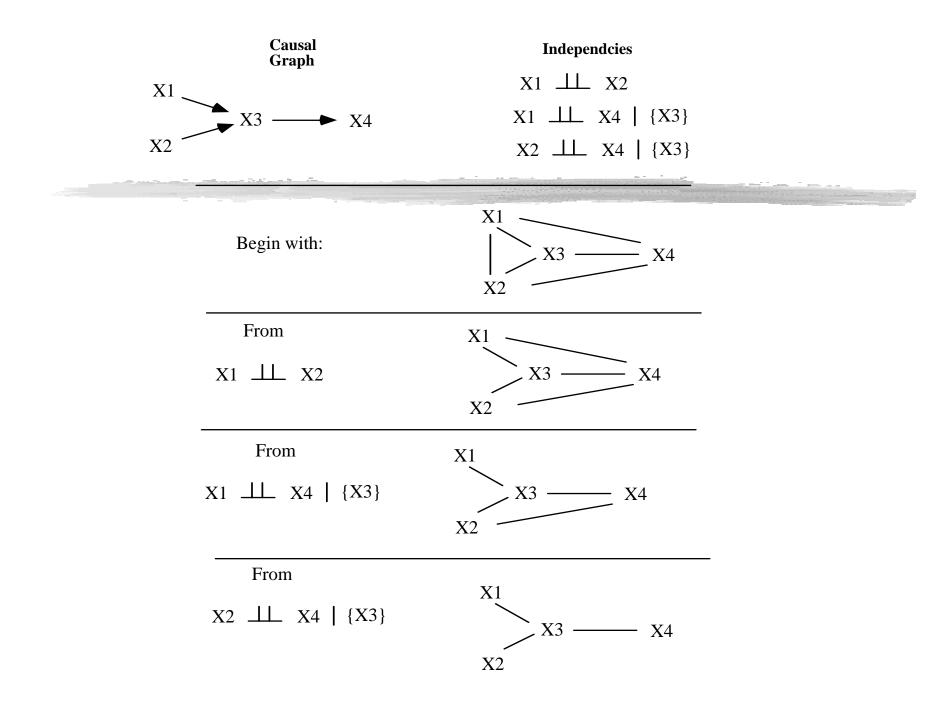
Independencies entailed

Search: Adjacency

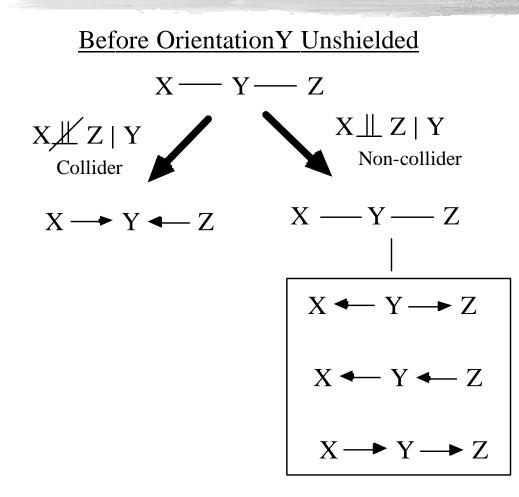


Begin with:

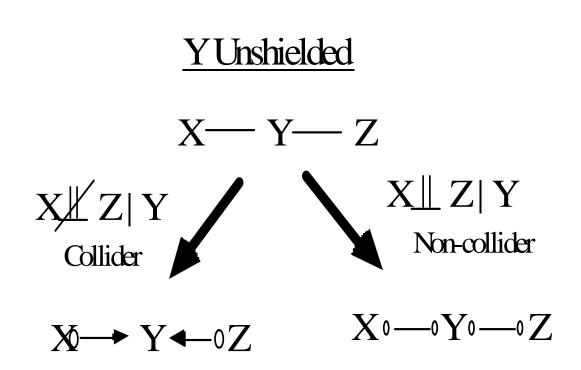




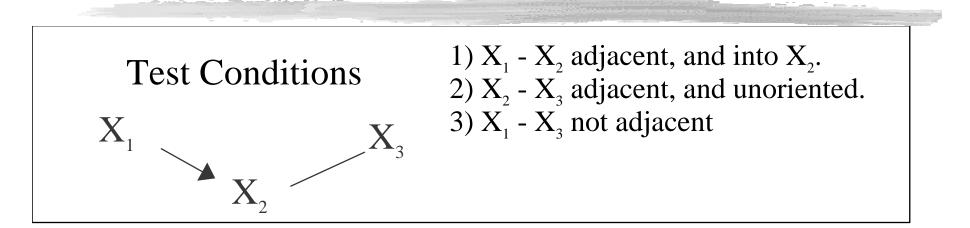
Search: Orientation in Patterns

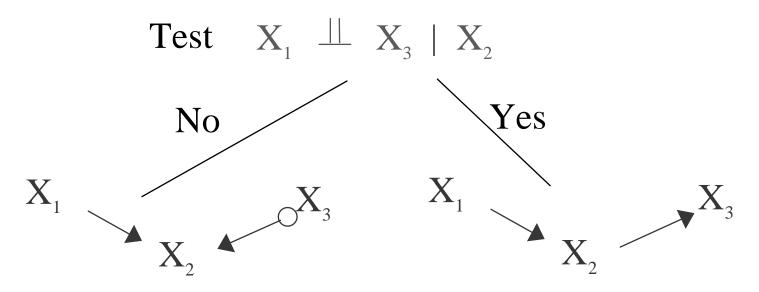


Search: Orientation in PAGs

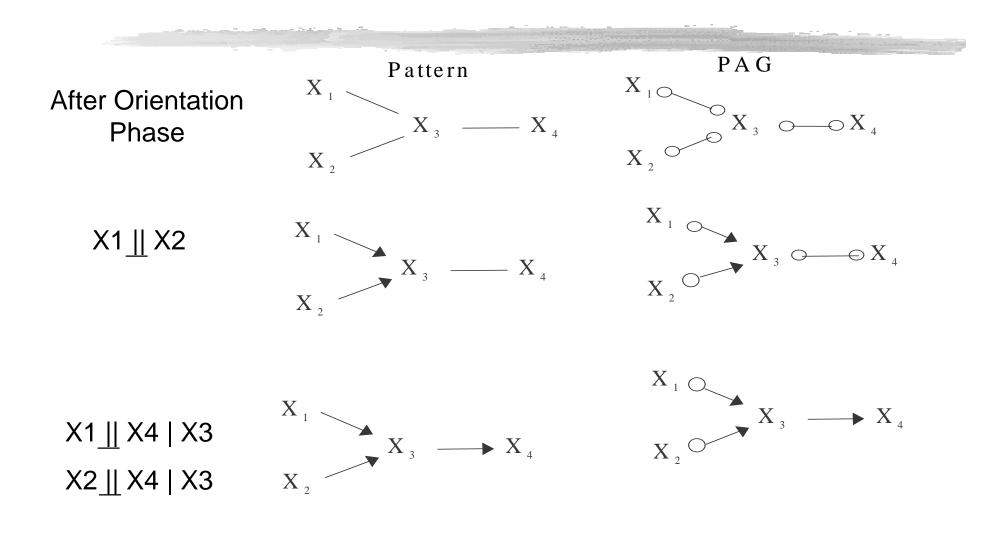


Orientation: Away from Collider



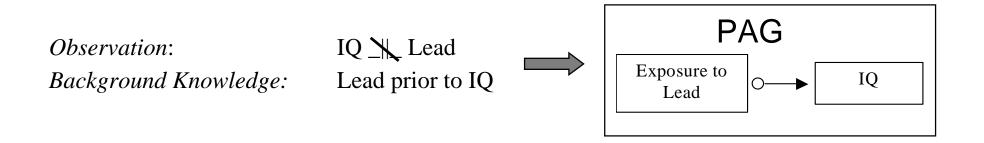


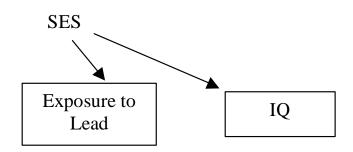
Search: Orientation



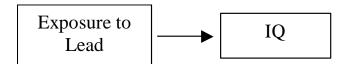
49

Knowing when we know enough to calculate the effect of Interventions



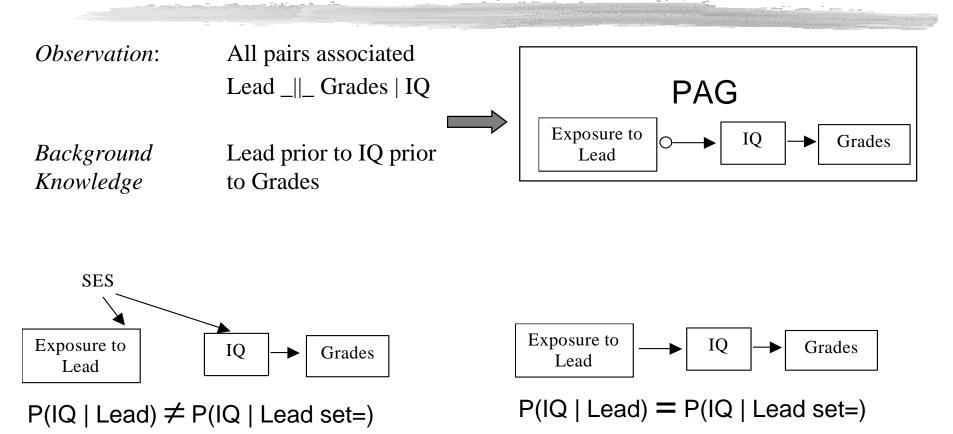


 $P(IQ | Lead) \neq P(IQ | Lead set=)$

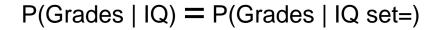


P(IQ | Lead) = P(IQ | Lead set=)

Knowing when we know enough to calculate the effect of Interventions



P(Grades | IQ) = P(Grades | IQ set=)



Knowing when we know enough to calculate the effect of Interventions

- Causal graph known
- Features of causal graph known
 - Prediction algorithm (SGS 1993)
 - Data tell us when we know enough –
 - i.e., we know when we don't know

4. Problems with Using Regession for Causal Inference

Regression to estimate Causal Influence

- Let $V = \{X, Y, T\}$, where
 - Y : measured outcome
 - measured regressors: $\mathbf{X} = \{X_1, X_2, \dots, X_n\}$
 - latent common causes of pairs in **X** U Y: $\mathbf{T} = \{T_1, ..., T_k\}$
- Let the true causal model over V be a Structural Equation Model in which each V ∈ V is a linear combination of its direct causes and independent, Gaussian noise.

Regression to estimate Causal Influence

• Consider the regression equation:

 $Y = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_n X_n$

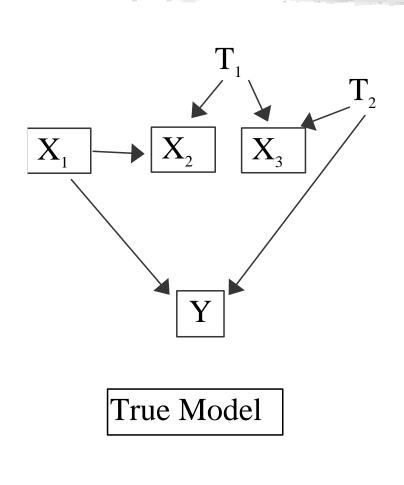
- Let the OLS regression estimate b_i be the *estimated* causal influence of X_i on Y.
- That is, holding X/Xi experimentally constant, b_i is an estimate of the change in E(Y) that results from an intervention that changes Xi by 1 unit.
- Let the *real* Causal Influence $X_i \rightarrow Y = \beta_i$
- When is the OLS estimate b_i an unbiased estimate of the the real Causal Influence $X_i \rightarrow Y = \beta_i$?

Regression vs. PAGs to estimate Qualitative Causal Influence

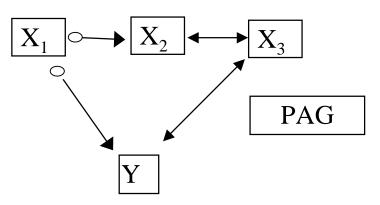
- $b_i = 0$ \Leftrightarrow $Xi_i | | Y | X/Xi$
- Xi Y *not* adjacent
 in PAG over X U Y ⇔ ∃S ⊆ X/Xi, Xi _||_ Y | S
- So for any SEM over V in which
 - Xi _||_ Y | **X**/Xi and
 - $\exists S \subset X/Xi, Xi || Y | S$

PAG is superior to regression wrt errors of commission

Regression Example



 $b_1 \neq 0 \checkmark$ $b_2 \neq 0 X$ $b_3 \neq 0 X$



Regression Bias

lf

- X_i is d-separated from Y conditional on X/X_i in the true graph after removing $X_i \rightarrow Y$, and
- X contains no descendant of Y, then:

b_i is an unbiased estimate of β_i

See "Using Path Diagrams"

Regression Bias Theorem

If $\mathbf{T} = \emptyset$, and \mathbf{X} prior to Y, then

 b_i is an unbiased estimate of β_i

Tetrad 4 Demo

www.phil.cmu.edu/projects/tetrad

Applications

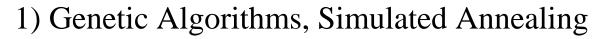
- Genetic Regulatory Networks
- Pneumonia
- Photosynthesis
- *Lead IQ*
- College Retention
- Corn Exports

- Rock Classification
- Spartina Grass
- College Plans
- Political Exclusion
- Satellite Calibration
- Naval Readiness

Projects: Extending the Class of Models Covered

- 1) Feedback systems
- 2) Conservation, or equilibrium systems
- 3) Parameterizing discrete latent variable models

Projects: Search Strategies



- 2) Automatic Discretization
- 3) Scoring Searches among Latent Variable Models
- 4) Latent Clustering & Scale Construction (Ricardo Silva)

References

- Causation, Prediction, and Search, 2nd Edition, (2000), by P. Spirtes, C. Glymour, and R. Scheines (MIT Press)
- *Causality: Models, Reasoning, and Inference*, (2000), Judea Pearl, Cambridge Univ. Press
- Computation, Causation, & Discovery (1999), edited by C. Glymour and G. Cooper, MIT Press
- Causality in Crisis?, (1997) V. McKim and S. Turner (eds.), Univ. of Notre Dame Press.
- TETRAD IV: www.phil.cmu.edu/projects/tetrad
- Web Course on Causal and Statistical Reasoning : <u>www.phil.cmu.edu/projects/csr/</u>