
10-702 Homework 5 --Due in class on Wednesday, April 30. 
 
This homework focuses on a comparison between a 1st order (so-called “Delta Method”) 
estimate and a Bootstrap estimate of the variance of an MLE estimate of Bernoulli 
variance. 
 
We have n iid Ber(p) observations: X = (X1, …., Xn). 
 
Of course, the MLE p̂ = ∑i xi/n and Varp( p̂ ) = [p(1-p)]/n.   
The MLE value of this variance with respect to the data is [ p̂ (1- p̂ )]/n. 
 
What, however, is the Varp( p̂ (1- p̂ ) )?  That is what is the variance of this estimate of 
variance? 
 
We contrast two techniques. 
1) The Delta Method.  Let h(θ) be a function of interest of the parameter.  Let θ̂  be its 

MLE based on n iid data, given θ.  Using a first-order Taylor expansion and the 
Cramer-Rao lower bounds, we get that 

Varθ [h(θ̂ )]   ≈  [h’(θ)]2 / In(θ), 
where In(θ) = Eθ[ θ∂

∂ ln L(θ | X) ]2, which is the (expected) Fisher information in the 

sample, about the parameter θ. 
 

So  [h’(θ)]2 / In(θ)   =   
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where the denominator in this term is the observed Fisher information, )ˆ(ˆ θnI . 
 
Problem 1:  Apply this Delta Method to get an estimate, Var( p̂ (1- p̂ ) ) of  
Varp( p̂ (1- p̂ ) ) based on the sample X of n, iid Ber(p) observations.   
Calculate the values of Var( p̂ (1- p̂ ) ) for p̂ = 1/4 and for p̂ = 1/3 and n = 24. 
 
Aside: Note what happens to this approximation at the distinguished value p = ½! 
 
2) The Bootstrap Method.   
From the observed x = (x1, …., xn) identify the Bootstrap estimate of the variance of 
p̂ (1- p̂ ), as follows.    That is, with a Bootstrap resampling of the given sample of n, the 

population of all n-fold Bootstrap draws from the sample of n yields the exact Bootstrap 
variance estimate of our quantity of interest: 



Var*( p̂ (1- p̂ ))   =   (1/[nn-1]) 2
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where *)ˆ1(ˆ ipp −  is the ith bootstrap sample and { p̂ )*ˆ1( p− } is the grand mean of these 
nn samples.   
(Aside on notation: the electronic version of this assignment lacks the conventional “bar” sign over the 
term within the brackets, needed to represent “average.”  So, I’ve added the extra bracket symbols to help 
remind you when reading the posted version of the assignment.) 
Of course, this is infeasible to calculate for even modest sizes of n. 
 
Problem 2: Instead, sample this Bootstrap population*.  That is, let n = 24 in the original 
sample. You will carry out this Bootstrap sampling analysis twice,  

 First use p̂  = 1/4.   That is, first set p̂  = 1/4 in a sample of size 24, i.e. 6 of 24 
trials are Bernoulli “successes.”  Of course, the order of the sequence of outcomes does 
not matter for the EDF.  From this sample (= population*) of size 24, draw m = 1,000 
Bootstrap resamples each of size 24 and calculate 

 Var*(θ) = (1/[m-1]) 2
1
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i i θθ ,  where θ = ( p̂ (1- p̂ )). 

Again, *
îθ  is the MLE estimate from the ith bootstrap sample, and { *θ̂ } is the average of 

the m = 1,000 samples. 
 
 Second, use p̂  = 1/3 again in a sample of 24 (so there are 8 “successes”) and draw 
m = 1,000 Bootstrap resamples each of size 24, and calculate the Bootstrap estimate of 
variance of the same quantity ( p̂ (1- p̂ )). 
 
 
Problem 3) Compare the two pairs of estimates that you get for the values p̂ = 1/4 and 
p̂ = 1/3 of Varp( p̂ (1- p̂ )).  These are the values you get of Var( p̂ (1- p̂ ) ) and of 

Var*( p̂ (1- p̂ )) in the work above, each evaluated at the values p̂ = 1/4 and p̂ = 1/3. 
 
Assuming that p = 1/4 and n = 24,the exact value for Varp( p̂ (1- p̂ ) ) = .00484,  
       and when p  = 1/3 and n = 24, the exact value for Varp( p̂ (1- p̂ ) ) = .00519. 
 
Which set of estimates is closer to the exact values? 
 
Remembering that the Cramer-Rao bound is a lower bound, can you explain the pattern 
of estimates that you got? 

 
 

 


