
CALD 10–702

Statistical Approaches to Learning and Discovery

Assignment 2

February 10, 2003

Due in class on Wednesday, February 19.

Instructions: This assignment includes three problems involving the EM algorithm. Please
submit written answers to each question, either in handwritten or printed form. For the
problems that involve computing, you do not need to hand in source code, but you should
include a description of your implementation.

Problem 1. EM and Deconvolution

Suppose that Y1 ∼ exp(θ1) and Y2 ∼ exp(θ2) are independent exponential random variables.
Then X = Y1 + Y2 is distributed according to exp(θ1) ? exp(θ2), where the convolution f ? g
of densities f and g is given by f ? g(x) =

∫
g(y) f(x− y) dy.

(a) Give a formula for the density fθ1,θ2 of X.

(b) Suppose that x1, x2, . . . , xn are iid samples from fθ1,θ2 . Give expressions for the appro-
priate complete data and incomplete data likelihoods.

(c) Derive the E-step and M-step and give explicit expressions for the parameter updates
for the maximum likelihood estimates of θ1 and θ2.

(d) Implement the EM algorithm derived above, and run it on the data contained in
the file /afs/cs/academic/class/10702/data/assign2.exponential.dat, which is
a sample of 500 points from fθ1,θ2 . Report your estimate (θ̂1, θ̂2), and give plots of

1. The density fbθ1,bθ2
against a histogram of the data.

2. The incomplete data likelihood as a function of iteration.

3. The estimated parameters θ1 and θ2 as a function of iteration.

Note: the following integration-by-parts formula may come in handy:

∫ x

0

yeαy dy =
1

α

(
xeαx −

∫ x

0

eαy dy

)
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Problem 2. Rate of Convergence

In this problem you will analyze the rate of convergence of EM in a special case, where the
complete data is from a one-dimensional exponential family. Qualitatively, the conclusion is
that the convergence is linear in the amount of “missing” information at the MLE. That is,
if z denotes the complete data and x is the incomplete (observed) data, then the convergence

is linear in the ratio of Fisher informations Iz |x(θ̂)/Iz(θ̂).

Let the incomplete data density be g(x | θ), and suppose that the complete data z comes
from a one-dimensional exponential family with natural parameter θ and sufficient statistic
t(z). Thus, the complete data density is written as

f(z | θ) = b(z) exp (θt(z)− ψ(θ))

and the conditional density of z given x is

h(z |x, θ) =
f(z | θ)
g(x | θ)

(a) Show how the E-step can be carried out, by deriving an expression for the Q function

Q(θ, θ′ |x) =

∫
h(z |x, θ′) log f(z | θ) dz

in terms of θ, θ′, ψ, b and t.

(b) Derive the M-step by giving an equation for the value of θ that maximizes the Q
function for θ′ = θ(k), in the k-th iteration. (Note: you will only be able to give
an implicit equation for the update θ(k+1); in general, this M-step must be computed
numerically.)

(c) Show that as k −→∞,

θ(k+1) − θ̂

θ(k) − θ̂
=

Iz |x(θ̂)

Iz(θ̂)
+ o(1)

where θ̂ is the MLE, Iz is the Fisher information of z, and Iz |x is the Fisher information

of z conditioned on x. (Hint: use the linear approximation Eθ[t] = Ebθ[t] + Iz(θ̂)(θ −
θ̂) + o(|θ − θ̂|), and the corresponding approximation for Eθ[t | x].)
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Problem 3. Verifying the Theory

Returning to the setup of Problem 1, let Y1 ∼ exp(θ1) and Y2 ∼ exp(θ2) be independent
exponential random variables, but now suppose that θ2 is known. Again let X = Y1 + Y2,
and suppose that x1, x2, . . . , xn are iid samples from fθ1,θ2 = exp(θ1) ? exp(θ2). We are now
interested in estimating the single unknown parameter θ1.

(a) Explain how this problem matches the setup of Problem 2, by specifying the den-
sity g(x | θ1), the complete data z, and the one-dimensional exponential family model
f(z | θ1).

(b) Derive expressions for the Fisher informations Iz(θ1) and Iz | {xi}(θ1).

(c) Implement the EM algorithm derived in Problem 2 for this case, and run it on the
data in /afs/cs/academic/class/10702/data/assign2.exponential2.dat, which
is a sample of 500 points from fθ1,0.05 (note that this is a different file from the one

used in Problem 1). Report your estimate of the MLE θ̂1, and give a plot of
θ
(k)
1 −bθ1

θ
(k−1)
1 −bθ1

versus k.

(d) Compute Iz(θ̂1) and Iz | {xi}(θ̂1). Does the convergence match what is predicted in
Problem 2?

(e) Now repeat steps (c) and (d) on the first 100 points in the same data set. How does
the convergence rate compare to that obtained on all 500 data points?
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