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Lecture Outline 
 

• Quick review of basics for conditional independence relations 

• Semantics for directed and undirected graphical models 

• Hammersley-Clifford Theorem (1971) for Markov Networks and undirected graphs 

• d-separation for graphical models, and the related Bayes Ball  and PC algorithms 
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Following A.P.Dawid’s convenient notation: 

 

Let (• ╨ •) denote independence between (sets of) variables. 

(A ╨ B)  means that P(A,B) = P(A) P(B) 

or equivalently       P(A) = P(A | B) and P(B) = P(B |A) 
 

And  let (• ╨ • | •) denote conditional independence.  

(A ╨ B | C)  means that P(A,B | C) = P(A | C) P(B | C) 

or equivalently  P(A | C) = P(A | B,C)  and  P(B | C) = P(B | A,C) 
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We saw last lecture that you cannot conclude conditional independence from 

unconditional independence, or vice versa.   

Recall Simpson’s Paradox or that the Linear Opinion Pool for combining expert 

opinions does not support commuting “updating” with “pooling.” 

The elementary analysis behind these results is captured in the following inequality.   

Let A, B be binary variables.  Let P1(A,B) and P2(A,B) be two distributions, and let 

P3(A,B) be a third distribution obtained by averaging the first two.  That is,  

fix 0 < x < 1, and define:  P3(A,B)  =  xP1(A,B) + (1-x)P2(A,B). 
 

Note that, unless either  P1(A) = P2(A), or P1(B) = P2(B), we have this inequality: 

P3(A | B) = 
(B)-x)P((B)xP
(A,B)-x)P((A,B)xP
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This result may be visualized using Barycentric coordinates: 

http://www.stat.cmu.edu/~eairoldi/classes/tetra.10702/tetraPlay.html 

• The average (marginalization) of two distributions on the surface of 

independence may be off the surface of independence. 

• A distribution on the surface of independence may be the average of two 

distributions that are off the surface of independence. 

 
Now, let C be a third binary variable with P(A,B,C) a joint probability on {A,B,C}. 

Define P1(A,B) = P(A,B | C = 0), P2(A,B) = P(A,B | C = 1), and let P(C = 0) = x.  

The result is that P(A,B) = P3(A,B) and the following are seen to be invalid inferences: 

1.   (A ╨ B | C)  ⁄⇒  (A ╨ B) 

2.   (A ╨ B)  ⁄⇒  (A ╨ B | C) 

http://www.stat.cmu.edu/~eairoldi/classes/tetra.10702/tetraPlay.html
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Semantics for DAGS and Undirected Graphs 

A Directed Acyclic Graph [DAG] is a set of nodes  and directed edges between some 

of the nodes, where the relation of a directed path connecting nodes is a strict 

partial order.  That is, there are no loops. 

 

The nodes stand for (sets of) random variables, and the directed edges indicate 

how to factor the joint distribution over these variables, as follows:   

 

Defn.:   Let Parents(Xi) be the set of immediate predecessors of node Xi. 

P(X1, …., Xn) = ΠΠΠΠi P( Xi  | Parents(Xi) ) 

where P(X | ∅∅∅∅) = P(X), by stipulation. 
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Consider this elementary DAG. 

X →→→→ Y →→→→ Z 

So, from this DAG,    P(X,Y,Z)  = P(X) P(Y | X) P(Z | Y). 

Compare this to the generic factorization, which holds for all distributions, 

P(X,Y,Z)  = P(X) P(Y | X) P(Z | X,Y). 

 

Hence, this graph entails that  P(Z | Y) = P(Z | X,Y), 

      or  (Z ╨ X | Y). 

(We postpone characterizing the set of conditional independences in a DAG until 

after the next section of slides, dealing with undirected graphs.) 
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Two Examples 

 

X1 …………………… Xn 

Y1 Y2 Yn ……………………

 
Factor Analysis 

 
 
 

 
 X1 …………………… Xn 

Y1 Y2 Yn ……………………

X2

 
Hidden Markov Models [HMM’s] 
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Markov Networks 
Undirected Graphical Models 

 
Next we consider simpler graphs in which edges are undirected.   

 

Distinguish a node’s immediate neighbors from other nodes. 

 

The undirected graph provides information about conditional independence as follows: 

 Every node is conditionally independent of its non-neighbors, given its neighbors. 
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X1
X2

X3

X4 X5

 
(X1 ╨ { X2, X4, X5 } | X3). 

Definitions:   
 

• The (set) variable V is a Markov Blanket for (set) variable X if and only if 

(X ╨ Y | V)   for each  Y ∉ V. 

• and it is a Markov Boundary if it is a minimal Markov Blanket. 
 
 
So X3 is the Markov Boundary for X1, and {X2, X4, X5} is the Markov Boundary for X5. 
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An undirected graph provides a factorization of a joint probability as follows: 
 

• A clique is a fully connected (maximal) subgraph, which we denote Ci. 
 

X1 X2 

X3

X4 X5 

C2C1
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For each clique, Ci, define a non-negative function gi: Ci → ℜ≥0 called the potential – it 
might be used, for example, as an index of association of a node to that clique. 
 
Let Z be the normalizing constant over all nodes, {X1, …., Xn}, 

Z = ∑
=

n

j 1
Πi gi(Xj) 

where we use only cases for which gi is well defined. 

 
Use the potential functions to define the factorization of a joint probability distn. 

P(X1, …., Xn)  =  Z
1

ΠΠΠΠi gi(Ci). 

Thus the factorization is by a product of functions defined over the cliques. 



 12

Definition: 

Given a probability distribution P, the undirected graph G represents the conditional 

independence relations in P (and then say that G is a Markov Field w.r.t. P): 

if graph-separation entails conditional independences for P, i.e., 

 if the set of nodes Z lies in all paths in G connecting  set X to set Y, then 

(X ╨ Y | Z). 

Hammersley-Clifford Theorem (1971): 

• The graph G is a Markov Field  w.r.t. P if it factors as the normalized product of 

non-negative functions of cliques. 

• If the probability function is strictly positive, the converse holds as well for a 

strictly positive function of cliques. 
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However, not all probabilistic independence relations are captured by undirected graphs. 

 
 
 X1 X2 

X3

 
The best we can do with a directed graph is the degenerate “clique,” which entails no 

independences. 
 
 
 X1 X2 

X3
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Now, we return to characterizing independence relations in DAGs.  Consider a path 

through the graph, ignoring the direction of arrows and attending solely to connected 

nodes. 

Defn.  A node in DAG is a collider on a path if there are incoming directed arrows. 
 
 
 X1

X2 

X3

 
X3 is a collider on the path connecting X1 and X2. 

 

In this DAG, though (X1 ╨ X2), it is not the case that (X1 ╨ X2 | X3).   

So, colliders do not entail conditional independence, given the collider. 
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Definition (d-separation):  
The set of variables Z d-separates the set X from the set Y  if and only if 

for each undirected path between X and Y, there is a node W such that 

 either W is a collider on this path and neither W nor any of its descendents  

 belongs to Z, 

 or W is not a collider on this path and W belongs to Z. 

 

Theorem (Pearl – Spirtes – Glymour – Scheines ?)  If a joint distribution P factors 

according to a DAG, and if X, Y, and Z are disjoint subsets of nodes such that Z d-

separates X from Y in the graph, then P satisfies 

(X ╨ Y | Z). 
 

The “Bayes-Ball” algorithm: implement d-separation. (See p.17, chpt. 2 Jordan’s book) 
   



 16

Equivalent DAGs and the PC algorithm 

These 3 DAGs all have the same indpendence relation  (X1 ╨ X3 | X2).   

 
 
 X1 X3 X2

 
 
 
 X1 X3 X2

 
 
 
 X1 X3 X2

 
We can determine the equivalence class for a given DAG with the PC algorithm. 

 

http://www.phil.cmu.edu/projects/tetrad_download/�

http://www.phil.cmu.edu/projects/tetrad_download/
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Example of an undirected graph whose conditional independences cannot be obtained 

with a directed graph 
�

 
 
 

X1
X3 

X2

X4
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