Gibbs and Metropolis sampling (MCMC methods) and relations of Gibbs to EM

Lecture Outline

1. Gibbs

- the algorithm
- a bivariate example
- an elementary convergence proof for a (discrete) bivariate case
- more than two variables
- a counter example.

2. $E M$ - again

- EM as a maximization/maximization method
- Gibbs as a variation of Generalized $E M$

3. Generating a Random Variable.

- Continuous r.v.s and an exact method based on transforming the cdf.
- The "accept/reject" algorithm.
- The Metropolis Algorithm

Gibbs Sampling

We have a joint density

$$
f\left(x, y_{1}, \ldots, y_{\mathrm{k}}\right)
$$

and we are interested, say, in some features of the marginal density

$$
f(x)=\iint \ldots \int f\left(x, y_{1}, \ldots, y_{\mathrm{k}}\right) d y_{1}, d y_{2}, \ldots, d y_{\mathrm{k}} .
$$

For instance, suppose that we are interested in the average

$$
\mathrm{E}[X]=\int x f(x) d x .
$$

If we can sample from the marginal distribution, then

$$
\lim _{m \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} X_{i}=\mathrm{E}[X]
$$

without using $f(x)$ explicitly in integration. Similar reasoning applies to any other characteristic of the statistical model, i.e., of the population.

The Gibbs Algorithm for computing this average.
Assume we can sample the k+1-many univariate conditional densities:

$$
\begin{aligned}
& f\left(X \mid y_{1}, \ldots, y_{\mathrm{k}}\right) \\
& f\left(Y_{1} \mid x, y_{2}, \ldots, y_{\mathrm{k}}\right) \\
& f\left(Y_{2} \mid x, y_{1}, y_{3}, \ldots, y_{\mathrm{k}}\right) \\
& \ldots \\
& f\left(Y_{\mathrm{k}} \mid x, y_{1}, y_{3}, \ldots, y_{\mathrm{k}-1}\right)
\end{aligned}
$$

Choose, arbitrarily, k initial values: $Y_{1}=y_{1}^{0}, Y_{2}=y_{2}^{0}, \ldots, Y_{\mathrm{k}}=y_{k}^{0}$.
Create: $\quad x^{1}$ by a draw $\operatorname{from} f\left(X \mid y_{1}^{0}, \ldots, y_{k}^{0}\right)$
y_{1}^{1} by a draw $\operatorname{from} f\left(Y_{1} \mid x^{1}, y_{2}^{0}, \ldots, y_{k}^{0}\right)$
y_{2}^{1} by a draw from $f\left(Y_{2} \mid x^{1}, y_{1}^{1}, y_{3}^{0} \ldots, y_{k}^{0}\right)$
y_{k}^{1} by a draw from $f\left(Y_{\mathrm{k}} \mid x^{1}, y_{1}^{1}, \ldots, y_{k-1}^{1}\right)$.

This constitutes one Gibbs "pass" through the $\mathrm{k}+1$ conditional distributions, yielding values:

$$
\left(x^{1}, y_{1}^{1}, y_{2}^{1}, \ldots, y_{k}^{1}\right)
$$

Iterate the sampling to form the second "pass"

$$
\left(x^{2}, y_{1}^{2}, y_{2}^{2}, \ldots, y_{k}^{2}\right)
$$

Theorem: (under general conditions)
The distribution of x^{n} converges to $F(x)$ as $n \rightarrow \infty$.
Thus, we may take the last $n X$-values after many Gibbs passes:

$$
\frac{1}{n} \sum_{i=m}^{m+n} X^{i} \approx \mathrm{E}[X]
$$

or take just the last value, $x_{i}^{n_{i}}$ of n-many sequences of Gibbs passes
$(i=1, \ldots n)$

$$
\frac{1}{n} \sum_{i=i}^{n} X_{i}^{n_{i}} \approx \mathrm{E}[X]
$$

to solve for the average, $\quad=\int x f(x) d x$.

A bivariate example of the Gibbs Sampler.
Example: Let X and Y have similar truncated conditional exponential distributions:

$$
\begin{aligned}
& f(X \mid y) \propto y e^{-y x} \text { for } 0<\mathrm{X}<\boldsymbol{b} \\
& f(Y \mid x) \propto x e^{-x y} \text { for } 0<\mathrm{Y}<\boldsymbol{b}
\end{aligned}
$$

where \boldsymbol{b} is a known, positive constant.
Though it is not convenient to calculate, the marginal density $f(X)$ is readily simulated by Gibbs sampling from these (truncated) exponentials.

Below is a histogram for $X, \boldsymbol{b}=5.0$, using a sample of 500 terminal observations with 15 Gibbs' passes per trial, $x_{i}^{n_{i}}\left(\mathrm{i}=1, \ldots, 500, \mathrm{n}_{\mathrm{i}}=15\right)$ (from Casella and George, 1992).

Histogram for $X, \boldsymbol{b}=5.0$, using a sample of 500 terminal observations with 15 Gibbs' passes per trial, $x_{i}^{n_{i}}\left(\mathrm{i}=1, \ldots, 500, \mathrm{n}_{\mathrm{i}}=15\right)$. Taken from (Casella and George, 1992).

Here is an alternative way to compute the marginal $f(X)$ using the same Gibbs Sampler.

Recall the law of conditional expectations (assuming $\mathrm{E}[\mathrm{X}]$ exists):

$$
\mathrm{E}[\mathrm{E}[X \mid Y]]=\mathrm{E}[X]
$$

Thus

$$
\mathrm{E}[f(x \mid Y)]=\int f(x \mid y) f(y) d y=f(x) .
$$

Now, use the fact that the Gibbs sampler gives us a simulation of the marginal density $f(\mathrm{Y})$ using the penultimate values (for Y) in each Gibbs' pass, above: $\quad y_{i}^{n_{i}-1}\left(\mathrm{i}=1, \ldots 500 ; n_{\mathrm{i}}=15\right)$.
Calculate $f\left(x \mid y_{i}^{n_{i}-1}\right)$, which by assumption is feasible.
Then note that:

$$
f(x) \approx \frac{1}{n} \sum_{i=i}^{n} \mathrm{f}\left(\mathrm{x} \mid y_{i}^{n_{i}-1}\right)
$$

The solid line graphs the alternative Gibbs Sampler estimate of the marginal $f(x)$ from eth same sequence of 500 Gibbs' passes, using $\int f(x \mid y) f(y) d y=f(x)$. The dashed-line is the exact solution. Taken from (Casella and George, 1992).

An elementary proof of convergence in the case of 2×2 Bernoulli data
Let (X, Y) be a bivariate variable, marginally, each is Bernoulli

$$
\begin{gathered}
X \\
Y{ }_{1}{ }^{0}\left[\begin{array}{cc}
0 & 1 \\
p_{1} & p_{2} \\
p_{3} & p_{4}
\end{array}\right]
\end{gathered}
$$

where $p_{\mathrm{i}} \geq 0, \sum p_{\mathrm{i}}=1$, marginally

$$
\begin{aligned}
& \mathbf{P}(X=0)=p_{1}+p_{3} \text { and } \mathbf{P}(X=1)=p_{2}+p_{4} \\
& \mathbf{P}(Y=0)=p_{1}+p_{2} \text { and } \mathbf{P}(Y=1)=p_{3}+p_{4} .
\end{aligned}
$$

The conditional probabilities $\mathbf{P}(X \mid y)$ and $\mathbf{P}(Y \mid x)$ are evident: $\mathbf{P}(Y \mid x):$ X

$$
\left.\underset{1}{\boldsymbol{Y}} \begin{array}{cc}
0 & 1 \\
\frac{p_{1}}{\boldsymbol{p}_{1}+\boldsymbol{p}_{3}} & \frac{p_{2}}{\boldsymbol{p}_{2}+p_{4}} \\
\frac{p_{3}}{\boldsymbol{p}_{1}+\boldsymbol{p}_{3}} & \frac{p_{4}}{\boldsymbol{p}_{2}+p_{4}}
\end{array}\right]
$$

$\mathbf{P}(X \mid y)$:

Suppose (for illustration) that we want to generate the marginal distribution of X by the Gibbs Sampler, using the sequence of iterations of draws between the two conditional probabilites $\mathbf{P}(X \mid y)$ and $\mathbf{P}(Y \mid x)$.

That is, we are interested in the sequence $<x^{i}: \mathrm{i}=1, \ldots>$ created from the starting value $y^{0}=0$ or $y^{0}=1$.

Note that:

$$
\begin{gathered}
\mathbf{P}\left(X^{n}=0 \mid x^{i}: \mathrm{i}=1, \ldots, n-1\right)=\mathbf{P}\left(X^{n}=0 \mid x^{n-1}\right) \text { the Markov property } \\
=\mathbf{P}\left(X^{n}=0 \mid y^{n-1}=0\right) \mathbf{P}\left(Y^{n-1}=0 \mid x^{n-1}\right)+\mathbf{P}\left(X^{n}=0 \mid y^{n-1}=1\right) \mathbf{P}\left(Y^{n-1}=1 \mid x^{n-1}\right)
\end{gathered}
$$

Thus, we have the four (positive) transition probabilities:

$$
\mathbf{P}\left(X^{n}=\mathrm{j} \mid x^{n-1}=i\right)=p_{\mathrm{ij}}>0, \text { with } \sum_{i} \sum_{j} p_{\mathrm{ij}}=1 \quad(i, j=0,1) .
$$

With the transition probabilities positive, it is an (old) ergodic theorem that, $\mathbf{P}\left(X^{n}\right)$ converges to a (unique) stationary distribution, independent of the starting value $\left(y^{0}\right)$.

Next, we confirm the easy fact that the marginal distribution $\mathbf{P}(X)$ is that same distinguished stationary point of this Markov process.

$$
\begin{aligned}
& \mathbf{P}\left(X^{n}=0\right) \\
& =\mathbf{P}\left(X^{n}=0 \mid x^{n-1}=0\right) \mathbf{P}\left(x^{n-1}=0\right)+\mathbf{P}\left(x^{n}=0 \mid x^{n-1}=1\right) \mathbf{P}\left(x^{n-1}=1\right) \\
& =\quad \mathbf{P}\left(X^{n}=0 \mid y^{n-1}=0\right) \mathbf{P}\left(Y^{n-1}=0 \mid x^{n-1}=0\right) \mathbf{P}\left(X^{n-1}=0\right) \\
& +\mathbf{P}\left(X^{n}=0 \mid y^{n-1}=1\right) \mathbf{P}\left(Y^{n-1}=1 \mid x^{n-1}=0\right) \mathbf{P}\left(X^{n-1}=0\right) \\
& +\mathbf{P}\left(X^{n}=0 \mid y^{n-1}=0\right) \mathbf{P}\left(Y^{n-1}=0 \mid x^{n-1}=1\right) \mathbf{P}\left(X^{n-1}=1\right) \\
& +\mathbf{P}\left(X^{n}=0 \mid y^{n-1}=1\right) \mathbf{P}\left(Y^{n-1}=1 \mid x^{n-1}=1\right) \mathbf{P}\left(X^{n-1}=1\right) \\
& =\quad \mathbf{E}_{\mathbf{P}}\left[\mathbf{E}_{\mathbf{P}}\left[X^{n}=0 \mid X^{n-1}\right]\right] \\
& =\quad \mathbf{E}_{\mathbf{P}}\left[X^{n}=0\right] \\
& =\quad \mathbf{P}\left(X^{n}=0\right) \text {. }
\end{aligned}
$$

The Ergodic Theorem:

Definitions:

- A Markov chain, X_{0}, X_{1}, \ldots satisfies

$$
\mathbf{P}\left(X_{\mathrm{n}} \mid x_{\mathrm{i}}: \mathrm{i}=1, \ldots, n-1\right)=\mathbf{P}\left(X_{\mathrm{n}} \mid x_{\mathrm{n}-1}\right)
$$

- The distribution $\boldsymbol{F}(x)$, with density $f(x)$, for a Markov chain is stationary (or invariant) if

$$
\int_{\mathbf{A}} \boldsymbol{f}(x) d x=\int \mathbf{P}\left(X_{\mathrm{n}} \in \mathbf{A} \mid x_{\mathrm{n}-1}\right) \boldsymbol{f}(x) d x
$$

- The Markov chain is irreducible if each set with positive \mathbf{P} probability is visited at some point (almost surely).
- An irreducible Markov chain is recurrent if, for each set \mathbf{A} having positive \mathbf{P}-probability, with positive \mathbf{P}-probability the chain visits \mathbf{A} infinitely often.
- A Markov chain is periodic if for some integer $k>1$, there is a partition into k sets $\left\{\mathbf{A}_{1}, \ldots, \mathbf{A}_{k}\right\}$ such that
$\mathbf{P}\left(X_{\mathrm{n}+1} \in \mathbf{A}_{\mathbf{j}+1} \mid x_{\mathrm{n}} \in \mathbf{A}_{\mathbf{j}}\right)=1$ for all $j=1, \ldots, k-1(\bmod \mathrm{k})$. That is, the chain cycles through the partition.
Otherwise, the chain is aperiodic.

Theorem: If the Markov chain X_{0}, X_{1}, \ldots is irreducible with an invariant probability distribution $\boldsymbol{F}(x)$ then:

1. the Markov chain is recurrent
2. F is the unique invariant distribution

If the chain is aperiodic, then for \boldsymbol{F}-almost all x_{0}, both

$$
\text { 3. } \lim _{n \rightarrow \infty} \sup _{\mathbf{A}}\left|\mathbf{P}\left(X_{\mathrm{n}} \in \mathbf{A} \mid X_{0}=x_{0}\right)-\int_{\mathbf{A}} \boldsymbol{f}(x) d x\right|=0
$$

And for any function \boldsymbol{h} with $\int \boldsymbol{h}(x) d x<\infty$,

$$
\text { 4. } \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=i}^{n} h\left(X_{i}\right)=\int \boldsymbol{h}(x) \boldsymbol{f}(x) d x \quad\left(=\mathbf{E}_{\mathbf{F}}[\boldsymbol{h}(x)]\right)
$$

That is, the time average of $\boldsymbol{h}(X)$ equals its state-average, a.e. \boldsymbol{F}.
A (now-familiar) puzzle.

Example (continued): Let X and Y have similar conditional exponential distributions:

$$
\begin{aligned}
& f(X \mid y) \propto y e^{-y x} \text { for } 0<\mathrm{X} \\
& f(Y \mid x) \propto x e^{-x y} \text { for } 0<\mathrm{Y}
\end{aligned}
$$

To solve for the marginal density $f(X)$ use Gibbs sampling from these exponential distributions. The resulting sequence does not converge!

Question: Why does this happen?
Answer: (Hint: Recall HW \#1, problem 2.) Let θ be the statistical parameter for X with $f(X \mid \theta)$ the exponential model. What "prior" density for θ yields the posterior $f(\theta \mid x) \propto x e^{-x \theta}$?
Then, what is the "prior" expectation for X ?
Remark: Note that $W=X \theta$ is pivotal. What is its distribution?

More on this puzzle:
The conjugate prior for the parameter θ in the exponential distribution is the Gamma $\Gamma(\alpha, \beta)$.

$$
f(\theta)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} \theta^{\alpha-1} e^{-\beta \theta} \quad \text { for } \theta, \alpha, \beta>0
$$

Then the posterior for θ based on $\boldsymbol{x}=\left(\mathrm{x}_{1}, . ., \mathrm{x}_{n}\right), n$ iid observations from the exponential distribution is

$$
\boldsymbol{f}(\theta \mid \boldsymbol{x}) \text { is Gamma } \Gamma\left(\alpha^{\prime}, \beta^{\prime}\right)
$$

where $\alpha^{\prime}=\alpha+n$ and $\beta^{\prime}=\beta+\Sigma \mathrm{x}_{i}$.
Let $n=1$, and consider the limiting distribution as $\alpha, \beta \rightarrow 0$.
This produces the "posterior" density $f(\theta \mid x) \propto x e^{-x \theta}$, which is mimicked in Bayes theorem by the improper "prior" density $f(\theta) \propto 1 / \theta$. But then $\mathrm{E}_{F}(\theta)$ does not exist!

Part 2 EM - again

- EM as a maximization/maximization method
- Gibbs as a variation of Generalized EM
$E M$ as a maximization/maximization method.

Recall:

$\mathbf{L}(\theta ; \boldsymbol{x})$ is the likelihood function for θ with respect to the incomplete data \boldsymbol{x}.
$\mathbf{L}(\theta ;(\boldsymbol{x}, \boldsymbol{z}))$ is the likelihood for θ with respect to the complete data $(\boldsymbol{x}, \boldsymbol{z})$. And $\mathbf{L}(\theta ; \boldsymbol{z} \mid \boldsymbol{x})$ is a conditional likelihood for θ with respect to \boldsymbol{z}, given \boldsymbol{x}; which is based on $\boldsymbol{h}(\boldsymbol{z} \mid \boldsymbol{x}, \theta)$: the conditional density for the data \boldsymbol{z}, given (\boldsymbol{x}, θ).

Then as

$$
f(X \mid \theta)=f(X, Z \mid \theta) / h(Z \mid x, \theta)
$$

we have

$$
\log \mathrm{L}(\theta ; x)=\log \mathrm{L}(\theta ;(x, z))-\log \mathrm{L}(\theta ; z \mid x)
$$

As below, we use the EM algorithm to compute the mle

$$
\hat{\theta}=\operatorname{argmax}_{\Theta} \mathbf{L}(\theta ; \boldsymbol{x})
$$

With $\hat{\theta}_{0}$ an arbitrary choice, define
$(\boldsymbol{E}$-step $) \quad \boldsymbol{Q}\left(\theta \mid \boldsymbol{x}, \hat{\theta}_{0}\right)=\int_{Z}[\log \mathbf{L}(\theta ; \boldsymbol{x}, \boldsymbol{z})] \boldsymbol{h}\left(\boldsymbol{z} \mid \boldsymbol{x}, \hat{\theta}_{0}\right) d z$
and

$$
\boldsymbol{H}\left(\theta \mid x, \hat{\theta}_{0}\right)=\int_{\boldsymbol{Z}}[\log \mathbf{L}(\theta ; z \mid \boldsymbol{x})] \boldsymbol{h}\left(\boldsymbol{z} \mid \boldsymbol{x}, \hat{\theta}_{0}\right) d z
$$

then

$$
\log \mathbf{L}(\theta ; \boldsymbol{x})=\boldsymbol{Q}\left(\theta \mid \boldsymbol{x}, \theta_{0}\right)-\boldsymbol{H}\left(\theta \mid x, \theta_{0}\right),
$$

as we have integrated-out \boldsymbol{z} from (*) using the conditional density $\boldsymbol{h}\left(\boldsymbol{z} \mid \boldsymbol{x}, \hat{\theta}_{0}\right)$.
The $\boldsymbol{E M}$ algorithm is an iteration of
i. the \boldsymbol{E}-step: determine the integral $\boldsymbol{Q}\left(\theta \mid \boldsymbol{x}, \hat{\theta}_{\mathrm{j}}\right)$,
ii. the \boldsymbol{M}-step: define $\hat{\theta}_{\mathrm{j}+1}$ as $\boldsymbol{\operatorname { a r g m a x }}_{\Theta} \boldsymbol{Q}\left(\theta \mid \boldsymbol{x}, \hat{\theta}_{\mathrm{j}}\right)$.

Continue until there is convergence of the $\hat{\theta}_{\mathrm{j}}$.

Now, for a Generalized EM algorithm.
Let be $\boldsymbol{P}(\boldsymbol{Z})$ any distribution over the augmented data \mathbf{Z}, with density $\boldsymbol{p}(\boldsymbol{z})$ Define the function \boldsymbol{F} by:

$$
\begin{aligned}
\boldsymbol{F}(\theta, \boldsymbol{P}(\boldsymbol{Z})) & =\int_{Z}[\log \mathbf{L}(\theta ; \boldsymbol{x}, \boldsymbol{z})] \boldsymbol{p}(\boldsymbol{z}) d z-\int_{Z} \log \boldsymbol{p}(\boldsymbol{z}) \boldsymbol{p}(\boldsymbol{z}) d z \\
& =\mathbf{E}_{\boldsymbol{P}}[\log \mathbf{L}(\theta ; \boldsymbol{x}, \boldsymbol{z})]-\mathbf{E}_{\boldsymbol{P}}[\log \boldsymbol{p}(\boldsymbol{z})]
\end{aligned}
$$

When $\boldsymbol{p}(\boldsymbol{Z})=\boldsymbol{h}\left(\boldsymbol{Z} \mid \boldsymbol{x}, \hat{\theta}_{0}\right)$ from above, then $\boldsymbol{F}(\theta, \boldsymbol{P}(\boldsymbol{Z}))=\boldsymbol{\operatorname { l o g }} \mathbf{L}(\theta ; \boldsymbol{x})$.
Claim: For a fixed (arbitrary) value $\theta=\hat{\theta}_{0}, \boldsymbol{F}\left(\hat{\theta}_{0}, \boldsymbol{P}(\boldsymbol{Z})\right.$) is maximized over distributions $\boldsymbol{P}(\boldsymbol{Z})$ by choosing $\boldsymbol{p}(\boldsymbol{Z})=\boldsymbol{h}\left(\boldsymbol{Z} \mid \boldsymbol{x}, \hat{\theta}_{0}\right)$.

Thus, the $E M$ algorithm is a sequence of \boldsymbol{M} - \boldsymbol{M} steps: the old \boldsymbol{E}-step now is a max over the second term in $\boldsymbol{F}\left(\hat{\theta}_{0}, \boldsymbol{P}(\boldsymbol{Z})\right.$), given the first term. The second step remains (as in $E M$) a max over θ for a fixed second term, which does not involve θ

Suppose that the augmented data \boldsymbol{Z} are multidimensional.
Consider the GEM approach and, instead of maximizing the choice of $\boldsymbol{P}(\boldsymbol{Z})$ over all of the augmented data - instead of the old E-step - instead maximize over only one coordinate of \boldsymbol{Z} at a time, alternating with the (old) \boldsymbol{M}-step.

This gives us the following link with the Gibbs algorithm: Instead of maximizing at each of these two steps, use the conditional distributions, we sample from them!

Part 3) Generating a Random Variable

3.1) Continuous r.v.'s - an Exact Method using transformation of the CDF

- Let \boldsymbol{Y} be a continuous r.v. with $\mathbf{c d f} \boldsymbol{F}_{\boldsymbol{Y}}(\bullet)$ Then the range of $\boldsymbol{F}_{\boldsymbol{Y}}(\bullet)$ is $(0,1)$, and as a r.v. $\boldsymbol{F}_{\boldsymbol{Y}}$ it is distributed $\boldsymbol{U} \sim$ Uniform (0,1). Thus the inverse tranformation $\boldsymbol{F}_{\boldsymbol{Y}}{ }^{-1}(\boldsymbol{U})$ gives us the desired distribution for \boldsymbol{Y}.

Examples:

- If Y $\sim \operatorname{Exponential}(\lambda)$ then $\boldsymbol{F}_{\boldsymbol{Y}}^{-1}(\mathrm{U})=-\lambda \ln (1-\mathrm{U})$ is the desired Exponential.

And from known relationships between the Exponential distribution and other members of the Exponential Family, we may proceed as follows.

Let $\boldsymbol{U}_{\mathrm{j}}$ be iid Uniform $(0,1)$, so that $\mathrm{Y}_{\mathrm{j}}=-\lambda \ln \left(\boldsymbol{U}_{\mathrm{j}}\right)$ are iid Exponential (λ)

- $\boldsymbol{Z}=-2 \sum_{j=1}^{n} \ln \left(\mathrm{U}_{\mathrm{j}}\right) \sim \chi^{2}{ }_{2 n}$ a Chi-squared distribution on $2 n$ degrees of freedom Note only even integer values possible here, alas!
- $\boldsymbol{Z}=-\beta \sum_{j=1}^{a} \ln \left(\mathrm{U}_{\mathrm{j}}\right) \sim \operatorname{Gamma} \Gamma(a, \beta)-$ with integer values only for a.
- $\boldsymbol{Z}=\frac{\sum_{j=1}^{a} \ln \left(\mathrm{U}_{\mathrm{j}}\right)}{\sum_{j=1}^{a+b} \ln \left(\mathrm{U}_{\mathrm{j}}\right)} \sim \operatorname{Beta}(a, b)-$ with integer values only for a.
3.2) The "Accept/Reject" algorithm for approximations using pdf's. Suppose we want to generate $\boldsymbol{Y} \sim \operatorname{Beta}(a, b)$, for non-integer values of a and b, say $a=2.7$ and $b=6.3$.
Let $(\boldsymbol{U}, \boldsymbol{V})$ be independent $\operatorname{Uniform}(0,1)$ random variables. Let $\boldsymbol{c} \geq \max _{y} \boldsymbol{f}_{\boldsymbol{Y}}(y)$ Now calculate $\boldsymbol{P}(\boldsymbol{Y} \leq y)$ as follows:

$$
\begin{aligned}
\boldsymbol{P}\left(\boldsymbol{V} \leq y, \boldsymbol{U} \leq(1 / \mathbf{c}) \boldsymbol{f}_{Y}(V)\right) & =\int_{0}^{y} \int_{0}^{f_{Y}(v) / c} d u d v \\
& =(1 / \mathbf{c}) \int_{0}^{y} f_{Y}(\boldsymbol{v}) d \boldsymbol{v} \\
& =(1 / \mathbf{c}) \boldsymbol{P}(\boldsymbol{Y} \leq y) .
\end{aligned}
$$

So: (i) generate independent $(\boldsymbol{U}, \boldsymbol{V})$ Uniform $(0,1)$
(ii) If $\boldsymbol{U}<(1 / \mathbf{c}) \boldsymbol{f}_{\boldsymbol{Y}}(\boldsymbol{V})$, set $\boldsymbol{Y}=\boldsymbol{V}$, otherwise, return to step (i).

Note: The waiting time for one value of \boldsymbol{Y} with this algorthim is \boldsymbol{c}, so we want \boldsymbol{c} small. Thus, choose $\boldsymbol{c}=\max _{y} \boldsymbol{f}_{\boldsymbol{Y}}(y)$. But we waste generated values of $\boldsymbol{U}, \boldsymbol{V}$ whenever $\boldsymbol{U} \geq(1 / \mathbf{c}) \boldsymbol{f}_{\boldsymbol{Y}}(\boldsymbol{V})$, so we want to choose a better approximation distribution for V than the uniform.

Let $\boldsymbol{Y} \sim \boldsymbol{f}_{\mathbf{Y}}(y)$ and $\boldsymbol{V} \sim \boldsymbol{f}_{\mathbf{V}}(v)$.

- Assume that these two have common support, i.e., the smallest closed sets of measure one are the same.
- Also, assume that $\mathbf{M}=\sup _{\mathrm{y}}\left[\boldsymbol{f}_{\mathbf{Y}}(y) / \boldsymbol{f}_{\mathbf{V}}(y)\right]$ exists, i.e., $\mathbf{M}<\infty$.

Then generate the $r . v . ~ \boldsymbol{Y} \sim \boldsymbol{f}_{\mathbf{Y}}(y)$ using
$\boldsymbol{U} \sim \operatorname{Uniform}(0,1)$ and $\boldsymbol{V} \sim \boldsymbol{f}_{\mathbf{V}}(v)$, with $(\boldsymbol{U}, \boldsymbol{V})$ independent, as follows:
(i) Generate values (u, v).
(ii) If $u<(1 / \mathbf{M}) \boldsymbol{f}_{\mathbf{Y}}(v) / \boldsymbol{f}_{\mathbf{V}}(y)$ then set $y=v$.

If not, return to step (i) and redraw (u, v).

Proof of correctness for the accept/reject algorithm:
The generated r.v. \boldsymbol{Y} has a $c d f$

$$
\begin{aligned}
& \boldsymbol{P}(\boldsymbol{Y} \leq y)=\boldsymbol{P}(\boldsymbol{V} \leq y \mid \text { stop }) \\
& =\boldsymbol{P}\left(\boldsymbol{V} \leq y \mid \boldsymbol{U}<(1 / \mathbf{M}) \boldsymbol{f}_{\mathbf{Y}}(v) / \boldsymbol{f}_{\mathbf{V}}(y)\right) \\
& =\frac{\boldsymbol{P}\left(\boldsymbol{V} \leq \boldsymbol{y}, \boldsymbol{U}<(1 / \boldsymbol{M}) \boldsymbol{f}_{\boldsymbol{Y}}(\boldsymbol{V}) / \boldsymbol{f}_{\boldsymbol{V}}(\boldsymbol{V})\right)}{\boldsymbol{P}\left(\boldsymbol{U}<(1 / \boldsymbol{M}) \boldsymbol{f}_{\boldsymbol{Y}}(\boldsymbol{V}) / \boldsymbol{f}_{\boldsymbol{V}}(\boldsymbol{V})\right)} \\
& =\frac{\int_{-\infty}^{y} f_{0}^{(1 / M)} f_{Y}(v) / f_{V}(v) d u f_{V}(v) d v}{\int_{-\infty}^{\infty} f_{0}^{(1 / M) f_{Y}(v) / f_{V}(v) d u f_{V}(v) d v}} \\
& =\int_{-\infty}^{y} f_{Y}(v) d v .
\end{aligned}
$$

Example: Generate $\boldsymbol{Y} \sim \operatorname{Beta}(2.7,6.3)$.
Let $\boldsymbol{V} \sim \operatorname{Beta}(2,6)$. Then $\mathbf{M}=1.67$ and we may proceed with the algorithm.

3.3) Metropolis algorithm for "heavy-tailed" target densities.

As before, let $\boldsymbol{Y} \sim \boldsymbol{f}_{\mathbf{Y}}(y), \boldsymbol{V} \sim \boldsymbol{f}_{\mathbf{V}}(v), \boldsymbol{U} \sim \operatorname{Uniform}(0,1)$, with $(\boldsymbol{U}, \boldsymbol{V})$ independent.
Assume only that \boldsymbol{Y} and \boldsymbol{V} have a common support.

Metropolis Algorithm:

Step $_{0}$: Generate \boldsymbol{v}_{0} and set $\boldsymbol{z}_{0}=\boldsymbol{v}_{0} . \quad$ For $\boldsymbol{i}=1, \ldots$,
Step $_{\mathrm{i}}:$ Generate $\left(\boldsymbol{u}_{\boldsymbol{i}}, \boldsymbol{v}_{\boldsymbol{i}}\right)$
Define

$$
\rho_{i}=\min \left\{\frac{f_{Y}\left(v_{i}\right)}{f_{V}\left(v_{i}\right)} \times \frac{f_{V}\left(z_{i-1}\right)}{f_{Y}\left(z_{i-1}\right)}, 1\right\}
$$

$$
\begin{gathered}
\mathbf{v}_{i} \text { if } \mathbf{u}_{i} \leq \rho_{i} \\
\mathbf{z}_{i-1} \text { if } \boldsymbol{u}_{i}>\boldsymbol{\rho}_{i} .
\end{gathered}
$$

Let

Then, as i $\rightarrow \infty$, the r.v. $\boldsymbol{Z}_{\boldsymbol{i}}$ converges in distribution to the random variable \boldsymbol{Y}.

Additional References

Casella, G. and George, E. (1992) "Explaining the Gibbs Sampler," Amer. Statistician 46, 167-174.

Flury, B. and Zoppe, A. (2000) "Exercises in EM," Amer. Staistican 54, 207-209.

Hastie, T., Tibshirani, R, and Friedman, J. The Elements of Statistical Learning. New York: Spring-Verlag, 2001, sections 8.5-8.6.

Tierney, L. (1994) "Markov chains for exploring posterior distributions" (with discussion) Annals of Statistics 22, 1701-1762.

