Gibbs and Metropolis sampling (MCMC methods) and relations of Gibbs to EM

Lecture Outline

- 1. Gibbs
 - the algorithm
 - a bivariate example
 - an elementary convergence proof for a (discrete) bivariate case
 - more than two variables
 - a counter example.
- 2. EM-again
 - *EM* as a maximization/maximization method
 - Gibbs as a variation of Generalized EM
- 3. Generating a Random Variable.
 - Continuous r.v.s and an exact method based on transforming the cdf.
 - The "accept/reject" algorithm.
 - The Metropolis Algorithm

Gibbs Sampling

We have a joint density

$$f(x, y_1, \ldots, y_k)$$

and we are interested, say, in some features of the marginal density

$$f(x) = \iint \dots \int f(x, y_1, \dots, y_k) \, dy_1, \, dy_2, \dots, \, dy_k$$

For instance, suppose that we are interested in the average

$$\mathrm{E}[X] = \int x f(x) dx.$$

If we can sample from the marginal distribution, then

$$\lim_{m \to \infty} \frac{1}{n} \sum_{i=1}^{n} X_i = \mathbf{E}[X]$$

without using f(x) explicitly in integration. Similar reasoning applies to any other characteristic of the statistical model, i.e., of the *population*.

The Gibbs Algorithm for computing this average.

Assume we can sample the
$$k+1$$
-many univariate conditional densities:

$$f(X \mid y_1, ..., y_k)$$

$$f(Y_1 \mid x, y_2, ..., y_k)$$

$$f(Y_2 \mid x, y_1, y_3, ..., y_k)$$
...
$$f(Y_k \mid x, y_1, y_3, ..., y_{k-1}).$$

Choose, arbitrarily, k initial values: $Y_1 = y_1^0$, $Y_2 = y_2^0$, ..., $Y_k = y_k^0$. Create: x^1 by a draw from $f(X \mid y_1^0, \dots, y_k^0)$ y_1^1 by a draw from $f(Y_1 \mid x^1, y_2^0, \dots, y_k^0)$ y_2^1 by a draw from $f(Y_2 \mid x^1, y_1^1, y_3^0, \dots, y_k^0)$...

 y_k^1 by a draw from $f(Y_k | x^1, y_1^1, ..., y_{k-1}^1)$.

This constitutes one Gibbs "pass" through the k+1 conditional distributions,

yielding values: $(x^1, y_1^1, y_2^1, ..., y_k^1).$

Iterate the sampling to form the second "pass"

$$(x^2, y_1^2, y_2^2, \dots, y_k^2).$$

Theorem: (under general conditions) The distribution of x^n converges to F(x) as $n \to \infty$.

Thus, we may take the last *n X*-values after many Gibbs passes:

$$\frac{1}{n}\sum_{i=m}^{m+n}X^i \approx \mathbf{E}[X]$$

or take just the last value, $x_i^{n_i}$ of *n*-many sequences of Gibbs passes

$$(i = 1, ..., n) \qquad \qquad \frac{1}{n} \sum_{i=i}^{n} X_{i}^{n_{i}} \approx \mathbb{E}[X]$$

to solve for the average,
$$= \int x f(x) dx.$$

A bivariate example of the Gibbs Sampler.

Example: Let *X* and *Y* have similar truncated conditional exponential distributions:

 $f(X \mid y) \propto y e^{-yx} \text{ for } 0 < X < \boldsymbol{b}$ $f(Y \mid x) \propto x e^{-xy} \text{ for } 0 < Y < \boldsymbol{b}$ where **b** is a known, positive constant.

Though it is not convenient to calculate, the marginal density f(X) is readily simulated by Gibbs sampling from these (truncated) exponentials.

Below is a histogram for *X*, $\boldsymbol{b} = 5.0$, using a sample of 500 terminal observations with 15 Gibbs' passes per trial, $x_i^{n_i}$ (i = 1,..., 500, n_i = 15) (from Casella and George, 1992).

Histogram for *X*, b = 5.0, using a sample of 500 terminal observations with 15 Gibbs' passes per trial, $x_i^{n_i}$ (i = 1,..., 500, n_i = 15). Taken from (Casella and George, 1992).

Here is an alternative way to compute the marginal f(X) using the same Gibbs Sampler.

Recall the law of conditional expectations (assuming E[X] exists): E[E[X | Y] = E[X]

Thus $E[f(x|Y)] = \int f(x | y)f(y)dy = f(x).$

Now, use the fact that the Gibbs sampler gives us a simulation of the marginal density f(Y) using the penultimate values (for *Y*) in each Gibbs' pass, above: $y_i^{n_i-1}$ (i = 1, ...500; $n_i = 15$). Calculate $f(x | y_i^{n_i-1})$, which by assumption is feasible.

Then note that:

$$f(x) \approx \frac{1}{n} \sum_{i=i}^{n} f(\mathbf{x} \mid y_i^{n_i - 1})$$

An elementary proof of convergence in the case of 2 x 2 Bernoulli data

Let (X,Y) be a bivariate variable, marginally, each is Bernoulli

$$\begin{array}{ccc} X \\ 0 & 1 \\ & \\ Y \begin{bmatrix} p_1 & p_2 \\ & p_3 & p_4 \end{bmatrix}$$

where $p_i \ge 0$, $\sum p_i = 1$, marginally

$$P(X=0) = p_1+p_3$$
 and $P(X=1) = p_2+p_4$
 $P(Y=0) = p_1+p_2$ and $P(Y=1) = p_3+p_4$.

The conditional probabilities $\mathbf{P}(X|y)$ and $\mathbf{P}(Y|x)$ are evident:

Suppose (for illustration) that we want to generate the marginal distribution of *X* by the Gibbs Sampler, using the sequence of iterations of draws between the two conditional probabilites P(X|y) and P(Y|x).

That is, we are interested in the sequence $\langle x^i : i = 1, ... \rangle$ created from the

starting value
$$y^0 = 0$$
 or $y^0 = 1$.

Note that:

 $\mathbf{P}(X^{n} = 0 | x^{i} : i = 1, ..., n-1) = \mathbf{P}(X^{n} = 0 | x^{n-1}) \text{ the Markov property}$ $= \mathbf{P}(X^{n} = 0 | y^{n-1} = 0) \mathbf{P}(Y^{n-1} = 0 | x^{n-1}) + \mathbf{P}(X^{n} = 0 | y^{n-1} = 1) \mathbf{P}(Y^{n-1} = 1 | x^{n-1})$

Thus, we have the four (positive) transition probabilities:

$$\mathbf{P}(X^n = j | x^{n-1} = i) = p_{ij} > 0$$
, with $\sum_i \sum_j p_{ij} = 1$ $(i, j = 0, 1)$.

With the transition probabilities positive, it is an (old) ergodic theorem that, $\mathbf{P}(X^n)$ converges to a (unique) *stationary* distribution, independent of the starting value (y^0) .

Next, we confirm the easy fact that the marginal distribution P(X) is that same distinguished *stationary* point of this Markov process.

$$P(X^{n} = 0)$$

$$= P(X^{n} = 0 | x^{n-1} = 0) P(X^{n-1} = 0) + P(X^{n} = 0 | x^{n-1} = 1) P(X^{n-1} = 1)$$

$$= P(X^{n} = 0 | y^{n-1} = 0) P(Y^{n-1} = 0 | x^{n-1} = 0) P(X^{n-1} = 0)$$

$$+ P(X^{n} = 0 | y^{n-1} = 1) P(Y^{n-1} = 1 | x^{n-1} = 0) P(X^{n-1} = 1)$$

$$+ P(X^{n} = 0 | y^{n-1} = 0) P(Y^{n-1} = 0 | x^{n-1} = 1) P(X^{n-1} = 1)$$

$$= P(X^{n} = 0 | y^{n-1} = 1) P(Y^{n-1} = 1 | x^{n-1} = 1) P(X^{n-1} = 1)$$

$$= P(X^{n} = 0 | x^{n-1} = 1) P(Y^{n-1} = 1 | x^{n-1} = 1) P(X^{n-1} = 1)$$

$$= P(X^{n} = 0 | x^{n-1} = 1) P(Y^{n-1} = 1 | x^{n-1} = 1) P(X^{n-1} = 1)$$

The *Ergodic* Theorem:

Definitions:

• A *Markov chain*, X_0, X_1, \ldots satisfies

 $\mathbf{P}(X_{n}|x_{i}: i = 1, ..., n-1) = \mathbf{P}(X_{n}|x_{n-1})$

- The distribution F(x), with density f(x), for a Markov chain is stationary (or invariant) if
 ∫_A f(x) dx = ∫ P(X_n∈ A | x_{n-1}) f(x) dx.
- The Markov chain is *irreducible* if each set with positive **P**-probability is visited at some point (almost surely).

- An irreducible Markov chain is *recurrent* if, for each set A having positive **P**-probability, with positive **P**-probability the chain visits **A** infinitely often.
- A Markov chain is *periodic* if for some integer k > 1, there is a partition into k sets {A₁, ..., A_k} such that

 $P(X_{n+1} \in A_{j+1} | x_n \in A_j) = 1$ for all $j = 1, ..., k-1 \pmod{k}$. That

is, the chain cycles through the partition.

Otherwise, the chain is aperiodic.

Theorem: If the Markov chain X_0, X_1, \ldots is irreducible with an invariant probability distribution F(x) then:

1. the Markov chain is recurrent

2. F is the unique invariant distribution If the chain is aperiodic, then for *F*-almost all x_0 , both

 $3.lim_{n \to \infty} \sup_{\mathbf{A}} | \mathbf{P}(X_n \in \mathbf{A} | X_0 = x_0) - \int_{\mathbf{A}} f(x) dx | = 0$

And for any function **h** with $\int h(x) dx < \infty$,

4.
$$\lim_{n\to\infty} \frac{1}{n} \sum_{i=i}^n h(X_i) = \int h(x) f(x) dx \quad (= \mathbf{E}_{\mathbf{F}}[h(x)]),$$

That is, the *time average* of h(X) equals its *state-average*, *a.e.* F.

A (now-familiar) puzzle.

Example (continued): Let *X* and *Y* have similar conditional exponential distributions:

 $f(X \mid y) \propto y e^{-yx} \text{ for } 0 < X$ $f(Y \mid x) \propto x e^{-xy} \text{ for } 0 < Y$

To solve for the marginal density f(X) use Gibbs sampling from these

exponential distributions. The resulting sequence does not converge!

Question: Why does this happen?

Answer: (Hint: Recall HW #1, problem 2.) Let θ be the statistical parameter for X with $f(X|\theta)$ the exponential model. What "prior" density for θ yields the *posterior* $f(\theta | x) \propto xe^{-x\theta}$? Then, what is the "prior" expectation for X? *Remark*: Note that $W = X\theta$ is pivotal. What is its distribution?

More on this puzzle:

The conjugate prior for the parameter θ in the exponential distribution is the Gamma $\Gamma(\alpha, \beta)$.

$$f(\theta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \theta^{\alpha-1} e^{-\beta\theta} \qquad \text{for } \theta, \alpha, \beta > 0,$$

Then the posterior for θ based on $x = (x_1, ..., x_n)$, *n iid* observations from the exponential distribution is

 $f(\theta|\mathbf{x})$ is Gamma $\Gamma(\alpha', \beta')$

where $\alpha' = \alpha + n$ and $\beta' = \beta + \Sigma x_i$.

Let *n*=1, and consider the limiting distribution as α , $\beta \rightarrow 0$.

This produces the "posterior" density $f(\theta | x) \propto xe^{-x\theta}$, which is mimicked in Bayes theorem by the improper "prior" density $f(\theta) \propto 1/\theta$. But then $E_F(\theta)$ does not exist! Part 2 EM – again

- EM as a maximization/maximization method
- Gibbs as a variation of Generalized EM

EM as a maximization/maximization method.

Recall:

 $L(\theta; x) \text{ is the likelihood function for } \theta \text{ with respect to the incomplete data } x.$ $L(\theta; (x, z)) \text{ is the likelihood for } \theta \text{ with respect to the complete data } (x,z).$ And $L(\theta; z \mid x)$ is a *conditional likelihood* for θ with respect to z, given x;
which is based on $h(z \mid x, \theta)$: the conditional density for the data z, given (x,θ) .
Then as $f(X \mid \theta) = f(X, Z \mid \theta) / h(Z \mid x, \theta)$ we have $log L(\theta; x) = log L(\theta; (x, z)) - log L(\theta; z \mid x) \quad (*)$

As below, we use the EM algorithm to compute the mle $\hat{\theta} = argmax_{\Theta} L(\theta; x)$ With $\hat{\theta}_0$ an arbitrary choice, define (*E-step*) $Q(\theta \mid x, \hat{\theta}_0) = \int_Z [log L(\theta; x, z)] h(z \mid x, \hat{\theta}_0) dz$ and $H(\theta \mid x, \hat{\theta}_0) = \int_Z [log L(\theta; z \mid x)] h(z \mid x, \hat{\theta}_0) dz.$

then $\log \mathbf{L}(\theta; \mathbf{x}) = \mathbf{Q}(\theta \mid \mathbf{x}, \theta_0) - \mathbf{H}(\theta \mid \mathbf{x}, \theta_0),$

as we have integrated-out z from (*) using the conditional density $h(z \mid x, \hat{\theta}_0)$.

The *EM algorithm* is an iteration of

i. the *E*-step: determine the integral $Q(\theta | x, \hat{\theta}_i)$,

ii. the *M*-step: define $\hat{\theta}_{j+1}$ as $argmax_{\Theta} Q(\theta | x, \hat{\theta}_j)$.

Continue until there is convergence of the $\hat{\theta}_i$.

Now, for a *Generalized EM* algorithm.

Let be P(Z) any distribution over the augmented data Z, with density p(z)Define the function F by:

$$F(\theta, P(Z)) = \int_{Z} [\log L(\theta; x, z)] p(z) dz - \int_{Z} \log p(z) p(z) dz$$
$$= E_{P} [\log L(\theta; x, z)] - E_{P} [\log p(z)]$$

When $p(Z) = h(Z | x, \hat{\theta}_0)$ from above, then $F(\theta, P(Z)) = log L(\theta; x)$.

Claim: For a fixed (arbitrary) value $\theta = \hat{\theta}_0$, $F(\hat{\theta}_0, P(Z))$ is maximized over distributions P(Z) by choosing $p(Z) = h(Z | x, \hat{\theta}_0)$.

Thus, the *EM* algorithm is a sequence of *M*-*M* steps: the old *E*-step now is a max over the second term in $F(\hat{\theta}_0, P(Z))$, given the first term. The second step remains (as in *EM*) a max over θ for a fixed second term, which does not involve θ

Suppose that the augmented data Z are multidimensional.

Consider the *GEM* approach and, instead of maximizing the choice of P(Z) over all of the augmented data – instead of the old *E*-step – instead maximize over only *one* coordinate of Z at a time, alternating with the (old) *M*-step.

This gives us the following link with the Gibbs algorithm: Instead of maximizing at each of these two steps, use the conditional distributions, we sample from them!

Part 3) Generating a Random Variable

3.1) Continuous r.v.'s – an Exact Method using transformation of the CDF

• Let *Y* be a continuous r.v. with cdf $F_Y(\bullet)$ Then the range of $F_Y(\bullet)$ is (0, 1), and as a r.v. F_Y it is distributed $U \sim$ Uniform (0,1). Thus the *inverse* transformation $F_Y^{-1}(U)$ gives us the desired distribution for *Y*.

Examples:

• If Y ~ Exponential(λ) then $F_Y^{-1}(U) = -\lambda \ln(1-U)$ is the desired Exponential.

And from known relationships between the Exponential distribution and other members of the Exponential Family, we may proceed as follows.

Let U_j be *iid* Uniform(0,1), so that $Y_j = -\lambda \ln(U_j)$ are *iid* Exponential(λ)

- $Z = -2\sum_{j=1}^{n} ln(U_j) \sim \chi^2_{2n}$ a Chi-squared distribution on 2n degrees of freedom Note only even integer values possible here, alas!
- $Z = -\beta \sum_{j=1}^{a} ln(U_j) \sim \text{Gamma } \Gamma(a, \beta)$ with integer values only for *a*.

•
$$Z = \frac{\sum_{j=1}^{a} \ln(U_j)}{\sum_{j=1}^{a+b} \ln(U_j)} \sim \text{Beta}(a,b)$$
 – with integer values only for *a*.

3.2) The "Accept/Reject" algorithm for approximations using pdf's. Suppose we want to generate $Y \sim \text{Beta}(a,b)$, for non-integer values of a and b, say a = 2.7 and b = 6.3.

Let (U, V) be independent Uniform(0, 1) random variables. Let $c \ge \max_y f_Y(y)$ Now calculate $P(Y \le y)$ as follows:

 $P(V \le y, U \le (1/c) f_Y(V)) = \int_0^y \int_0^{f_Y(v)/c} du dv$

 $= (1/\mathbf{c}) \int_0^v f_Y(v) dv$

 $= (1/\mathbf{c}) P(Y \le y).$

So: (i) generate independent (*U*,*V*) Uniform(0,1)

(ii) If $U < (1/c)f_Y(V)$, set Y = V, otherwise, return to step (i).

Note: The waiting time for one value of Y with this algorithm is c, so we want c small. Thus, choose $c = \max_{y} f_{Y}(y)$. But we waste generated values of U, V whenever $U \ge (1/c)f_{Y}(V)$, so we want to choose a better approximation distribution for V than the uniform.

Let $Y \sim f_Y(y)$ and $V \sim f_V(v)$.

- Assume that these two have common support, i.e., the smallest closed sets of measure one are the same.
- Also, assume that $\mathbf{M} = \sup_{y} [\mathbf{f}_{\mathbf{Y}}(y) / \mathbf{f}_{\mathbf{V}}(y)]$ exists, i.e., $\mathbf{M} < \infty$.

Then generate the *r.v.* $Y \sim f_Y(y)$ using

 $U \sim \text{Uniform}(0,1)$ and $V \sim f_V(v)$, with (U, V) independent, as follows:

- (i) Generate values (u, v).
- (ii) If $u < (1/\mathbf{M}) f_{\mathbf{Y}}(v) / f_{\mathbf{V}}(v)$ then set y = v.

If not, return to step (i) and redraw (u,v).

Proof of correctness for the accept/reject algorithm: The generated r.v. Y has a cdf $P(Y \le y) = P(V \le y \mid \text{stop})$ $= P(V \le y \mid U < (1/M) f_Y(v) / f_V(y))$ $= \frac{P(V \le y, U < (1/M) f_Y(V) / f_V(V))}{P(U < (1/M) f_Y(V) / f_V(V))}$ $= \frac{\int_{-\infty}^{y} \int_{0}^{(1/M)} f_Y(v) / f_V(v) duf_V(v) dv}{\int_{-\infty}^{\infty} \int_{0}^{(1/M)} f_Y(v) / f_V(v) duf_V(v) dv}$ $= \int_{-\infty}^{y} f_Y(v) dv.$

Example: Generate $Y \sim \text{Beta}(2.7, 6.3)$.

Let $V \sim \text{Beta}(2,6)$. Then $\mathbf{M} = 1.67$ and we may proceed with the algorithm.

3.3) Metropolis algorithm for "heavy-tailed" target densities. As before, let $Y \sim f_Y(y)$, $V \sim f_V(v)$, $U \sim \text{Uniform}(0,1)$, with (U,V) independent.

Assume only that *Y* and *V* have a common support.

Metropolis Algorithm:

Step₀: Generate v_0 and set $z_0 = v_0$. For i = 1, ...,Step_i: Generate (u_i, v_i)

Define
$$\rho_i = \min \{ \frac{f_Y(v_i)}{f_V(v_i)} \ge \frac{f_V(z_{i-1})}{f_Y(z_{i-1})}, 1 \}$$

Let $\mathbf{z}_i = \begin{bmatrix} \mathbf{v}_i & \text{if } \mathbf{u}_i \leq \mathbf{\rho}_i \\ \mathbf{z}_{i-1} & \text{if } \mathbf{u}_i > \mathbf{\rho}_i \end{bmatrix}$

Then, as i $\rightarrow \infty$, the *r.v.* Z_i converges in distribution to the random variable *Y*.

Additional References

Casella, G. and George, E. (1992) "Explaining the Gibbs Sampler," *Amer. Statistician* **46**, 167-174.

- Flury, B. and Zoppe, A. (2000) "Exercises in EM," Amer. Staistican 54, 207-209.
- Hastie, T., Tibshirani, R, and Friedman, J. *The Elements of Statistical Learning*. New York: Spring-Verlag, 2001, sections 8.5-8.6.
- Tierney, L. (1994) "Markov chains for exploring posterior distributions" (with discussion) *Annals of Statistics* **22**, 1701-1762.