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Recognition by Association via Learning Per-exemplar Distances

Association
vs. Categorization

Goal: Given unlabeled image, recognize objects
inside the image by associating generated
segments with previously seen object exemplars
(see last Figure)
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Categorization Observation:
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inputs need to be mapped
to the same category

Exemplar representation

Background: Exemplar Theory from Psychology
(Medin & Schaffer 1978, Nosofsky 1986, Krushke
1992) states that categories are represented in
terms of remembered objects. When looking at new
object, similarity between all exemplars is
computed.
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Similarity Occurs at Different Levels

Idea: Represent each exemplar with features that
encode shape, color, texture, and absolute position

Feature Type Feature Name Dimension

Centered Mask 32x32=1024
Shape BB Extent 2
Pixel Area |

Input Segment

Right Boundary Tex-Hist 100
Top Boundary Tex-Hist 100
Texture Left Boundary Tex-Hist 100
Bot Boundary Tex-Hist 100

Interior Tex-Hist 100

Mean Color 3
Color Color std 3
Color Histogram 33

Absolute Mask 8x8=64
Position Top Pixel Height I
Bottom Pixel Height I

Measuring Object Similarity

Approach: Measure L2 distance between
corresponding features to obtain Elementary
Distances, then combine them using positive
weights (a.k.a distance function)
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Distance Function Learning

Goal: Learn a different distance function per-
exemplar; distance functions are learned
independently

Distance function == linear decision boundary
in 14-D “distance”-space
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Focal Exemplar

Approach: Iterative Learning Algorithm
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Start with initial distance function (Tex-hist distance)
|.) Set K=10 closest exemplars with same label as
“similar;” other exemplars with same label as “don’t
care’ and all other exemplars as “dissimilar”

2.) Learn new Distance Function by learning a linear

SVM (Frome 2006)

3.) If distance function changed, go to step |
4.) Scale Distance Function so D<I means similar

Each Exemplar Carves out its own similarity
region in feature space
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Visualizing
Distance Functions
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For each exemplar: top row shows 4 most similar exemplars after learning,
bottom row shows 4 most similar exemplars w.r.t. tex-hist

Segment Labeling Task

Learned Distance Functions for Segment Labeling
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Evaluate: Given perfect
segment , determine
object identity with single
nearest neighbor
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Recognition in Real Images

Problem: Objects are never presented one at a

time, they are embedded inside images! If we only

knew which pixels belonged to separate objects...

Multiple Segmentations
Approach: Generate multiple

segmentations per image (Hoiem 2005, Russell
2006) and also consider pairs/triplets of contiguous

segments (Malisiewicz 2007)

Bottom-Up ~10,000 Segments/
Input Image : :
Segmentation Engine Image
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Approach: Create associations between
bottom-up segments and object exemplars
using distance functions; each distance function
makes a separate binary “similar” or “dissimilar”
decision for each input segment

Results

Test-set: |59 Outdoor Images from
single folder of LabelMe
Evaluate: Recognition-Based Object
Segmentation; each generated object “hypothesis”
is a bottom-up segment and its list of associating

exemplars
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Idea: Association confidence score favors
more associations and smaller distances; we
vary this threshold to look at precision-recall
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Our Contributions

I.) Posing Recognition as Association
2.) Learning Object Similarity Per Exemplar
3.) Recognition-Based Object Segmentation

Toward Image Parsing

Greedily add most confident association while
removing inconsistent (OS>.5) associations




