
1

1

Using Java Classes

String, Math, and Scanner

2

Strings

 A String is an object that holds a sequence of
characters.

 To create a String:
 String team = ”Springfield Isotopes";
 String sponsor = new String(”Duff Beer");

 Each character in the string has an index.
 The first character has index 0, the second

character has index 1, etc.
 Strings are immutable.

3

Concatenation
 To attach two strings together, we use the

process of concatenation, which is
represented using the + operator.

 Examples:
String team = ”Springfield Isotopes";
String sponsor = new String(”Duff Beer");
System.out.println("The " + team +
" are sponsored by " + sponsor);

String headline = team + " Drink " +
sponsor;

System.out.println(headline);

4

Methods
 Every string has a set of "behaviors" that

allow us to perform actions on the string.
 These behaviors are method calls defined in

the Java API.
 Some methods will require arguments (data)

in order to perform their actions.
 See the course website help section for a link

to the Java API online.
 http://java.sun.com/j2se/1.5.0/docs/api/

5

Length
 int length()

 int indicates the data type of the answer that the
length method returns

 length is the name of the method
 () indicates that the length method requires no

information to do its job (no arguments)
 BEHAVIOR: returns the number of characters in this

string
 Example:

String team = ”Springfield Isotopes";
System.out.println(team.length());

This is called a method signature.

6

Substrings
 String substring(int startIndex,

int stopIndex)
 this method will return a String as its result
 substring is the name of the method
 (int startIndex, int stopIndex)

indicates that this method requires two integer
arguments to do its job

 BEHAVIOR: substring returns a new string
consisting of the substring starting at index
startIndex and ending at stopIndex-1 in this
string.

2

7

Substrings
 String substring(int startIndex)

 This method will return a String as its result
 substring is the name of the method
 (int startIndex) indicates that this method

requires one integer argument to do its job
 BEHAVIOR: substr returns a new string consisting

of the substring starting at index startIndex and
ending with the last character in this string.

This is an example
of overloading since
substring is defined
2 different ways.

8

Substrings
 Examples:
String team = "Springfield Isotopes";
String sponsor = new String("Duff Beer");
// print out: Go Isotopes!
System.out.println("Go " +
team.substring(12) + "!");

// print out: You can't get enough
// of that wonderful Duff!
System.out.println("You can't get enough\n"
 + "of that wonderful "
 + sponsor.substring(0,4) + "!");

9

Getting a single character
 char charAt(int index)

 this method will return a char as its result
 charAt is the name of the method
 (int index) indicates that this method requires

one integer argument to do its job
 BEHAVIOR: charAt returns the character located

at the given index
 Example:
String team = "Springfield Isotopes";
char teamLetter = team.charAt(12);

10

Replacing characters
 String replace(char oldChar, char newChar)

 this method will return a String as its result
 replace is the name of the method
 (char oldChar, char newChar) indicates that

this method requires two character arguments
 BEHAVIOR: replace returns a new string resulting

from replacing all occurrences of oldChar in this
string with newChar.

String team = "Springfield Isotopes";
System.out.println(team.replace('i','y'));

11

Converting case
 String toUpperCase()

 returns a new string with all letters of this string
converted to uppercase

 String toLowerCase()
 returns a new string with all letters of this string

converted to lowercase

 Examples:
String sponsor = new String("Duff Beer");
System.out.println(sponsor.toUpperCase());
System.out.println(sponsor.toLowerCase());

12

Sequencing methods
String sponsor = new String("Duff Beer");

What is the output of each of these?
System.out.println(

sponsor.toUpperCase().substring(5));
System.out.println(

sponsor.substring(5).toUpperCase());
System.out.println(

sponsor.substring(sponsor.length()-1));
System.out.println(

sponsor.length().toLowerCase());

3

13

The Math class
 The Math class contains methods that perform

common mathematical operations.
 Signatures:
static double ceil(double num)
static double floor(double num)
static double sqrt(double num)
static double pow(double num, double power)

The static keyword in the signature indicates that we
call this method using the name of the class itself (Math).

14

Examples

double area = Math.PI * radius * radius;
double circumference = 2.0 * Math.PI * radius;
double s = Math.sqrt(2.0 * Math.pow(r, 2.0));
double squareAreaLB = Math.floor(s * s);
double squareAreaUB = Math.ceil(s * s);

r

r s

15

Generating Random Numbers

 The Math class has a random method that
generates a random double in [0,1).
 The number isn't really truly random. It's pseudo-random.

 The number is uniformly-distributed in the range.

 To generate a random number , we might write:
double randNum = Math.random();

16

Generating Random Numbers

 If we want to generate a random number in another
range, we can scale (multiply) and/or translate (add)
to the random number to get the desired range.

 Generate a random double in [0,15):
double randNum = Math.random() * 15.0;

 Generate a random double in [15,100):
double randNum = Math.random()

* 85.0 + 15.0;

17

Generating Random Integers

 If we want to generate a random integer, we can
generate a number using Math.random in the
proper range using multiplication and addition, and
then use typecasting to get an integer.

 Generate a random integer in {0, 1, ..., 14}
int randNum =
(int)(Math.random() * 15.0);

generates a random number between 0.0 and 14.99999...

truncates the random number to an int between 0 and 14.

18

Generating Random
Integers

 Example: Generate a random multiple of 5
between 5 and 100 (inclusive)

Math.random() [0,1)
Math.random() * 20.0 [0,20)
(int)(Math.random() * 20.0) 0, 1, ..., 19
(int)(Math.random() * 20.0) + 1

 1, 2, ..., 20
((int)(Math.random() * 20.0) + 1) * 5

5, 10, ..., 100

4

19

Generating Random Integers

 What's wrong with the following statement
that generates a random multiple of 5 in the
range between 5 and 100 (inclusive)?

int randNum =
((int)Math.random() * 20.0 + 1) * 5

20

Program Input
using Java 5

 Java 5 provides a class called Scanner to allow us
to read data from the keyboard into our program
while it's running.
 Scanner is in the java.util package (classes are

organized in packages).
 Since the compiler normally does not check the

java.util package during compilation, we need to
import this package so the compiler can find Scanner
and any methods we use in order to see if we're using
them correctly (based on syntax).
import java.util.*;
public class MyProgram { ...

21

Creating a Scanner

 Before we write instructions to read data from
the keyboard when our program runs, we
must create a Scanner object first:
Scanner scan = new Scanner(System.in);

scan is the name of the Scanner that we have
created
System.in represents our input device
(i.e. the keyboard)

22

Some Scanner Methods

 String nextLine()
BEHAVIOR: read in and return a String
containing all text up to the next "return" key

 int nextInt()
BEHAVIOR: read in and return an int input
from the user

 double nextDouble()
BEHAVIOR: read in and return a double
input from the user

23

Scanner Example

Scanner scan = new Scanner(System.in);
System.out.println(
"Please input your birth month:");

String month = scan.nextLine();
System.out.println(
"Please input your birth day number:");

int dayNumber = scan.nextInt();

What happens if we try to read in an integer
but the user doesn't give us an integer?

