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Introduction

‘ minaxER" f (l‘)

Optimizing without derivatives
(CD): x?“ « argmin, f(...,2j,...)

» Requires subroutine to solve for each coordinate, or
» explicit access to f, or

» ability to restrict computation to jth coordinate

Sometimes may not be possible / practical!

N
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Optimizing without derivatives

Why care?

vVvyVvyVvyyypy

Legacy code, access to executables only, ...
Burden of mathematical modelling
Programmer time vs computer time

Extra storage needed by Fast Differentiation
Dealing with nonsmooth, nonconvex functions

Ease of use, laziness?

Derivative free optimization (DFO)
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DFO

WARNING!

If you can somehow obtain derivatives, use
them. Turn to DFO if derivatives too expen-
sive or impossible to get!
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Remarks

Not discussed today

& Automatic differentiation (http://www.autodiff.org)
& Fast Differentiation — T'(V f) < 4T'(f)

Baur, Strassen (1983) showed how to construct from a circuit computing f a

circuit that computes both f and V f with at most 4-times increase in complexity.

& More general such result T(Vf) < QT(f) by Kim, Nesterov,
Cherkasskii (Sov. Math. Dokl., 29, 384-387, (1984))

& Various finite differencing techniques
& Nonconvex DFO

& Recent book: “Introduction to Derivative-Free Optimization” by
A. Conn, K. Scheinberg, and L. N. Vicente (MPS-SIAM, 2009).
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min  f(z)
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DFO - brute force

min  f(x)

Brute force method
e Start at g € R"
e At iteration k£ > 0:
" Sample a point y from N (2, Sy
FIf f(y) < f(xk), then 4y <y
otherwise x| < 7,

e repeat above procedure until tired

Nothing but completely random search!

More cleverly: Bayesian / probabilistic optimization

6/29


http://probabilistic-optimization.org/

DFO - simulating gradients
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DFO - simulating gradients

e At iteration k pick u € S*~! at random

e Update the guess as

Tpr1 = xp — hy f( + pru) — f () u

Hk

Scheme might “work” as ux — 0; it becomes

Tpp1 = xk — b fl(agu) w,
——
directional deriv
(notice that if f is differentiable, then f/(z;u) = (Vf(z), u))
» If E,(f'(z;u)u) € Of (x) we are in good shape!
» Directional derivatives much simpler than gradient
» Can be reasonably approximated by finite differences

» Even for nonconvex functions

29
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DFO - simulated gradients

Tht1 = Tk — hi Gk, gk = f/($k§ u)u.

Above process may be viewed as stochastic subgradient
method with random oracle

Optimization problem: min f(z) := E,[F(z; u)]

Typical assumption here is boundedness of 2nd moment
EU(HVQCF(:E,U)Hz) <G? reRrR™
In our case, if f differentiable at x
Eu(|f'(z;u)ul®) < (n+4) |V f(2)]?

makes analysis simpler — but dimension dependent
convergence rates.
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DFO — smoothing idea

Def. (Smoothing). Let 1 > 0, and u ~ P with density p, then
fu@)i= [ fa+ puplu)da

Main ideas today:
& For deterministic f(z),
T = T — hif' (@g; w)u,
at worst O(n) slower than usual subgradient method
& Finite-differencing version (ug > 0)
far + pru) — f (k)

Tt1 = T — hg (&
bk

at worst O(n?) slower.

& For stochastic optimization, i.e., f(z) = E.[F(x, z)], both
iterations above extend naturally.



DFO - setup

=" We'll work in some Euclidean space E; let its dual be E*
5" (If E is column-vectors in R™, then E* are row vectors in R")

IS" Let B = B* = 0 be a linear operator from E* — E
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DFO - setup

=" We'll work in some Euclidean space E; let its dual be E*
5" (If E is column-vectors in R™, then E* are row vectors in R")

IS" Let B = B* = 0 be a linear operator from E* — E

We'll use the following pair of norms (dual to each other)

HxH = <B.C[,‘, $>1/2, HARS Ea
lgll« = (g, B 'q)"/?, g€ E"

Function classes
> feC(B): |f(x)— f] < Lo(NHllx—yl, 2,y € E

> [ECL(E): V(@) = VIl < Li(f)lle —yll z.y € E
Equivalently:

[f(y) = f(y) = (Vf(2), y —2)| < 3La()]lz =yl
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DFO — Gaussian smoothing

Assumption: Let f: E — R. Assume at each x € E, directional
derivative of f exists in every direction.

Def. (Gaussian approximation.) Let > 0, we define

fu(z) == i/Ef(a: + ,uu)eféH“”zdu.

Notes:

" Remember, we are using: ||ul|> = (Bu, u)

. o 12
" & is the normalization constant x := [re 21wl gy

Key point: Smoothed function f, nicer than f(z)
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Basic properties of [,

I If f is convex, then f, is also convex (nonneg weighted sum)
¥ f(z) < fu(x). Proof: Let g € af( ) then

last line follows as

| fulz) =

fu(l‘)

fu(®)]

>

%IE F(@) + ulg, w] e 2P du
f (=),

L. ue~z I dy = 0 (mean-zero Gaussian)
W If f e O, then f, € CU. with Lo(f,) < Lo(f). Proof

A
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Basic properties of [,

I If f is convex, then f, is also convex (nonneg weighted sum)
W f(z) < fu(x). Proof: Let g € Of(x), then

last line follows as

| fulz) =

fu(l‘)

fu(®)]

>

L[, flz+ pu)e — 3l gy
L[5 [f(@) + plg, w)) e~z 01 du
f(=),

1 —3llull® gy — i
+ Jpue 2" dy = 0 (mean-zero Gaussian)

K If f e OO, then f, € CY with Lo(f.) < Lo(f). Proof
Lo 123 Lo 1%

A

IN

Lp () — f(y + ) e 3100 gy
Lo(f) 1z — yl|L fe 310 du
Lo()llx = yll-
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Basic properties of [,

I If f is convex, then f, is also convex (nonneg weighted sum)
W f(z) < fu(x). Proof: Let g € Of(x), then

fule) = 4 [pfl@+pu)e 3l gy
> L@ + g, wle 2P du
= fla),

last line follows as < [, we~z Il gy = 0 (mean-zero Gaussian)
5 If f e C},, then f, € CP with Lo(f.) < Lo(f). Proof:

(@) = fu®)] < L [o1F(@+ pu) — Fy + pu)|e 1P du
< Lo(Dlle—yllt fpe2lFdu
= Lo(f)llz —yll.

BE" Similarly, prove that
IVfu(@) = Vi)l < Li(Hlle —yll, 2,y €E.
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Bounding moments

We saw: f(z) < f,(x). What about f,(z) < f(z) + something

fE (2 + pu) — f(2)]e”2 1 du

L) | e~z 1P du

[fu(z) = f(z)| <
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Need to bound moments
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Bounding moments

We saw: f(z) < f,(x). What about f,(z) < f(z) + something

L [l G+ ) = f())e =20 dy

L) | e~z 1P du

[fu(z) = f(z)| <

IN

Need to bound moments

0(p) = L [, ulre 21 qu.

Two easy cases: p=0and p=2
p=0. 00 =L fpe =1

p=2 02 = [pllul?e 2 du=n

Proof: log [ e~ 2luI*du = log [ e~ (Bww) gy = 3(nlog(2m) — log det B).

Differentiate both sides wrt B to obtain, éfE wure— el gy = B-1.

Now multiply by B and take trace (notice k comes due to deriv. of log,

and Tr(Buu*) = ||ul|?)
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Bounding moments

Lemma Let p > 0. The function log6(p) is convex.

Proof: Simple exercise.
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Bounding moments

Lemma Let p > 0. The function log6(p) is convex.

Proof: Simple exercise.

Lemma For p € [0, 2], we have
0(p) < nP/2.
For p > 2 we have two-sided bounds
n?? < 0(p) < (p+n)"/%.

Proof:
» Say, p € [0,2]. Since logf(p) is convex, write p= (1 — ) -0+ -2
» Thus, logf(p) < (1 — a)log#(0) + alog6(2)
» So we get: logf(p) < §logn

» The other case, p > 2 requires some more work.
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Lipschitz properties of f,

Theorem A. If f € C%O then

|[fu(@) = f(@)| < pLo(f)V/n,

relk
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Lipschitz properties of f,

Theorem A. If f € Cgo then

\fu(z) = f(2)] < pLo(f)vn, z€E

Proof: We have f,(z) — f(z) = L [L[f(z+pu) _f(g;)]@—%IIUIqu

A

Fla+ pu) — f(@))e 2140 du

herd) f ule~ 210 gy

[fu(@) = f(2)] <
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Lipschitz properties of f,

Theorem A. If f € Cgo then

\fu(z) = f(2)] < pLo(f)vn, z€E

Proof: We have f,(z) — f(z) = L [L[f(z+pu) _f(q;)]@—%lluwdu

\fulz) — f2)] < |E [Llf(z+ pu) — f(2)]e =3 lull® gy
< b [ ffufem2 I du
< uLo(f)vn
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Lipschitz properties of f,

Theorem B. If f € C]_ then

fulz) = f(2)| < ZLy(f)n, z€E.
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Lipschitz properties of f,
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Lipschitz properties of f,

Theorem B. If f € C]_ then
fule) = @) < 5 Li(f)n, =z € E.

Proof: Iff € C’i then

ful) = = L [plf @+ pu) — f(2) — (V£ (@), wle =1 du
| fu(z) — (g:)| < “Ll f ]| 2211 oy
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Lipschitz properties of f,

Theorem B. If f € Cil then

[ful@) = f(2)] < B Ly(f)n, « € E.
Proof: If f € C’il then
ful@) = f(@) = L[ [f(z+pu) — f(z) — p(Vf(z), w)e 2P du

ful@) = f@)] < D [ 2em 21 gy
2Ll(f)
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Lemma If f € C} , then f, € C} . (f, is differentiable)

» This lemma justifies the name “smoothing”
Proof: We show that f,, € Ci with

Q\f
Li(fu) = ——Lo(f)-
W
First, let’s get the gradient
Julz *fE (z + pu)e QHUHQdU;
|2
fﬂ<x> = L e w= T ay (= 2+ (uD)

Vid®) = ik fpfwe 3V LBy 2y
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Getting gradients, gradient bounds

Lemma If f € C} , then f, € C} . (f, is differentiable)

» This lemma justifies the name “smoothing”
Proof: We show that f,, € Ci with

Q\f
Li(fu) = ——Lo(f)-
W
First, let’s get the gradient
Julz *fE (z + pu)e QHUHQdU;
|2
fﬂ<x> = L e w= T ay (= 2+ (uD)

Vfu(a;) = ;m% fE f(y)e 2“2 ly== %B(y —x)dy
= ;%HIE :U—i-uu)e_%““”QBudu
_ 1 Ly J‘Iﬂm) (@) =5 11ull® Be, dus.
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Lipschitz constant of Vf,

We show that f,, € C’}Jl with

L1 = 22 1o(1).

Now, let’s get Li(f,) (write dP(u) = e*%”“”2udu):

||vf,u($) - Vfu

”w

L[ fe S @ ) )| p )
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Lipschitz constant of Vf,

We show that f,, € C’}Jl with

Ll(f;t) =
Now, let’s get Li(f,) (write dP(u) = e*%”“”2udu):

TLo(f)

f(atpu)—f(z)+f(y)—f(y+uu) JdP(u)
o

IV ful@) =V fuly
L S | f+ ) — () + f(y) )l 3P g
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Lipschitz constant of Vf,

We show that f,, € C’}Jl with

Li(fu) =
Now, let’s get Li(f,) (write dP(u) = e*%”“”2udu):

TLo(f)

L f (L=l 0=t

IV fu(@) = Vi)l =
i fE [f (@4 ) = (@) + F() = Fly + p)|[ul 21" du

2LoD) [ e~ 210 g
2Lf¢)¢(f)\/ﬁ

Note: We got rid B in the Budu part because of ||-||.

IN A

IN

18/29



Simulated gradients

» Note

/ — Qi fEtpu)—f(2)
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Simulated gradients

» Note
/ oy fltpu)—f(z)
Vio(z) = L[ f (@ we 21 Budu.

» Exercise: If f is differentiable at x, then V fo(z) = V f(x)

» More generally, if f is convex and Lipschitz continuous, then
for any z € F and p > 0, we have

Viu(x) € 0cf(x), €= pLo(f)vn

19/29



Gradient-free oracles
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DFO gradient oracles

Let u ~ N(0, B~1). For 1 > 0, we define gradient-free oracles

I¥" Sample u € E and return gu(x) = {w] Bu
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I¥" Sample u € E and return gu(x) = {M] Bu
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DFO gradient oracles

Let u ~ N(0, B~1). For 1 > 0, we define gradient-free oracles

I¥" Sample u € E and return gu(x) = {M] Bu

I g, (z) = [f(wwu)z—uf(x—uu)} Bu

K" More generally: go(z) = f/(z,u) - Bu

I Oracles g, and g, more suitable for smooth functions

21/29



DFO Algorithm

mingecx f(z)
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DFO Algorithm

minxGX f (l’)

Method: R,

e Choose 29 € X (If =0, xp must be unconstrained min!)
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DFO Algorithm

minxGX f (l’)

Method: R,
e Choose 29 € X (If =0, xp must be unconstrained min!)
e At iteration k > O:

" Generate uy, € E and compute gu(zr)
")‘ Update Tpy1 = Px(xk — th_lgu(iL‘k))



DFO analysis — key inequality

» Method generates a random sequence {zy}.
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DFO analysis — key inequality

» Method generates a random sequence {zy}.
» Denote collection of random variables up to iteration k& as

Ui == (up, U1, - .., uk),

where uy are i.i.d.
» Let ¢g := f(:Bo) and ¢ := Euk_l[f(xk)], for k> 1

Theorem Let {x;} be generated by Ry. Then, for T'> 0

T % * n+4)L2 T
Zk:O h( @ = f7) < 5llwo —2"|* + Mzho .

‘ Now a subgradient type stepsize selection ‘
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DFO Algorithm — analysis R

B Define St := > _g .-

IF" Set 7 = argminOSkST f(xg)
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DFO Algorithm — analysis R

B Define St := > _g .-

IF" Set 7 = argming< <7 f (o)

Theorem With above choice, and assuming ||zg — z*|| < R, we have

1

Futy s [1r)] = I* < Lo()Rin + 4"

Proof: Let us show this O(1/v/T) result.
1
fEn) =1 < 53 el = 1)
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DFO Algorithm — analysis R

IF" Define St := ZZ:O hy.
IF" Set 7 = argming<<p f(zk)

Theorem With above choice, and assuming ||zg — z*|| < R, we have

By, f(am)] = £ < Lol£)R(n +4)———
Proof: Let us show this O(1/v/T) result.
fer) =1 < o3 @) - 1)

By [f (@) = 7 < By, [SlT ZZ:O i (f (@) — f*)}

T
< g [Hlleo— a2+ 220N Y, k]

Now, minimize over hj (assuming fixed 7T')
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DFO Algorithm — analysis R

Fixed step-size
R

hi = ,
B+ ALy(f)VT + 1
Which yields the desired bound.
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DFO Algorithm — analysis R

Fixed step-size
R

hy = )
B+ ALy(f)VT + 1
Which yields the desired bound.

Corollary. Ry yields Ey,._, [f(27)] — f* <ein

(n +4)L3(f) R?
2

=0(1/¢%),

€

iterations.

» Theorem relies on being able to bound E,[||go(x)||?]. For

convex f, this can be shown to be bounded by

(n + [||V fo(z)||2 + nD?(z)], where diameter D(x) := diamdf(x)
» If f is differentiable at = then E,[|lgo(2)||?] < (n+4)||V fo(z)|?
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DFO Algorithm — analysis R,

For u > 0, we run method R, for which we have
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DFO Algorithm — analysis R,

For ;> 0, we run method R, for which we have

Theorem Select p and hy, as follows

€ R
H (v T DLV T

Then, we have Ey, ,[f(27)] — f* <€, with

p o dnt TN

€

IE" Note: Dependency on dimension n is now quadratic.

26
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DFO - stochastic optimization

f(z) = E = [z F(z,§)dP(§)

> Assume f € C7 s convex (weaker than all F(z,£) convex)
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DFO - stochastic optimization

f(z) = E = [z F(z,§)dP(§)

> Assume f € C7 s convex (weaker than all F(z,£) convex)
» Replace our DF oracles by DF-stochastic oracles:
I¥" Sample u € E, £ € E, return

— F(x+ u»&)fF(zvg)
su(x) = [ £ > } Bu

5" Sample u € F, £ € E, return
§u(x) = [F(x+uu,£)2—MF(m—uu,E)]
¥ Sample u € E, £ € E, return

so(x) = Fy(x,&u) - Bu

Bu

Here also one gets O(n?/e?) for > 0
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Interesting directions

Can the dimension dependence be improved in special cases?
Nonconvex DFO

Parallel DFO

Distributed DFO

DFO for machine learning problems
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