Advanced Optimization (10-801: CMU)

Lecture 28
Derivative free optimization
28 Apr 2014

Suvrit Sra

Introduction

$\min _{x \in \mathbb{R}^{n}} \quad f(x)$

Introduction

$$
\min _{x \in \mathbb{R}^{n}} \quad f(x)
$$

Optimizing without derivatives

Introduction

$$
\min _{x \in \mathbb{R}^{n}} \quad f(x)
$$

Optimizing without derivatives

(CD): $x_{j}^{k+1} \leftarrow \operatorname{argmin}_{x_{j}} f\left(\ldots, x_{j}, \ldots\right)$

Introduction

$$
\min _{x \in \mathbb{R}^{n}} \quad f(x)
$$

Optimizing without derivatives

$$
(\mathrm{CD}): x_{j}^{k+1} \leftarrow \operatorname{argmin}_{x_{j}} f\left(\ldots, x_{j}, \ldots\right)
$$

- Requires subroutine to solve for each coordinate, or
- explicit access to f, or
- ability to restrict computation to j th coordinate

Introduction

$$
\min _{x \in \mathbb{R}^{n}} \quad f(x)
$$

Optimizing without derivatives

$$
(\mathrm{CD}): x_{j}^{k+1} \leftarrow \operatorname{argmin}_{x_{j}} f\left(\ldots, x_{j}, \ldots\right)
$$

- Requires subroutine to solve for each coordinate, or
- explicit access to f, or
- ability to restrict computation to j th coordinate

> Sometimes may not be possible / practical!

Optimizing without derivatives
Why care?

Optimizing without derivatives

Why care?

- Legacy code, access to executables only, ...

Optimizing without derivatives

Why care?

- Legacy code, access to executables only, ...
- Burden of mathematical modelling

Optimizing without derivatives

Why care?

- Legacy code, access to executables only, ...
- Burden of mathematical modelling
- Programmer time vs computer time

Optimizing without derivatives

Why care?

- Legacy code, access to executables only, ...
- Burden of mathematical modelling
- Programmer time vs computer time
- Extra storage needed by Fast Differentiation

Optimizing without derivatives

Why care?

- Legacy code, access to executables only, ...
- Burden of mathematical modelling
- Programmer time vs computer time
- Extra storage needed by Fast Differentiation
- Dealing with nonsmooth, nonconvex functions

Optimizing without derivatives

Why care?

- Legacy code, access to executables only, ...
- Burden of mathematical modelling
- Programmer time vs computer time
- Extra storage needed by Fast Differentiation
- Dealing with nonsmooth, nonconvex functions
- Ease of use, laziness?

Optimizing without derivatives

Why care?

- Legacy code, access to executables only, ...
- Burden of mathematical modelling
- Programmer time vs computer time
- Extra storage needed by Fast Differentiation
- Dealing with nonsmooth, nonconvex functions
- Ease of use, laziness?

Derivative free optimization (DFO)

WARNING!

If you can somehow obtain derivatives, use them. Turn to DFO if derivatives too expensive or impossible to get!

Remarks

Not discussed today

\& Automatic differentiation (http://www.autodiff.org)

Remarks

Not discussed today

\& Automatic differentiation (http://www.autodiff.org)
\& Fast Differentiation - $T(\nabla f) \leq 4 T(f)$
Baur, Strassen (1983) showed how to construct from a circuit computing f a circuit that computes both f and ∇f with at most 4-times increase in complexity.
\& More general such result $T(\nabla f) \leq Q T(f)$ by Kim , Nesterov, Cherkasskii (Sov. Math. Dokl., 29, 384-387, (1984))

Remarks

Not discussed today

\& Automatic differentiation (http://www.autodiff.org)
\& Fast Differentiation - $T(\nabla f) \leq 4 T(f)$
Baur, Strassen (1983) showed how to construct from a circuit computing f a circuit that computes both f and ∇f with at most 4-times increase in complexity.
\& More general such result $T(\nabla f) \leq Q T(f)$ by Kim , Nesterov, Cherkasskii (Sov. Math. Dokl., 29, 384-387, (1984))
\& Various finite differencing techniques

Remarks

Not discussed today

\& Automatic differentiation (http://www.autodiff.org)
\& Fast Differentiation - $T(\nabla f) \leq 4 T(f)$
Baur, Strassen (1983) showed how to construct from a circuit computing f a circuit that computes both f and ∇f with at most 4-times increase in complexity.
\& More general such result $T(\nabla f) \leq Q T(f)$ by Kim, Nesterov, Cherkasskii (Sov. Math. Dokl., 29, 384-387, (1984))
\& Various finite differencing techniques
\& Nonconvex DFO
\& Recent book: "Introduction to Derivative-Free Optimization" by A. Conn, K. Scheinberg, and L. N. Vicente (MPS-SIAM, 2009).

DFO - brute force
$\min \quad f(x)$

Brute force method

- Start at $x_{0} \in \mathbb{R}^{n}$

$$
\min \quad f(x)
$$

Brute force method

- Start at $x_{0} \in \mathbb{R}^{n}$
- At iteration $k \geq 0$:

Sample a point y from $\mathcal{N}\left(x_{k}, \Sigma_{k}\right)$

$$
\min \quad f(x)
$$

Brute force method

- Start at $x_{0} \in \mathbb{R}^{n}$
- At iteration $k \geq 0$:

Sample a point y from $\mathcal{N}\left(x_{k}, \Sigma_{k}\right)$
If $f(y)<f\left(x_{k}\right)$, then $x_{k+1} \leftarrow y$

$$
\min \quad f(x)
$$

Brute force method

- Start at $x_{0} \in \mathbb{R}^{n}$
- At iteration $k \geq 0$:

Sample a point y from $\mathcal{N}\left(x_{k}, \Sigma_{k}\right)$
If $f(y)<f\left(x_{k}\right)$, then $x_{k+1} \leftarrow y$
otherwise $x_{k+1} \leftarrow x_{k}$

$$
\min \quad f(x)
$$

Brute force method

- Start at $x_{0} \in \mathbb{R}^{n}$
- At iteration $k \geq 0$:

Sample a point y from $\mathcal{N}\left(x_{k}, \Sigma_{k}\right)$
If $f(y)<f\left(x_{k}\right)$, then $x_{k+1} \leftarrow y$
otherwise $x_{k+1} \leftarrow x_{k}$

- repeat above procedure until tired

$$
\min \quad f(x)
$$

Brute force method

- Start at $x_{0} \in \mathbb{R}^{n}$
- At iteration $k \geq 0$:

Sample a point y from $\mathcal{N}\left(x_{k}, \Sigma_{k}\right)$
If $f(y)<f\left(x_{k}\right)$, then $x_{k+1} \leftarrow y$
otherwise $x_{k+1} \leftarrow x_{k}$

- repeat above procedure until tired

Nothing but completely random search!
More cleverly: Bayesian / probabilistic optimization

DFO - simulating gradients

- At iteration k pick $u \in \mathbb{S}^{n-1}$ at random

DFO - simulating gradients

- At iteration k pick $u \in \mathbb{S}^{n-1}$ at random
- Update the guess as

$$
x_{k+1}=x_{k}-h_{k}\left[\frac{f\left(x_{k}+\mu_{k} u\right)-f\left(x_{k}\right)}{\mu_{k}}\right] u
$$

Scheme might "work" as $\mu_{k} \rightarrow 0$; it becomes

DFO - simulating gradients

- At iteration k pick $u \in \mathbb{S}^{n-1}$ at random
- Update the guess as

$$
x_{k+1}=x_{k}-h_{k}\left[\frac{f\left(x_{k}+\mu_{k} u\right)-f\left(x_{k}\right)}{\mu_{k}}\right] u
$$

Scheme might "work" as $\mu_{k} \rightarrow 0$; it becomes

$$
x_{k+1}=x_{k}-h_{k} \underbrace{f^{\prime}\left(x_{k} ; u\right)}_{\text {directional deriv }} u
$$

(notice that if f is differentiable, then $f^{\prime}(x ; u)=\langle\nabla f(x), u\rangle$)

DFO - simulating gradients

- At iteration k pick $u \in \mathbb{S}^{n-1}$ at random
- Update the guess as

$$
x_{k+1}=x_{k}-h_{k}\left[\frac{f\left(x_{k}+\mu_{k} u\right)-f\left(x_{k}\right)}{\mu_{k}}\right] u
$$

Scheme might "work" as $\mu_{k} \rightarrow 0$; it becomes

$$
x_{k+1}=x_{k}-h_{k} \underbrace{f^{\prime}\left(x_{k} ; u\right)}_{\text {directional deriv }} u
$$

(notice that if f is differentiable, then $f^{\prime}(x ; u)=\langle\nabla f(x), u\rangle$)

- If $\mathbb{E}_{u}\left(f^{\prime}(x ; u) u\right) \in \partial f(x)$ we are in good shape!

DFO - simulating gradients

- At iteration k pick $u \in \mathbb{S}^{n-1}$ at random
- Update the guess as

$$
x_{k+1}=x_{k}-h_{k}\left[\frac{f\left(x_{k}+\mu_{k} u\right)-f\left(x_{k}\right)}{\mu_{k}}\right] u
$$

Scheme might "work" as $\mu_{k} \rightarrow 0$; it becomes

$$
x_{k+1}=x_{k}-h_{k} \underbrace{f^{\prime}\left(x_{k} ; u\right)}_{\text {directional deriv }} u
$$

(notice that if f is differentiable, then $f^{\prime}(x ; u)=\langle\nabla f(x), u\rangle$)

- If $\mathbb{E}_{u}\left(f^{\prime}(x ; u) u\right) \in \partial f(x)$ we are in good shape!
- Directional derivatives much simpler than gradient

DFO - simulating gradients

- At iteration k pick $u \in \mathbb{S}^{n-1}$ at random
- Update the guess as

$$
x_{k+1}=x_{k}-h_{k}\left[\frac{f\left(x_{k}+\mu_{k} u\right)-f\left(x_{k}\right)}{\mu_{k}}\right] u
$$

Scheme might "work" as $\mu_{k} \rightarrow 0$; it becomes

$$
x_{k+1}=x_{k}-h_{k} \underbrace{f^{\prime}\left(x_{k} ; u\right)}_{\text {directional deriv }} u
$$

(notice that if f is differentiable, then $f^{\prime}(x ; u)=\langle\nabla f(x), u\rangle$)

- If $\mathbb{E}_{u}\left(f^{\prime}(x ; u) u\right) \in \partial f(x)$ we are in good shape!
- Directional derivatives much simpler than gradient
- Can be reasonably approximated by finite differences

DFO - simulating gradients

- At iteration k pick $u \in \mathbb{S}^{n-1}$ at random
- Update the guess as

$$
x_{k+1}=x_{k}-h_{k}\left[\frac{f\left(x_{k}+\mu_{k} u\right)-f\left(x_{k}\right)}{\mu_{k}}\right] u
$$

Scheme might "work" as $\mu_{k} \rightarrow 0$; it becomes

$$
x_{k+1}=x_{k}-h_{k} \underbrace{f^{\prime}\left(x_{k} ; u\right)}_{\text {directional deriv }} u
$$

(notice that if f is differentiable, then $f^{\prime}(x ; u)=\langle\nabla f(x), u\rangle$)

- If $\mathbb{E}_{u}\left(f^{\prime}(x ; u) u\right) \in \partial f(x)$ we are in good shape!
- Directional derivatives much simpler than gradient
- Can be reasonably approximated by finite differences
- Even for nonconvex functions

DFO - simulated gradients

$$
x_{k+1}=x_{k}-h_{k} g_{k}, \quad g_{k} \equiv f^{\prime}\left(x_{k} ; u\right) u .
$$

- Above process may be viewed as stochastic subgradient method with random oracle

DFO - simulated gradients

$$
x_{k+1}=x_{k}-h_{k} g_{k}, \quad g_{k} \equiv f^{\prime}\left(x_{k} ; u\right) u .
$$

- Above process may be viewed as stochastic subgradient method with random oracle
- Optimization problem: $\min f(x):=\mathbb{E}_{u}[F(x ; u)]$

DFO - simulated gradients

$$
x_{k+1}=x_{k}-h_{k} g_{k}, \quad g_{k} \equiv f^{\prime}\left(x_{k} ; u\right) u
$$

- Above process may be viewed as stochastic subgradient method with random oracle
- Optimization problem: $\min f(x):=\mathbb{E}_{u}[F(x ; u)]$
- Typical assumption here is boundedness of 2nd moment

$$
\mathbb{E}_{u}\left(\left\|\nabla_{x} F(x, u)\right\|^{2}\right) \leq G^{2} \quad x \in \mathbb{R}^{n} .
$$

DFO - simulated gradients

$$
x_{k+1}=x_{k}-h_{k} g_{k}, \quad g_{k} \equiv f^{\prime}\left(x_{k} ; u\right) u
$$

- Above process may be viewed as stochastic subgradient method with random oracle
- Optimization problem: $\min f(x):=\mathbb{E}_{u}[F(x ; u)]$
- Typical assumption here is boundedness of 2nd moment

$$
\mathbb{E}_{u}\left(\left\|\nabla_{x} F(x, u)\right\|^{2}\right) \leq G^{2} \quad x \in \mathbb{R}^{n} .
$$

- In our case, if f differentiable at x

$$
\mathbb{E}_{u}\left(\left\|f^{\prime}(x ; u) u\right\|^{2}\right) \leq(n+4)\|\nabla f(x)\|^{2}
$$

makes analysis simpler - but dimension dependent convergence rates.

DFO - smoothing idea

Def. (Smoothing). Let $\mu>0$, and $u \sim P$ with density p, then

$$
f_{\mu}(x):=\int f(x+\mu u) p(u) d u
$$

DFO - smoothing idea

Def. (Smoothing). Let $\mu>0$, and $u \sim P$ with density p, then

$$
f_{\mu}(x):=\int f(x+\mu u) p(u) d u
$$

Main ideas today:

© For deterministic $f(x)$,

$$
x_{k+1}=x_{k}-h_{k} f^{\prime}\left(x_{k} ; u\right) u
$$

at worst $O(n)$ slower than usual subgradient method

DFO - smoothing idea

Def. (Smoothing). Let $\mu>0$, and $u \sim P$ with density p, then

$$
f_{\mu}(x):=\int f(x+\mu u) p(u) d u
$$

Main ideas today:

© For deterministic $f(x)$,

$$
x_{k+1}=x_{k}-h_{k} f^{\prime}\left(x_{k} ; u\right) u
$$

at worst $O(n)$ slower than usual subgradient method
ค Finite-differencing version $\left(\mu_{k}>0\right)$

$$
x_{k+1}=x_{k}-h_{k}\left[\frac{f\left(x_{k}+\mu_{k} u\right)-f\left(x_{k}\right)}{\mu_{k}}\right] u
$$

at worst $O\left(n^{2}\right)$ slower.

DFO - smoothing idea

Def. (Smoothing). Let $\mu>0$, and $u \sim P$ with density p, then

$$
f_{\mu}(x):=\int f(x+\mu u) p(u) d u
$$

Main ideas today:

A For deterministic $f(x)$,

$$
x_{k+1}=x_{k}-h_{k} f^{\prime}\left(x_{k} ; u\right) u
$$

at worst $O(n)$ slower than usual subgradient method
ค Finite-differencing version $\left(\mu_{k}>0\right)$

$$
x_{k+1}=x_{k}-h_{k}\left[\frac{f\left(x_{k}+\mu_{k} u\right)-f\left(x_{k}\right)}{\mu_{k}}\right] u
$$

at worst $O\left(n^{2}\right)$ slower.
A For stochastic optimization, i.e., $f(x)=E_{z}[F(x, z)]$, both iterations above extend naturally.

咦 We'll work in some Euclidean space E; let its dual be E^{*}
nब엉 (If E is column-vectors in \mathbb{R}^{n}, then E^{*} are row vectors in \mathbb{R}^{n})
国 Let $B=B^{*} \succ 0$ be a linear operator from $E^{*} \rightarrow E$

DFO - setup

We'll work in some Euclidean space E; let its dual be E^{*}
四 (If E is column-vectors in \mathbb{R}^{n}, then E^{*} are row vectors in \mathbb{R}^{n})
傕 Let $B=B^{*} \succ 0$ be a linear operator from $E^{*} \rightarrow E$
We'll use the following pair of norms (dual to each other)

$$
\begin{aligned}
\|x\| & =\langle B x, x\rangle^{1 / 2}, \quad x \in E \\
\|g\|_{*} & =\left\langle g, B^{-1} g\right\rangle^{1 / 2}, \quad g \in E^{*}
\end{aligned}
$$

DFO - setup

國 We'll work in some Euclidean space E; let its dual be E^{*}
四 (If E is column-vectors in \mathbb{R}^{n}, then E^{*} are row vectors in \mathbb{R}^{n})
Later Let $B=B^{*} \succ 0$ be a linear operator from $E^{*} \rightarrow E$
We'll use the following pair of norms (dual to each other)

$$
\begin{aligned}
\|x\| & =\langle B x, x\rangle^{1 / 2}, \quad x \in E \\
\|g\|_{*} & =\left\langle g, B^{-1} g\right\rangle^{1 / 2}, \quad g \in E^{*}
\end{aligned}
$$

Function classes

- $f \in C_{L_{0}}^{0}(E):|f(x)-f(y)| \leq L_{0}(f)\|x-y\|, x, y \in E$

DFO - setup

國 We'll work in some Euclidean space E; let its dual be E^{*}
nब्र大) (If E is column-vectors in \mathbb{R}^{n}, then E^{*} are row vectors in \mathbb{R}^{n})
Later Let $B=B^{*} \succ 0$ be a linear operator from $E^{*} \rightarrow E$
We'll use the following pair of norms (dual to each other)

$$
\begin{aligned}
\|x\| & =\langle B x, x\rangle^{1 / 2}, \quad x \in E \\
\|g\|_{*} & =\left\langle g, B^{-1} g\right\rangle^{1 / 2}, \quad g \in E^{*}
\end{aligned}
$$

Function classes

- $f \in C_{L_{0}}^{0}(E):|f(x)-f(y)| \leq L_{0}(f)\|x-y\|, x, y \in E$
- $f \in C_{L_{1}}^{1}(E):\|\nabla f(x)-\nabla f(y)\|_{*} \leq L_{1}(f)\|x-y\|, x, y \in E$

Equivalently:
$|f(y)-f(y)-\langle\nabla f(x), y-x\rangle| \leq \frac{1}{2} L_{1}(f)\|x-y\|^{2}$

DFO - Gaussian smoothing
Assumption: Let $f: E \rightarrow \mathbb{R}$. Assume at each $x \in E$, directional derivative of f exists in every direction.

DFO - Gaussian smoothing

Assumption: Let $f: E \rightarrow \mathbb{R}$. Assume at each $x \in E$, directional derivative of f exists in every direction.

Def. (Gaussian approximation.) Let $\mu \geq 0$, we define

$$
f_{\mu}(x):=\frac{1}{\kappa} \int_{E} f(x+\mu u) e^{-\frac{1}{2}\|u\|^{2}} d u
$$

DFO - Gaussian smoothing

Assumption: Let $f: E \rightarrow \mathbb{R}$. Assume at each $x \in E$, directional derivative of f exists in every direction.

Def. (Gaussian approximation.) Let $\mu \geq 0$, we define

$$
f_{\mu}(x):=\frac{1}{\kappa} \int_{E} f(x+\mu u) e^{-\frac{1}{2}\|u\|^{2}} d u .
$$

Notes:

Remember, we are using: $\|u\|^{2}=\langle B u, u\rangle$
κ is the normalization constant $\kappa:=\int_{E} e^{-\frac{1}{2}\|u\|^{2}} d u$

DFO - Gaussian smoothing

Assumption: Let $f: E \rightarrow \mathbb{R}$. Assume at each $x \in E$, directional derivative of f exists in every direction.

Def. (Gaussian approximation.) Let $\mu \geq 0$, we define

$$
f_{\mu}(x):=\frac{1}{\kappa} \int_{E} f(x+\mu u) e^{-\frac{1}{2}\|u\|^{2}} d u
$$

Notes:

Remember, we are using: $\|u\|^{2}=\langle B u, u\rangle$
κ is the normalization constant $\kappa:=\int_{E} e^{-\frac{1}{2}\|u\|^{2}} d u$
Key point: Smoothed function f_{μ} nicer than $f(x)$

Basic properties of f_{μ}

엉ㄴ If f is convex, then f_{μ} is also convex (nonneg weighted sum)

Basic properties of f_{μ}

n압 If f is convex, then f_{μ} is also convex (nonneg weighted sum) 뭉웅 $f(x) \leq f_{\mu}(x)$.

Basic properties of f_{μ}

傕 If f is convex, then f_{μ} is also convex (nonneg weighted sum)
榢 $f(x) \leq f_{\mu}(x)$. Proof: Let $g \in \partial f(x)$, then

Basic properties of f_{μ}

傕 If f is convex, then f_{μ} is also convex (nonneg weighted sum)
㕷 $f(x) \leq f_{\mu}(x)$. Proof: Let $g \in \partial f(x)$, then

$$
f_{\mu}(x)=\frac{1}{\kappa} \int_{E} f(x+\mu u) e^{-\frac{1}{2}\|u\|^{2}} d u
$$

Basic properties of f_{μ}

咦 If f is convex, then f_{μ} is also convex (nonneg weighted sum)
榢 $f(x) \leq f_{\mu}(x)$. Proof: Let $g \in \partial f(x)$, then

$$
\begin{aligned}
f_{\mu}(x) & =\frac{1}{\kappa} \int_{E} f(x+\mu u) e^{-\frac{1}{2}\|u\|^{2}} d u \\
& \geq \frac{1}{\kappa} \int_{E}[f(x)+\mu\langle g, u\rangle] e^{-\frac{1}{2}\|u\|^{2}} d u
\end{aligned}
$$

Basic properties of f_{μ}

傕 If f is convex, then f_{μ} is also convex (nonneg weighted sum)
榢 $f(x) \leq f_{\mu}(x)$. Proof: Let $g \in \partial f(x)$, then

$$
\begin{aligned}
f_{\mu}(x) & =\frac{1}{\kappa} \int_{E} f(x+\mu u) e^{-\frac{1}{2}\|u\|^{2}} d u \\
& \geq \frac{1}{\kappa} \int_{E}[f(x)+\mu\langle g, u\rangle] e^{-\frac{1}{2}\|u\|^{2}} d u \\
& =f(x)
\end{aligned}
$$

last line follows as $\frac{1}{\kappa} \int_{E} u e^{-\frac{1}{2}\|u\|^{2}} d u=0$ (mean-zero Gaussian)

Basic properties of f_{μ}

咦 If f is convex, then f_{μ} is also convex (nonneg weighted sum)
뭉ㅇ $f(x) \leq f_{\mu}(x)$. Proof: Let $g \in \partial f(x)$, then

$$
\begin{aligned}
f_{\mu}(x) & =\frac{1}{\kappa} \int_{E} f(x+\mu u) e^{-\frac{1}{2}\|u\|^{2}} d u \\
& \geq \frac{1}{\kappa} \int_{E}[f(x)+\mu\langle g, u\rangle] e^{-\frac{1}{2}\|u\|^{2}} d u \\
& =f(x)
\end{aligned}
$$

last line follows as $\frac{1}{\kappa} \int_{E} u e^{-\frac{1}{2}\|u\|^{2}} d u=0$ (mean-zero Gaussian)
咦 If $f \in C_{L_{0}}^{0}$, then $f_{\mu} \in C_{L_{0}}^{0}$ with $L_{0}\left(f_{\mu}\right) \leq L_{0}(f)$.

Basic properties of f_{μ}

IF If f is convex, then f_{μ} is also convex (nonneg weighted sum)
啹 $f(x) \leq f_{\mu}(x)$. Proof: Let $g \in \partial f(x)$, then

$$
\begin{aligned}
f_{\mu}(x) & =\frac{1}{\kappa} \int_{E} f(x+\mu u) e^{-\frac{1}{2}\|u\|^{2}} d u \\
& \geq \frac{1}{\kappa} \int_{E}[f(x)+\mu\langle g, u\rangle] e^{-\frac{1}{2}\|u\|^{2}} d u \\
& =f(x),
\end{aligned}
$$

last line follows as $\frac{1}{\kappa} \int_{E} u e^{-\frac{1}{2}\|u\|^{2}} d u=0$ (mean-zero Gaussian)
If If $f \in C_{L_{0}}^{0}$, then $f_{\mu} \in C_{L_{0}}^{0}$ with $L_{0}\left(f_{\mu}\right) \leq L_{0}(f)$. Proof:

$$
\left|f_{\mu}(x)-f_{\mu}(y)\right| \leq \frac{1}{\kappa} \int_{E}|f(x+\mu u)-f(y+\mu u)| e^{-\frac{1}{2}\|u\|^{2}} d u
$$

Basic properties of f_{μ}

If If f is convex, then f_{μ} is also convex (nonneg weighted sum)
啹 $f(x) \leq f_{\mu}(x)$. Proof: Let $g \in \partial f(x)$, then

$$
\begin{aligned}
f_{\mu}(x) & =\frac{1}{\kappa} \int_{E} f(x+\mu u) e^{-\frac{1}{2}\|u\|^{2}} d u \\
& \geq \frac{1}{\kappa} \int_{E}[f(x)+\mu\langle g, u\rangle] e^{-\frac{1}{2}\|u\|^{2}} d u \\
& =f(x),
\end{aligned}
$$

last line follows as $\frac{1}{\kappa} \int_{E} u e^{-\frac{1}{2}\|u\|^{2}} d u=0$ (mean-zero Gaussian)
If If $f \in C_{L_{0}}^{0}$, then $f_{\mu} \in C_{L_{0}}^{0}$ with $L_{0}\left(f_{\mu}\right) \leq L_{0}(f)$. Proof:

$$
\begin{aligned}
\left|f_{\mu}(x)-f_{\mu}(y)\right| & \leq \frac{1}{\kappa} \int_{E}|f(x+\mu u)-f(y+\mu u)| e^{-\frac{1}{2}\|u\|^{2}} d u \\
& \leq L_{0}(f)\|x-y\| \frac{1}{\kappa} \int_{E} e^{-\frac{1}{2}\|u\|^{2}} d u
\end{aligned}
$$

Basic properties of f_{μ}

If If f is convex, then f_{μ} is also convex (nonneg weighted sum)
啹 $f(x) \leq f_{\mu}(x)$. Proof: Let $g \in \partial f(x)$, then

$$
\begin{aligned}
f_{\mu}(x) & =\frac{1}{\kappa} \int_{E} f(x+\mu u) e^{-\frac{1}{2}\|u\|^{2}} d u \\
& \geq \frac{1}{\kappa} \int_{E}[f(x)+\mu\langle g, u\rangle] e^{-\frac{1}{2}\|u\|^{2}} d u \\
& =f(x),
\end{aligned}
$$

last line follows as $\frac{1}{\kappa} \int_{E} u e^{-\frac{1}{2}\|u\|^{2}} d u=0$ (mean-zero Gaussian)
(IV) If $f \in C_{L_{0}}^{0}$, then $f_{\mu} \in C_{L_{0}}^{0}$ with $L_{0}\left(f_{\mu}\right) \leq L_{0}(f)$. Proof:

$$
\begin{aligned}
\left|f_{\mu}(x)-f_{\mu}(y)\right| & \leq \frac{1}{\kappa} \int_{E}|f(x+\mu u)-f(y+\mu u)| e^{-\frac{1}{2}\|u\|^{2}} d u \\
& \leq L_{0}(f)\|x-y\| \frac{1}{\kappa} \int_{E} e^{-\frac{1}{2}\|u\|^{2}} d u \\
& =L_{0}(f)\|x-y\|
\end{aligned}
$$

Basic properties of f_{μ}

IF If f is convex, then f_{μ} is also convex (nonneg weighted sum)
啹 $f(x) \leq f_{\mu}(x)$. Proof: Let $g \in \partial f(x)$, then

$$
\begin{aligned}
f_{\mu}(x) & =\frac{1}{\kappa} \int_{E} f(x+\mu u) e^{-\frac{1}{2}\|u\|^{2}} d u \\
& \geq \frac{1}{\kappa} \int_{E}[f(x)+\mu\langle g, u\rangle] e^{-\frac{1}{2}\|u\|^{2}} d u \\
& =f(x),
\end{aligned}
$$

last line follows as $\frac{1}{\kappa} \int_{E} u e^{-\frac{1}{2}\|u\|^{2}} d u=0$ (mean-zero Gaussian)
(IV) If $f \in C_{L_{0}}^{0}$, then $f_{\mu} \in C_{L_{0}}^{0}$ with $L_{0}\left(f_{\mu}\right) \leq L_{0}(f)$. Proof:

$$
\begin{aligned}
\left|f_{\mu}(x)-f_{\mu}(y)\right| & \leq \frac{1}{\kappa} \int_{E}|f(x+\mu u)-f(y+\mu u)| e^{-\frac{1}{2}\|u\|^{2}} d u \\
& \leq L_{0}(f)\|x-y\| \frac{1}{\kappa} \int_{E} e^{-\frac{1}{2}\|u\|^{2}} d u \\
& =L_{0}(f)\|x-y\| .
\end{aligned}
$$

뭉ㅇ Similarly, prove that

$$
\left\|\nabla f_{\mu}(x)-\nabla f_{\mu}(y)\right\|_{*} \leq L_{1}(f)\|x-y\|, \quad x, y \in E
$$

Bounding moments

We saw: $f(x) \leq f_{\mu}(x)$. What about $f_{\mu}(x) \leq f(x)+$ something

We saw: $f(x) \leq f_{\mu}(x)$. What about $f_{\mu}(x) \leq f(x)+$ something

$$
\left|f_{\mu}(x)-f(x)\right| \leq\left|\frac{1}{\kappa} \int_{E}[f(x+\mu u)-f(x)] e^{-\frac{1}{2}\|u\|^{2}} d u\right|
$$

We saw: $f(x) \leq f_{\mu}(x)$. What about $f_{\mu}(x) \leq f(x)+$ something

$$
\begin{aligned}
\left|f_{\mu}(x)-f(x)\right| & \leq\left|\frac{1}{\kappa} \int_{E}[f(x+\mu u)-f(x)] e^{-\frac{1}{2}\|u\|^{2}} d u\right| \\
& \leq \frac{\mu L_{0}(f)}{\kappa} \int_{E}\|u\| e^{-\frac{1}{2}\|u\|^{2}} d u
\end{aligned}
$$

We saw: $f(x) \leq f_{\mu}(x)$. What about $f_{\mu}(x) \leq f(x)+$ something

$$
\begin{aligned}
\left|f_{\mu}(x)-f(x)\right| & \leq\left|\frac{1}{\kappa} \int_{E}[f(x+\mu u)-f(x)] e^{-\frac{1}{2}\|u\|^{2}} d u\right| \\
& \leq \frac{\mu L_{0}(f)}{\kappa} \int_{E}\|u\| e^{-\frac{1}{2}\|u\|^{2}} d u
\end{aligned}
$$

Need to bound moments

$$
\theta(p):=\frac{1}{\kappa} \int_{E}\|u\|^{p} e^{-\frac{1}{2}\|u\|^{2}} d u
$$

We saw: $f(x) \leq f_{\mu}(x)$. What about $f_{\mu}(x) \leq f(x)+$ something

$$
\begin{aligned}
\left|f_{\mu}(x)-f(x)\right| & \leq\left|\frac{1}{\kappa} \int_{E}[f(x+\mu u)-f(x)] e^{-\frac{1}{2}\|u\|^{2}} d u\right| \\
& \leq \frac{\mu L_{0}(f)}{\kappa} \int_{E}\|u\| e^{-\frac{1}{2}\|u\|^{2}} d u
\end{aligned}
$$

Need to bound moments

$$
\theta(p):=\frac{1}{\kappa} \int_{E}\|u\|^{p} e^{-\frac{1}{2}\|u\|^{2}} d u
$$

Two easy cases: $p=0$ and $p=2$

$$
\begin{array}{ll}
p=0, & \theta(0)=\frac{1}{\kappa} \int_{E} e^{-\frac{1}{2}\|u\|^{2}} d u=1 \\
p=2, & \theta(2)=\frac{1}{\kappa} \int_{E}\|u\|^{2} e^{-\frac{1}{2}\|u\|^{2}} d u=n
\end{array}
$$

We saw: $f(x) \leq f_{\mu}(x)$. What about $f_{\mu}(x) \leq f(x)+$ something

$$
\begin{aligned}
\left|f_{\mu}(x)-f(x)\right| & \leq\left|\frac{1}{\kappa} \int_{E}[f(x+\mu u)-f(x)] e^{-\frac{1}{2}\|u\|^{2}} d u\right| \\
& \leq \frac{\mu L_{0}(f)}{\kappa} \int_{E}\|u\| e^{-\frac{1}{2}\|u\|^{2}} d u
\end{aligned}
$$

Need to bound moments

$$
\theta(p):=\frac{1}{\kappa} \int_{E}\|u\|^{p} e^{-\frac{1}{2}\|u\|^{2}} d u
$$

Two easy cases: $p=0$ and $p=2$

$$
\begin{array}{ll}
p=0, & \theta(0)=\frac{1}{\kappa} \int_{E} e^{-\frac{1}{2}\|u\|^{2}} d u=1 \\
p=2, & \theta(2)=\frac{1}{\kappa} \int_{E}\|u\|^{2} e^{-\frac{1}{2}\|u\|^{2}} d u=n
\end{array}
$$

Proof: $\log \int e^{-\frac{1}{2}\|u\|^{2}} d u=\log \int e^{-\frac{1}{2}\langle B u, u\rangle} d u=\frac{1}{2}(n \log (2 \pi)-\log \operatorname{det} B)$.
Differentiate both sides wrt B to obtain, $\frac{1}{\kappa} \int_{E} u u^{*} e^{-\frac{1}{2}\|u\|^{2}} d u=B^{-1}$. Now multiply by B and take trace (notice κ comes due to deriv. of log, and $\left.\operatorname{Tr}\left(B u u^{*}\right)=\|u\|^{2}\right)$

Bounding moments

Lemma Let $p \geq 0$. The function $\log \theta(p)$ is convex.
Proof: Simple exercise.

Bounding moments

Lemma Let $p \geq 0$. The function $\log \theta(p)$ is convex.
Proof: Simple exercise.
Lemma For $p \in[0,2]$, we have

$$
\theta(p) \leq n^{p / 2}
$$

For $p \geq 2$ we have two-sided bounds

$$
n^{p / 2} \leq \theta(p) \leq(p+n)^{p / 2}
$$

Bounding moments

Lemma Let $p \geq 0$. The function $\log \theta(p)$ is convex.
Proof: Simple exercise.
Lemma For $p \in[0,2]$, we have

$$
\theta(p) \leq n^{p / 2}
$$

For $p \geq 2$ we have two-sided bounds

$$
n^{p / 2} \leq \theta(p) \leq(p+n)^{p / 2}
$$

Proof:

- Say, $p \in[0,2]$. Since $\log \theta(p)$ is convex, write $p=(1-\alpha) \cdot 0+\alpha \cdot 2$

Bounding moments

Lemma Let $p \geq 0$. The function $\log \theta(p)$ is convex.
Proof: Simple exercise.
Lemma For $p \in[0,2]$, we have

$$
\theta(p) \leq n^{p / 2}
$$

For $p \geq 2$ we have two-sided bounds

$$
n^{p / 2} \leq \theta(p) \leq(p+n)^{p / 2}
$$

Proof:

- Say, $p \in[0,2]$. Since $\log \theta(p)$ is convex, write $p=(1-\alpha) \cdot 0+\alpha \cdot 2$
- Thus, $\log \theta(p) \leq(1-\alpha) \log \theta(0)+\alpha \log \theta(2)$

Bounding moments

Lemma Let $p \geq 0$. The function $\log \theta(p)$ is convex.
Proof: Simple exercise.
Lemma For $p \in[0,2]$, we have

$$
\theta(p) \leq n^{p / 2}
$$

For $p \geq 2$ we have two-sided bounds

$$
n^{p / 2} \leq \theta(p) \leq(p+n)^{p / 2}
$$

Proof:

- Say, $p \in[0,2]$. Since $\log \theta(p)$ is convex, write $p=(1-\alpha) \cdot 0+\alpha \cdot 2$
- Thus, $\log \theta(p) \leq(1-\alpha) \log \theta(0)+\alpha \log \theta(2)$
- So we get: $\log \theta(p) \leq \frac{p}{2} \log n$

Bounding moments

Lemma Let $p \geq 0$. The function $\log \theta(p)$ is convex.
Proof: Simple exercise.
Lemma For $p \in[0,2]$, we have

$$
\theta(p) \leq n^{p / 2}
$$

For $p \geq 2$ we have two-sided bounds

$$
n^{p / 2} \leq \theta(p) \leq(p+n)^{p / 2}
$$

Proof:

- Say, $p \in[0,2]$. Since $\log \theta(p)$ is convex, write $p=(1-\alpha) \cdot 0+\alpha \cdot 2$
- Thus, $\log \theta(p) \leq(1-\alpha) \log \theta(0)+\alpha \log \theta(2)$
- So we get: $\log \theta(p) \leq \frac{p}{2} \log n$
- The other case, $p \geq 2$ requires some more work.

Lipschitz properties of f_{μ}

Theorem A. If $f \in C_{L_{0}}^{0}$ then

$$
\left|f_{\mu}(x)-f(x)\right| \leq \mu L_{0}(f) \sqrt{n}, \quad x \in E
$$

Lipschitz properties of f_{μ}

Theorem A. If $f \in C_{L_{0}}^{0}$ then

$$
\left|f_{\mu}(x)-f(x)\right| \leq \mu L_{0}(f) \sqrt{n}, \quad x \in E
$$

Proof: We have $f_{\mu}(x)-f(x)=\frac{1}{\kappa} \int_{E}[f(x+\mu u)-f(x)] e^{-\frac{1}{2}\|u\|^{2}} d u$

Lipschitz properties of f_{μ}

Theorem A. If $f \in C_{L_{0}}^{0}$ then

$$
\left|f_{\mu}(x)-f(x)\right| \leq \mu L_{0}(f) \sqrt{n}, \quad x \in E
$$

Proof: We have $f_{\mu}(x)-f(x)=\frac{1}{\kappa} \int_{E}[f(x+\mu u)-f(x)] e^{-\frac{1}{2}\|u\|^{2}} d u$

$$
\left|f_{\mu}(x)-f(x)\right| \leq\left|\frac{1}{\kappa} \int_{E}[f(x+\mu u)-f(x)] e^{-\frac{1}{2}\|u\|^{2}} d u\right|
$$

Lipschitz properties of f_{μ}

Theorem A. If $f \in C_{L_{0}}^{0}$ then

$$
\left|f_{\mu}(x)-f(x)\right| \leq \mu L_{0}(f) \sqrt{n}, \quad x \in E
$$

Proof: We have $f_{\mu}(x)-f(x)=\frac{1}{\kappa} \int_{E}[f(x+\mu u)-f(x)] e^{-\frac{1}{2}\|u\|^{2}} d u$

$$
\begin{aligned}
\left|f_{\mu}(x)-f(x)\right| & \leq\left|\frac{1}{\kappa} \int_{E}[f(x+\mu u)-f(x)] e^{-\frac{1}{2}\|u\|^{2}} d u\right| \\
& \leq \frac{\mu L_{0}(f)}{\kappa} \int_{E}\|u\| e^{-\frac{1}{2}\|u\|^{2}} d u
\end{aligned}
$$

Lipschitz properties of f_{μ}

Theorem A. If $f \in C_{L_{0}}^{0}$ then

$$
\left|f_{\mu}(x)-f(x)\right| \leq \mu L_{0}(f) \sqrt{n}, \quad x \in E
$$

Proof: We have $f_{\mu}(x)-f(x)=\frac{1}{\kappa} \int_{E}[f(x+\mu u)-f(x)] e^{-\frac{1}{2}\|u\|^{2}} d u$

$$
\begin{aligned}
\left|f_{\mu}(x)-f(x)\right| & \leq\left|\frac{1}{\kappa} \int_{E}[f(x+\mu u)-f(x)] e^{-\frac{1}{2}\|u\|^{2}} d u\right| \\
& \leq \frac{\mu L_{0}(f)}{\kappa} \int_{E}\|u\| e^{-\frac{1}{2}\|u\|^{2}} d u \\
& \leq \mu L_{0}(f) \sqrt{n}
\end{aligned}
$$

Lipschitz properties of f_{μ}

Theorem B. If $f \in C_{L_{1}}^{1}$ then

$$
\left|f_{\mu}(x)-f(x)\right| \leq \frac{\mu^{2}}{2} L_{1}(f) n, \quad x \in E .
$$

Lipschitz properties of f_{μ}

Theorem B. If $f \in C_{L_{1}}^{1}$ then

$$
\left|f_{\mu}(x)-f(x)\right| \leq \frac{\mu^{2}}{2} L_{1}(f) n, \quad x \in E
$$

Proof: If $f \in C_{L_{1}}^{1}$, then

$$
f_{\mu}(x)-f(x)=\frac{1}{\kappa} \int_{E}[f(x+\mu u)-f(x)-\mu\langle\nabla f(x), u\rangle] e^{-\frac{1}{2}\|u\|^{2}} d u
$$

Lipschitz properties of f_{μ}

Theorem B. If $f \in C_{L_{1}}^{1}$ then

$$
\left|f_{\mu}(x)-f(x)\right| \leq \frac{\mu^{2}}{2} L_{1}(f) n, \quad x \in E .
$$

Proof: If $f \in C_{L_{1}}^{1}$, then

$$
\begin{aligned}
f_{\mu}(x)-f(x) & =\frac{1}{\kappa} \int_{E}[f(x+\mu u)-f(x)-\mu\langle\nabla f(x), u\rangle] e^{-\frac{1}{2}\|u\|^{2}} d u \\
\left|f_{\mu}(x)-f(x)\right| & \leq \frac{\mu^{2} L_{1}(f)}{2 \kappa} \int_{E}\|u\|^{2} e^{-\frac{1}{2}\|u\|^{2}} d u
\end{aligned}
$$

Lipschitz properties of f_{μ}

Theorem B. If $f \in C_{L_{1}}^{1}$ then

$$
\left|f_{\mu}(x)-f(x)\right| \leq \frac{\mu^{2}}{2} L_{1}(f) n, \quad x \in E .
$$

Proof: If $f \in C_{L_{1}}^{1}$, then

$$
\begin{aligned}
f_{\mu}(x)-f(x) & =\frac{1}{\kappa} \int_{E}[f(x+\mu u)-f(x)-\mu\langle\nabla f(x), u\rangle] e^{-\frac{1}{2}\|u\|^{2}} d u \\
\left|f_{\mu}(x)-f(x)\right| & \leq \frac{\mu^{2} L_{1}(f)}{2 \kappa} \int_{E}\|u\|^{2} e^{-\frac{1}{2}\|u\|^{2}} d u \\
& =\frac{\mu^{2} L_{1}(f)}{2} n
\end{aligned}
$$

Getting gradients, gradient bounds

Lemma If $f \in C_{L_{0}}^{0}$, then $f_{\mu} \in C_{L_{1}}^{1}$. $\left(f_{\mu}\right.$ is differentiable $)$

Getting gradients, gradient bounds

Lemma If $f \in C_{L_{0}}^{0}$, then $f_{\mu} \in C_{L_{1}}^{1}$. (f_{μ} is differentiable)

- This lemma justifies the name "smoothing"

Getting gradients, gradient bounds

Lemma If $f \in C_{L_{0}}^{0}$, then $f_{\mu} \in C_{L_{1}}^{1}$. $\left(f_{\mu}\right.$ is differentiable $)$

- This lemma justifies the name "smoothing"

Proof: We show that $f_{\mu} \in C_{L_{1}}^{1}$ with

$$
L_{1}\left(f_{\mu}\right)=\frac{2 \sqrt{n}}{\mu} L_{0}(f)
$$

Getting gradients, gradient bounds

Lemma If $f \in C_{L_{0}}^{0}$, then $f_{\mu} \in C_{L_{1}}^{1}$. $\left(f_{\mu}\right.$ is differentiable $)$

- This lemma justifies the name "smoothing"

Proof: We show that $f_{\mu} \in C_{L_{1}}^{1}$ with

$$
L_{1}\left(f_{\mu}\right)=\frac{2 \sqrt{n}}{\mu} L_{0}(f)
$$

First, let's get the gradient

Getting gradients, gradient bounds

Lemma If $f \in C_{L_{0}}^{0}$, then $f_{\mu} \in C_{L_{1}}^{1}$. $\left(f_{\mu}\right.$ is differentiable $)$

- This lemma justifies the name "smoothing"

Proof: We show that $f_{\mu} \in C_{L_{1}}^{1}$ with

$$
L_{1}\left(f_{\mu}\right)=\frac{2 \sqrt{n}}{\mu} L_{0}(f)
$$

First, let's get the gradient

$$
f_{\mu}(x)=\frac{1}{\kappa} \int_{E} f(x+\mu u) e^{-\frac{1}{2}\|u\|^{2}} d u
$$

Getting gradients, gradient bounds

Lemma If $f \in C_{L_{0}}^{0}$, then $f_{\mu} \in C_{L_{1}}^{1}$. $\left(f_{\mu}\right.$ is differentiable $)$

- This lemma justifies the name "smoothing"

Proof: We show that $f_{\mu} \in C_{L_{1}}^{1}$ with

$$
L_{1}\left(f_{\mu}\right)=\frac{2 \sqrt{n}}{\mu} L_{0}(f)
$$

First, let's get the gradient

$$
\begin{aligned}
f_{\mu}(x) & =\frac{1}{\kappa} \int_{E} f(x+\mu u) e^{-\frac{1}{2}\|u\|^{2}} d u \\
f_{\mu}(x) & =\frac{1}{\kappa \mu^{n}} \int_{E} f(y) e^{-\frac{1}{2 \mu^{2}}\|y-x\|^{2}} d y, \quad(y=x+(\mu I) u)
\end{aligned}
$$

Getting gradients, gradient bounds

Lemma If $f \in C_{L_{0}}^{0}$, then $f_{\mu} \in C_{L_{1}}^{1}$. $\left(f_{\mu}\right.$ is differentiable $)$

- This lemma justifies the name "smoothing"

Proof: We show that $f_{\mu} \in C_{L_{1}}^{1}$ with

$$
L_{1}\left(f_{\mu}\right)=\frac{2 \sqrt{n}}{\mu} L_{0}(f)
$$

First, let's get the gradient

$$
\begin{aligned}
f_{\mu}(x) & =\frac{1}{\kappa} \int_{E} f(x+\mu u) e^{-\frac{1}{2}\|u\|^{2}} d u, \\
f_{\mu}(x) & =\frac{1}{\kappa \mu^{n}} \int_{E} f(y) e^{-\frac{1}{2 \mu^{2}}\|y-x\|^{2}} d y, \quad(y=x+(\mu I) u) \\
\nabla f_{\mu}(x) & =\frac{1}{\mu^{n} \kappa} \int_{E} f(y) e^{-\frac{1}{2 \mu^{2}}\|y-x\|^{2}} \frac{1}{\mu^{2}} B(y-x) d y
\end{aligned}
$$

Getting gradients, gradient bounds

Lemma If $f \in C_{L_{0}}^{0}$, then $f_{\mu} \in C_{L_{1}}^{1}$. $\left(f_{\mu}\right.$ is differentiable $)$

- This lemma justifies the name "smoothing"

Proof: We show that $f_{\mu} \in C_{L_{1}}^{1}$ with

$$
L_{1}\left(f_{\mu}\right)=\frac{2 \sqrt{n}}{\mu} L_{0}(f)
$$

First, let's get the gradient

$$
\begin{aligned}
f_{\mu}(x) & =\frac{1}{\kappa} \int_{E} f(x+\mu u) e^{-\frac{1}{2}\|u\|^{2}} d u, \\
f_{\mu}(x) & =\frac{1}{\kappa \mu^{n}} \int_{E} f(y) e^{-\frac{1}{2 \mu^{2}}\|y-x\|^{2}} d y, \quad(y=x+(\mu I) u) \\
\nabla f_{\mu}(x) & =\frac{1}{\mu^{n} \kappa} \int_{E} f(y) e^{-\frac{1}{2 \mu^{2}}\|y-x\|^{2}} \frac{1}{\mu^{2}} B(y-x) d y \\
& =\frac{1}{\mu \kappa} \int_{E} f(x+\mu u) e^{-\frac{1}{2}\|u\|^{2}} B u d u
\end{aligned}
$$

Getting gradients, gradient bounds

Lemma If $f \in C_{L_{0}}^{0}$, then $f_{\mu} \in C_{L_{1}}^{1}$. $\left(f_{\mu}\right.$ is differentiable $)$

- This lemma justifies the name "smoothing"

Proof: We show that $f_{\mu} \in C_{L_{1}}^{1}$ with

$$
L_{1}\left(f_{\mu}\right)=\frac{2 \sqrt{n}}{\mu} L_{0}(f)
$$

First, let's get the gradient

$$
\begin{aligned}
f_{\mu}(x) & =\frac{1}{\kappa} \int_{E} f(x+\mu u) e^{-\frac{1}{2}\|u\|^{2}} d u, \\
f_{\mu}(x) & =\frac{1}{\kappa \mu^{n}} \int_{E} f(y) e^{-\frac{1}{2 \mu^{2}}\|y-x\|^{2}} d y, \quad(y=x+(\mu I) u) \\
\nabla f_{\mu}(x) & =\frac{1}{\mu^{n} \kappa} \int_{E} f(y) e^{-\frac{1}{2 \mu^{2}}\|y-x\|^{2}} \frac{1}{\mu^{2}} B(y-x) d y \\
& =\frac{1}{\mu \kappa} \int_{E} f(x+\mu u) e^{-\frac{1}{2}\|u\|^{2}} B u d u \\
& =\frac{1}{\kappa} \int_{E} \frac{f(x+\mu u)-f(x)}{\mu} e^{-\frac{1}{2}\|u\|^{2}} B u d u .
\end{aligned}
$$

Lipschitz constant of ∇f_{μ}

We show that $f_{\mu} \in C_{L_{1}}^{1}$ with

$$
L_{1}\left(f_{\mu}\right)=\frac{2 \sqrt{n}}{\mu} L_{0}(f)
$$

Lipschitz constant of ∇f_{μ}

We show that $f_{\mu} \in C_{L_{1}}^{1}$ with

$$
L_{1}\left(f_{\mu}\right)=\frac{2 \sqrt{n}}{\mu} L_{0}(f)
$$

Now, let's get $L_{1}\left(f_{\mu}\right)$ (write $d P(u)=e^{-\frac{1}{2}\|u\|^{2}} u d u$):

Lipschitz constant of ∇f_{μ}

We show that $f_{\mu} \in C_{L_{1}}^{1}$ with

$$
L_{1}\left(f_{\mu}\right)=\frac{2 \sqrt{n}}{\mu} L_{0}(f)
$$

Now, let's get $L_{1}\left(f_{\mu}\right)$ (write $d P(u)=e^{-\frac{1}{2}\|u\|^{2}} u d u$):

$$
\left\|\nabla f_{\mu}(x)-\nabla f_{\mu}(y)\right\|_{*}=\left|\frac{1}{\kappa} \int_{E}\left[\frac{f(x+\mu u)-f(x)+f(y)-f(y+\mu u)}{\mu}\right] d P(u)\right|
$$

Lipschitz constant of ∇f_{μ}

We show that $f_{\mu} \in C_{L_{1}}^{1}$ with

$$
L_{1}\left(f_{\mu}\right)=\frac{2 \sqrt{n}}{\mu} L_{0}(f)
$$

Now, let's get $L_{1}\left(f_{\mu}\right)$ (write $d P(u)=e^{-\frac{1}{2}\|u\|^{2}} u d u$):

$$
\begin{aligned}
& \left\|\nabla f_{\mu}(x)-\nabla f_{\mu}(y)\right\|_{*}=\left|\frac{1}{\kappa} \int_{E}\left[\frac{f(x+\mu u)-f(x)+f(y)-f(y+\mu u)}{\mu}\right] d P(u)\right| \\
\leq & \frac{1}{\mu \kappa} \int_{E}|f(x+\mu u)-f(x)+f(y)-f(y+\mu u)|\|u\| e^{-\frac{1}{2}\|u\|^{2}} d u
\end{aligned}
$$

Lipschitz constant of ∇f_{μ}

We show that $f_{\mu} \in C_{L_{1}}^{1}$ with

$$
L_{1}\left(f_{\mu}\right)=\frac{2 \sqrt{n}}{\mu} L_{0}(f)
$$

Now, let's get $L_{1}\left(f_{\mu}\right)$ (write $d P(u)=e^{-\frac{1}{2}\|u\|^{2}} u d u$):

$$
\begin{aligned}
& \left\|\nabla f_{\mu}(x)-\nabla f_{\mu}(y)\right\|_{*}=\left|\frac{1}{\kappa} \int_{E}\left[\frac{f(x+\mu u)-f(x)+f(y)-f(y+\mu u)}{\mu}\right] d P(u)\right| \\
\leq & \frac{1}{\mu \kappa} \int_{E}|f(x+\mu u)-f(x)+f(y)-f(y+\mu u)|\|u\| e^{-\frac{1}{2}\|u\|^{2}} d u \\
\leq & \frac{2 L_{0}(f)}{\kappa \mu} \int_{E}\|u\| e^{-\frac{1}{2}\|u\|^{2}} d u \\
\leq & \frac{2 L_{0}(f)}{\mu} \sqrt{n} .
\end{aligned}
$$

Note: We got rid B in the $B u d u$ part because of $\|\cdot\|_{*}$

Simulated gradients

- Note

$$
f^{\prime}(x, u)=\lim _{\mu \downarrow 0} \frac{f(x+\mu u)-f(x)}{\mu}
$$

Simulated gradients

- Note

$$
\begin{aligned}
f^{\prime}(x, u) & =\lim _{\mu \downarrow 0} \frac{f(x+\mu u)-f(x)}{\mu} \\
\nabla f_{0}(x) & =\frac{1}{\kappa} \int_{E} f^{\prime}(x, u) e^{-\frac{1}{2}\|u\|^{2}} B u d u
\end{aligned}
$$

- Exercise: If f is differentiable at x, then $\nabla f_{0}(x)=\nabla f(x)$

Simulated gradients

- Note

$$
\begin{aligned}
f^{\prime}(x, u) & =\lim _{\mu \downarrow 0} \frac{f(x+\mu u)-f(x)}{\mu} \\
\nabla f_{0}(x) & =\frac{1}{\kappa} \int_{E} f^{\prime}(x, u) e^{-\frac{1}{2}\|u\|^{2}} B u d u
\end{aligned}
$$

- Exercise: If f is differentiable at x, then $\nabla f_{0}(x)=\nabla f(x)$
- More generally, if f is convex and Lipschitz continuous, then for any $x \in E$ and $\mu \geq 0$, we have

$$
\nabla f_{\mu}(x) \in \partial_{\epsilon} f(x), \quad \epsilon=\mu L_{0}(f) \sqrt{n}
$$

Gradient-free oracles

DFO gradient oracles

Let $u \sim \mathcal{N}\left(0, B^{-1}\right)$. For $\mu \geq 0$, we define gradient-free oracles咦 Sample $u \in E$ and return $g_{\mu}(x)=\left[\frac{f(x+\mu u)-f(x)}{\mu}\right] B u$

DFO gradient oracles

Let $u \sim \mathcal{N}\left(0, B^{-1}\right)$. For $\mu \geq 0$, we define gradient-free oracles
Rose Sample $u \in E$ and return $g_{\mu}(x)=\left[\frac{f(x+\mu u)-f(x)}{\mu}\right] B u$
망ㅇㅇ $\hat{g}_{\mu}(x)=\left[\frac{f(x+\mu u)-f(x-\mu u)}{2 \mu}\right] B u$

DFO gradient oracles

Let $u \sim \mathcal{N}\left(0, B^{-1}\right)$ ．For $\mu \geq 0$ ，we define gradient－free oracles
四 Sample $u \in E$ and return $g_{\mu}(x)=\left[\frac{f(x+\mu u)-f(x)}{\mu}\right] B u$
뭉ㄴㅇㅏ $\hat{g}_{\mu}(x)=\left[\frac{f(x+\mu u)-f(x-\mu u)}{2 \mu}\right] B u$
国 More generally：$g_{0}(x)=f^{\prime}(x, u) \cdot B u$
呢 Oracles g_{μ} and \hat{g}_{μ} more suitable for smooth functions

DFO Algorithm

\square

DFO Algorithm

$$
\min _{x \in \mathcal{X}} f(x)
$$

Method: \mathcal{R}_{μ}

- Choose $x_{0} \in \mathcal{X}$ (If $\mu=0, x_{0}$ must be unconstrained min!)

DFO Algorithm

$$
\min _{x \in \mathcal{X}} f(x)
$$

Method: \mathcal{R}_{μ}

- Choose $x_{0} \in \mathcal{X}$ (If $\mu=0, x_{0}$ must be unconstrained min!)
- At iteration $k \geq 0$:

Generate $u_{k} \in E$ and compute $g_{\mu}\left(x_{k}\right)$

DFO Algorithm

$$
\min _{x \in \mathcal{X}} f(x)
$$

Method: \mathcal{R}_{μ}

- Choose $x_{0} \in \mathcal{X}$ (If $\mu=0, x_{0}$ must be unconstrained min!)
- At iteration $k \geq 0$:

Generate $u_{k} \in E$ and compute $g_{\mu}\left(x_{k}\right)$
Update $x_{k+1}=P_{\mathcal{X}}\left(x_{k}-h_{k} B^{-1} g_{\mu}\left(x_{k}\right)\right)$

DFO analysis - key inequality

- Method generates a random sequence $\left\{x_{k}\right\}$.
- Method generates a random sequence $\left\{x_{k}\right\}$.
- Denote collection of random variables up to iteration k as

$$
\mathcal{U}_{k}:=\left(u_{0}, u_{1}, \ldots, u_{k}\right),
$$

where u_{k} are i.i.d.

- Method generates a random sequence $\left\{x_{k}\right\}$.
- Denote collection of random variables up to iteration k as

$$
\mathcal{U}_{k}:=\left(u_{0}, u_{1}, \ldots, u_{k}\right),
$$

where u_{k} are i.i.d.

- Let $\phi_{0}:=f\left(x_{0}\right)$ and $\phi_{k}:=E_{\mathcal{U}_{k-1}}\left[f\left(x_{k}\right)\right]$, for $k \geq 1$
- Method generates a random sequence $\left\{x_{k}\right\}$.
- Denote collection of random variables up to iteration k as

$$
\mathcal{U}_{k}:=\left(u_{0}, u_{1}, \ldots, u_{k}\right),
$$

where u_{k} are i.i.d.

- Let $\phi_{0}:=f\left(x_{0}\right)$ and $\phi_{k}:=E_{\mathcal{U}_{k-1}}\left[f\left(x_{k}\right)\right]$, for $k \geq 1$

Theorem Let $\left\{x_{k}\right\}$ be generated by \mathcal{R}_{0}. Then, for $T \geq 0$

$$
\sum_{k=0}^{T} h_{k}\left(\phi_{k}-f^{*}\right) \leq \frac{1}{2}\left\|x_{0}-x^{*}\right\|^{2}+\frac{(n+4) L_{0}^{2}(f)}{2} \sum_{k=0}^{T} h_{k}^{2} .
$$

Now a subgradient type stepsize selection

DFO Algorithm - analysis \mathcal{R}_{0}

呢 Define $S_{T}:=\sum_{k=0}^{T} h_{k}$.
뭉 Set $\hat{x}_{T}:=\operatorname{argmin}_{0 \leq k \leq T} f\left(x_{k}\right)$

DFO Algorithm - analysis \mathcal{R}_{0}

㐆 Define $S_{T}:=\sum_{k=0}^{T} h_{k}$.
궁 Set $\hat{x}_{T}:=\operatorname{argmin}_{0 \leq k \leq T} f\left(x_{k}\right)$
Theorem With above choice, and assuming $\left\|x_{0}-x^{*}\right\| \leq R$, we have

$$
E_{\mathcal{U}_{T-1}}\left[f\left(\hat{x}_{T}\right)\right]-f^{*} \leq L_{0}(f) R(n+4)^{1 / 2} \frac{1}{\sqrt{T+1}}
$$

DFO Algorithm - analysis \mathcal{R}_{0}

呢 Define $S_{T}:=\sum_{k=0}^{T} h_{k}$.
STㅜㅄㅇ Set $\hat{x}_{T}:=\operatorname{argmin}_{0 \leq k \leq T} f\left(x_{k}\right)$
Theorem With above choice, and assuming $\left\|x_{0}-x^{*}\right\| \leq R$, we have

$$
E_{\mathcal{U}_{T-1}}\left[f\left(\hat{x}_{T}\right)\right]-f^{*} \leq L_{0}(f) R(n+4)^{1 / 2} \frac{1}{\sqrt{T+1}}
$$

Proof: Let us show this $O(1 / \sqrt{T})$ result.

DFO Algorithm - analysis \mathcal{R}_{0}

㐆 Define $S_{T}:=\sum_{k=0}^{T} h_{k}$.
줍 Set $\hat{x}_{T}:=\operatorname{argmin}_{0 \leq k \leq T} f\left(x_{k}\right)$
Theorem With above choice, and assuming $\left\|x_{0}-x^{*}\right\| \leq R$, we have

$$
E_{\mathcal{U}_{T-1}}\left[f\left(\hat{x}_{T}\right)\right]-f^{*} \leq L_{0}(f) R(n+4)^{1 / 2} \frac{1}{\sqrt{T+1}}
$$

Proof: Let us show this $O(1 / \sqrt{T})$ result.

$$
f\left(\hat{x}_{T}\right)-f^{*} \leq \frac{1}{S_{T}} \sum_{k=0}^{T} h_{k}\left(f\left(x_{k}\right)-f^{*}\right)
$$

DFO Algorithm - analysis \mathcal{R}_{0}

(19) Define $S_{T}:=\sum_{k=0}^{T} h_{k}$.

줍 Set $\hat{x}_{T}:=\operatorname{argmin}_{0 \leq k \leq T} f\left(x_{k}\right)$
Theorem With above choice, and assuming $\left\|x_{0}-x^{*}\right\| \leq R$, we have

$$
E_{\mathcal{U}_{T-1}}\left[f\left(\hat{x}_{T}\right)\right]-f^{*} \leq L_{0}(f) R(n+4)^{1 / 2} \frac{1}{\sqrt{T+1}}
$$

Proof: Let us show this $O(1 / \sqrt{T})$ result.

$$
\begin{aligned}
f\left(\hat{x}_{T}\right)-f^{*} & \leq \frac{1}{S_{T}} \sum_{k=0}^{T} h_{k}\left(f\left(x_{k}\right)-f^{*}\right) \\
E_{\mathcal{U}_{T-1}}\left[f\left(\hat{x}_{T}\right)\right]-f^{*} & \leq E_{\mathcal{U}_{T-1}}\left[\frac{1}{S_{T}} \sum_{k=0}^{T} h_{k}\left(f\left(x_{k}\right)-f^{*}\right)\right] \\
& \leq \frac{1}{S_{T}}\left[\frac{1}{2}\left\|x_{0}-x^{*}\right\|^{2}+\frac{n+4}{2} L_{0}^{2}(f) \sum_{k=0}^{T} h_{k}^{2}\right]
\end{aligned}
$$

Now, minimize over h_{k} (assuming fixed T)

DFO Algorithm - analysis \mathcal{R}_{0}

Fixed step-size

$$
h_{k}=\frac{R}{\sqrt{n+4} L_{0}(f) \sqrt{T+1}}, \quad k=0, \ldots, T .
$$

Which yields the desired bound.

DFO Algorithm - analysis \mathcal{R}_{0}

Fixed step-size

$$
h_{k}=\frac{R}{\sqrt{n+4} L_{0}(f) \sqrt{T+1}}, \quad k=0, \ldots, T
$$

Which yields the desired bound.
Corollary. \mathcal{R}_{0} yields $E_{\mathcal{U}_{T-1}}\left[f\left(\hat{x}_{T}\right)\right]-f^{*} \leq \epsilon$ in

$$
\frac{(n+4) L_{0}^{2}(f) R^{2}}{\epsilon^{2}}=O\left(1 / \epsilon^{2}\right)
$$

iterations.

- Theorem relies on being able to bound $E_{u}\left[\left\|g_{0}(x)\right\|_{*}^{2}\right]$. For convex f, this can be shown to be bounded by $(n+4)\left[\left\|\nabla f_{0}(x)\right\|_{*}^{2}+n D^{2}(x)\right]$, where diameter $D(x):=\operatorname{diam} \partial f(x)$
- If f is differentiable at x then $\mathbb{E}_{u}\left[\left\|g_{0}(x)\right\|_{*}^{2}\right] \leq(n+4)\left\|\nabla f_{0}(x)\right\|_{*}^{2}$

DFO Algorithm - analysis \mathcal{R}_{μ}

For $\mu>0$, we run method \mathcal{R}_{μ} for which we have

DFO Algorithm - analysis \mathcal{R}_{μ}

For $\mu>0$, we run method \mathcal{R}_{μ} for which we have
Theorem Select μ and h_{k} as follows

$$
\mu=\frac{\epsilon}{2 L_{0}(f) \sqrt{n}}, \quad h_{k}=\frac{R}{(n+4) L_{0}(f) \sqrt{T+1}}, \quad k=0, \ldots, T .
$$

Then, we have $E_{\mathcal{U}_{T-1}}\left[f\left(\hat{x}_{T}\right)\right]-f^{*} \leq \epsilon$, with

$$
T=\frac{4(n+4)^{2} L_{0}^{2}(f) R^{2}}{\epsilon^{2}}
$$

LIT8 Note: Dependency on dimension n is now quadratic.

$$
f(x)=E_{\xi}[F(x, \xi)]=\int_{\Xi} F(x, \xi) d P(\xi)
$$

- Assume $f \in C_{L_{0}}^{0}$ is convex (weaker than all $F(x, \xi)$ convex)

$$
f(x)=E_{\xi}[F(x, \xi)]=\int_{\Xi} F(x, \xi) d P(\xi)
$$

- Assume $f \in C_{L_{0}}^{0}$ is convex (weaker than all $F(x, \xi)$ convex)
- Replace our DF oracles by DF-stochastic oracles:

$$
f(x)=E_{\xi}[F(x, \xi)]=\int_{\Xi} F(x, \xi) d P(\xi)
$$

- Assume $f \in C_{L_{0}}^{0}$ is convex (weaker than all $F(x, \xi)$ convex)
- Replace our DF oracles by DF-stochastic oracles:

鲒 Sample $u \in E, \xi \in \Xi$, return

$$
s_{\mu}(x)=\left[\frac{F(x+\mu u, \xi)-F(x, \xi)}{\mu}\right] B u
$$

$$
f(x)=E_{\xi}[F(x, \xi)]=\int_{\Xi} F(x, \xi) d P(\xi)
$$

- Assume $f \in C_{L_{0}}^{0}$ is convex (weaker than all $F(x, \xi)$ convex)
- Replace our DF oracles by DF-stochastic oracles:

檪 Sample $u \in E, \xi \in \Xi$, return

$$
s_{\mu}(x)=\left[\frac{F(x+\mu u, \xi)-F(x, \xi)}{\mu}\right] B u
$$

傕 Sample $u \in E, \xi \in \Xi$, return

$$
\hat{s}_{\mu}(x)=\left[\frac{F(x+\mu u, \xi)-F(x-\mu u, \xi)}{2 \mu}\right] B u
$$

$$
f(x)=E_{\xi}[F(x, \xi)]=\int_{\Xi} F(x, \xi) d P(\xi)
$$

- Assume $f \in C_{L_{0}}^{0}$ is convex (weaker than all $F(x, \xi)$ convex)
- Replace our DF oracles by DF-stochastic oracles:

檪 Sample $u \in E, \xi \in \Xi$, return

$$
s_{\mu}(x)=\left[\frac{F(x+\mu u, \xi)-F(x, \xi)}{\mu}\right] B u
$$

傕 Sample $u \in E, \xi \in \Xi$, return

$$
\hat{s}_{\mu}(x)=\left[\frac{F(x+\mu u, \xi)-F(x-\mu u, \xi)}{2 \mu}\right] B u
$$

D 1 중 Sample $u \in E, \xi \in \Xi$, return

$$
s_{0}(x)=F_{x}^{\prime}(x, \xi ; u) \cdot B u
$$

DFO－stochastic optimization

$$
f(x)=E_{\xi}[F(x, \xi)]=\int_{\Xi} F(x, \xi) d P(\xi)
$$

－Assume $f \in C_{L_{0}}^{0}$ is convex（weaker than all $F(x, \xi)$ convex）
－Replace our DF oracles by DF－stochastic oracles：
傕 Sample $u \in E, \xi \in \Xi$ ，return

$$
s_{\mu}(x)=\left[\frac{F(x+\mu u, \xi)-F(x, \xi)}{\mu}\right] B u
$$

唆 Sample $u \in E, \xi \in \Xi$ ，return

$$
\hat{s}_{\mu}(x)=\left[\frac{F(x+\mu u, \xi)-F(x-\mu u, \xi)}{2 \mu}\right] B u
$$

噜 Sample $u \in E, \xi \in \Xi$ ，return

$$
s_{0}(x)=F_{x}^{\prime}(x, \xi ; u) \cdot B u
$$

Here also one gets $O\left(n^{2} / \epsilon^{2}\right)$ for $\mu>0$

Interesting directions

1 Can the dimension dependence be improved in special cases?
2 Nonconvex DFO
3 Parallel DFO
4 Distributed DFO
5 DFO for machine learning problems

References

\bigcirc D. P. Bertsekas. Stochastic Optimization Problems with Nondifferentiable Cost Functionals, (1973)
\bigcirc Yu. Nesterov. Random gradient-free minimization of convex functions. (2011). (all proofs are from this reference).

