Advanced Optimization

 (10-801: CMU)
Lecture 22

Fixed-point theory; nonlinear conic optimization
07 Apr 2014

Suvrit Sra

Many optimization problems

$$
\begin{aligned}
h(x) & =0 \\
x-h(x) & =0 \\
(I-h)(x) & =x
\end{aligned}
$$

Many optimization problems

$$
\begin{array}{rcc}
h(x) & \ni & 0 \\
x-h(x) & \ni & 0 \\
(I-h)(x) & \ni & x
\end{array}
$$

Fixed-point theory
Fixed-point
Any x that solves $x=f(x)$

Fixed-point

Any x that solves $x=f(x)$

Three types of results

1 Geometric: Banach contraction and relatives

Fixed-point

Any x that solves $x=f(x)$

Three types of results

1 Geometric: Banach contraction and relatives
2 Order-theoretic: Knaster-Tarski

Fixed-point

Any x that solves $x=f(x)$

Three types of results

1 Geometric: Banach contraction and relatives
2 Order-theoretic: Knaster-Tarski
3 Topological: Brouwer, Schauder-Leray, etc.

Fixed-point theory - main concerns

- existence of a solution
- uniqueness of a solution
- stability under small perturbations of parameters
- structure of solution set (failing uniqueness)
- algorithms / approximation methods to obtain solutions
- rate of convergence analyses

Fixed-point theory - Banach contraction
Some conditions under which the nonlinear equation

$$
x=T x, \quad x \in M \subset X,
$$

can be solved by iterating

$$
x_{k+1}=T x_{k}, \quad x_{0} \in M, \quad k=0,1, \ldots
$$

Fixed-point theory - Banach contraction

Theorem (Banach 1922.) Suppose (i) $T: M \subseteq X \rightarrow M$; (ii) M is closed, nonempty set in a complete metric space (X, d); (iii) T is q-contractive, i.e.,

$$
d(T x, T y) \leq q d(x, y), \quad \forall x, y \in M, \text { constant } 0 \leq q<1
$$

Then, we have the following:
(i) $T x=x$ has exactly one solution (T has a unique FP in M)
(ii) The sequence $\left\{x_{k}\right\}$ converges to the solution for any $x_{0} \in M$
(iii) A priori error estimate

$$
d\left(x_{k}, x^{*}\right) \leq q^{k}(1-q)^{-1} d\left(x_{0}, x_{1}\right)
$$

(iv) A posterior error estimate

$$
d\left(x_{k+1}, x^{*}\right) \leq q(1-q)^{-1} d\left(x_{k}, x_{k+1}\right)
$$

(v) (Global) linear rate of convergence: $d\left(x_{k+1}, x^{*}\right) \leq q d\left(x_{k}, x^{*}\right)$

Fixed-point theory - Banach contraction

- If X is a Banach space with distance $d=\|x-y\|$

$$
\|T x-T y\| \leq q\|x-y\|, \quad 0 \leq q<1 \quad \text { (contraction) }
$$

Fixed-point theory - Banach contraction

- If X is a Banach space with distance $d=\|x-y\|$

$$
\|T x-T y\| \leq q\|x-y\|, \quad 0 \leq q<1 \quad \text { (contraction) }
$$

- If inequality holds with $q=1$, we call map nonexpansive

$$
d(T x, T y) \leq d(x, y)
$$

Example: $x \mapsto x+1$ is nonexpansive, but has no fixed points!

Fixed-point theory - Banach contraction

- If X is a Banach space with distance $d=\|x-y\|$

$$
\|T x-T y\| \leq q\|x-y\|, \quad 0 \leq q<1 \quad \text { (contraction) }
$$

- If inequality holds with $q=1$, we call map nonexpansive

$$
d(T x, T y) \leq d(x, y)
$$

Example: $x \mapsto x+1$ is nonexpansive, but has no fixed points!

- Map is called contractive or weakly-contractive if

$$
d(T x, T y)<d(x, y), \quad \forall x, y \in M
$$

Fixed-point theory - Banach contraction

- If X is a Banach space with distance $d=\|x-y\|$

$$
\|T x-T y\| \leq q\|x-y\|, \quad 0 \leq q<1 \quad \text { (contraction) }
$$

- If inequality holds with $q=1$, we call map nonexpansive

$$
d(T x, T y) \leq d(x, y)
$$

Example: $x \mapsto x+1$ is nonexpansive, but has no fixed points!

- Map is called contractive or weakly-contractive if

$$
d(T x, T y)<d(x, y), \quad \forall x, y \in M
$$

- Several other variations of maps have been studied for Banach spaces (see e.g., book by Bauschke, Combettes (2012))

Banach contraction - proof
Blackboard

Banach contraction - proof

Blackboard

Summary:

- d must be positive-definite, i.e, $d(x, y)=0$ iff $x=y$
- (X, d) must be complete (contain all its Cauchy sequences)
- $T: M \rightarrow M, M$ must be closed
- But M need not be compact!
- Contraction is often a rare luxury; nonexpansive maps are more common (we've already seen several)

More general fixed-point theorems

Theorem (Brouwer FP.) Every continuous function from a convex compact subset $M \subset \mathbb{R}^{d}$ to M itself has a fixed-point.

More general fixed-point theorems

Theorem (Brouwer FP.) Every continuous function from a convex compact subset $M \subset \mathbb{R}^{d}$ to M itself has a fixed-point.

Note: Proves existence only!

More general fixed-point theorems

Theorem (Brouwer FP.) Every continuous function from a convex compact subset $M \subset \mathbb{R}^{d}$ to M itself has a fixed-point.

Note: Proves existence only!
Generalizes the intermediate-value theorem.

More general fixed-point theorems

Theorem (Brouwer FP.) Every continuous function from a convex compact subset $M \subset \mathbb{R}^{d}$ to M itself has a fixed-point.

Note: Proves existence only!
Generalizes the intermediate-value theorem.
Theorem (Schauder FP.) Every continuous function from a convex compact subset M of a Banach space to M itself has a fixed-point.

More general fixed-point theorems

Theorem (Brouwer FP.) Every continuous function from a convex compact subset $M \subset \mathbb{R}^{d}$ to M itself has a fixed-point.

Note: Proves existence only!
Generalizes the intermediate-value theorem.
Theorem (Schauder FP.) Every continuous function from a convex compact subset M of a Banach space to M itself has a fixed-point.

Remarks:

- Brouwer FPs - very hard. "Exponential lower bounds for finding Brouwer fixed points"-Hirsch, Papadimitriou, Vavasis (1988).

More general fixed-point theorems

Theorem (Brouwer FP.) Every continuous function from a convex compact subset $M \subset \mathbb{R}^{d}$ to M itself has a fixed-point.

Note: Proves existence only!
Generalizes the intermediate-value theorem.
Theorem (Schauder FP.) Every continuous function from a convex compact subset M of a Banach space to M itself has a fixed-point.

Remarks:

- Brouwer FPs - very hard. "Exponential lower bounds for finding Brouwer fixed points'-Hirsch, Papadimitriou, Vavasis (1988).
- Any algorithm for computing a Brouwer FP based on function evaluations only must in the worst case perform a number of function evaluations exponential in both the number of digits of accuracy and the dimension.

More general fixed-point theorems

Theorem (Brouwer FP.) Every continuous function from a convex compact subset $M \subset \mathbb{R}^{d}$ to M itself has a fixed-point.

Note: Proves existence only!
Generalizes the intermediate-value theorem.
Theorem (Schauder FP.) Every continuous function from a convex compact subset M of a Banach space to M itself has a fixed-point.

Remarks:

- Brouwer FPs - very hard. "Exponential lower bounds for finding Brouwer fixed points" -Hirsch, Papadimitriou, Vavasis (1988).
- Any algorithm for computing a Brouwer FP based on function evaluations only must in the worst case perform a number of function evaluations exponential in both the number of digits of accuracy and the dimension.
- Contrast with $n=1$, where bisection yields $\left|f(\hat{x})-f^{*}\right| \leq 2^{-\delta}$ in $O(\delta)$

FP theorem for set-valued mappings (recall $x \in(I-\partial f)(x)$)

FP theorem for set-valued mappings (recall $x \in(I-\partial f)(x)$)

Set-valued map

$$
F: M \rightarrow 2^{M}, \quad x \in M \mapsto F(x) \in 2^{M} \text {, i.e. } F(x) \subseteq M
$$

Closed-graph

$$
\begin{aligned}
& \quad\{(x, y) \mid y \in F(x)\} \text { is a closed subset of } X \times X \\
& \text { (i.e., } \left.x_{k} \rightarrow x, y_{k} \rightarrow y \text { and } y_{k} \in F\left(x_{k}\right) \Longrightarrow y \in F(x)\right)
\end{aligned}
$$

Kakutani fixed-point theorem

FP theorem for set-valued mappings (recall $x \in(I-\partial f)(x)$)

Set-valued map

$$
F: M \rightarrow 2^{M}, \quad x \in M \mapsto F(x) \in 2^{M} \text {, i.e. } F(x) \subseteq M
$$

Closed-graph

$$
\begin{aligned}
& \qquad\{(x, y) \mid y \in F(x)\} \text { is a closed subset of } X \times X \\
& \text { (i.e., } \left.x_{k} \rightarrow x, y_{k} \rightarrow y \text { and } y_{k} \in F\left(x_{k}\right) \Longrightarrow y \in F(x)\right)
\end{aligned}
$$

Theorem (S. Kakutani 1941.) Let $M \subset \mathbb{R}^{n}$ be nonempty, convex, compact. Let $F: M \rightarrow 2^{M}$ be a set-valued map with a closed graph; also for all $x \in M$, let $F(x)$ be non-empty and convex. Then, F has a fixed point.

Application: See proof of Nash equilibrium on Wikipedia

Brouwer FP - example

- Consider a Markov transition matrix $A \in \mathbb{R}_{+}^{n \times n}$
- Column stochastic: $a_{i j} \geq 0$ and $\sum_{i} a_{i j}=1$ for $1 \leq j \leq n$

Brouwer FP - example

- Consider a Markov transition matrix $A \in \mathbb{R}_{+}^{n \times n}$
- Column stochastic: $a_{i j} \geq 0$ and $\sum_{i} a_{i j}=1$ for $1 \leq j \leq n$

Claim. There is a probability vector x that is an eigenvector of A.

Brouwer FP - example

- Consider a Markov transition matrix $A \in \mathbb{R}_{+}^{n \times n}$
- Column stochastic: $a_{i j} \geq 0$ and $\sum_{i} a_{i j}=1$ for $1 \leq j \leq n$

Claim. There is a probability vector x that is an eigenvector of A.

$$
\text { Prove: } \exists x \geq 0, x^{T} 1=1 \text { such that } A x=x
$$

Brouwer FP - example

- Consider a Markov transition matrix $A \in \mathbb{R}_{+}^{n \times n}$
- Column stochastic: $a_{i j} \geq 0$ and $\sum_{i} a_{i j}=1$ for $1 \leq j \leq n$

Claim. There is a probability vector x that is an eigenvector of A.

$$
\text { Prove: } \exists x \geq 0, x^{T} 1=1 \text { such that } A x=x
$$

- Let Δ_{n} be probability simplex (compact, convex subset of \mathbb{R}^{n})

Brouwer FP - example

- Consider a Markov transition matrix $A \in \mathbb{R}_{+}^{n \times n}$
- Column stochastic: $a_{i j} \geq 0$ and $\sum_{i} a_{i j}=1$ for $1 \leq j \leq n$

Claim. There is a probability vector x that is an eigenvector of A.

$$
\text { Prove: } \exists x \geq 0, x^{T} 1=1 \text { such that } A x=x
$$

- Let Δ_{n} be probability simplex (compact, convex subset of \mathbb{R}^{n})
- Verify that if $x \in \Delta_{n}$ then $A x \in \Delta_{n}$

Brouwer FP - example

- Consider a Markov transition matrix $A \in \mathbb{R}_{+}^{n \times n}$
- Column stochastic: $a_{i j} \geq 0$ and $\sum_{i} a_{i j}=1$ for $1 \leq j \leq n$

Claim. There is a probability vector x that is an eigenvector of A.

$$
\text { Prove: } \exists x \geq 0, x^{T} 1=1 \text { such that } A x=x
$$

- Let Δ_{n} be probability simplex (compact, convex subset of \mathbb{R}^{n})
- Verify that if $x \in \Delta_{n}$ then $A x \in \Delta_{n}$
- Thus, $A: \Delta_{n} \rightarrow \Delta_{n} ; A$ is obviously continuous

Brouwer FP - example

- Consider a Markov transition matrix $A \in \mathbb{R}_{+}^{n \times n}$
- Column stochastic: $a_{i j} \geq 0$ and $\sum_{i} a_{i j}=1$ for $1 \leq j \leq n$

Claim. There is a probability vector x that is an eigenvector of A.

$$
\text { Prove: } \exists x \geq 0, x^{T} 1=1 \text { such that } A x=x
$$

- Let Δ_{n} be probability simplex (compact, convex subset of \mathbb{R}^{n})
- Verify that if $x \in \Delta_{n}$ then $A x \in \Delta_{n}$
- Thus, $A: \Delta_{n} \rightarrow \Delta_{n} ; A$ is obviously continuous
- Hence by Brouwer FP: there is an $x \in \Delta_{n}$ such that $A x=x$

Brouwer FP - example

- Consider a Markov transition matrix $A \in \mathbb{R}_{+}^{n \times n}$
- Column stochastic: $a_{i j} \geq 0$ and $\sum_{i} a_{i j}=1$ for $1 \leq j \leq n$

Claim. There is a probability vector x that is an eigenvector of A.

$$
\text { Prove: } \exists x \geq 0, x^{T} 1=1 \text { such that } A x=x
$$

- Let Δ_{n} be probability simplex (compact, convex subset of \mathbb{R}^{n})
- Verify that if $x \in \Delta_{n}$ then $A x \in \Delta_{n}$
- Thus, $A: \Delta_{n} \rightarrow \Delta_{n} ; A$ is obviously continuous
- Hence by Brouwer FP: there is an $x \in \Delta_{n}$ such that $A x=x$

$$
\text { How to compute such an } x \text { ? }
$$

Conic optimization

Some definitions

- Let K be a cone in a real vector space V
- Let K be a cone in a real vector space V
- Let $y \in K$ and $x \in V$. We say y dominates x if

$$
\alpha y \preceq_{K} x \preceq_{K} \beta y, \quad \text { for some } \alpha, \beta \in \mathbb{R} \text {. }
$$

- Let K be a cone in a real vector space V
- Let $y \in K$ and $x \in V$. We say y dominates x if

$$
\alpha y \preceq_{K} x \preceq_{K} \beta y, \quad \text { for some } \alpha, \beta \in \mathbb{R} .
$$

Max-min gauges

$$
\begin{aligned}
M_{K}(x / y) & :=\inf \{\beta \in \mathbb{R} \mid x \leq \beta y\} \\
m_{K}(x / y) & :=\sup \{\alpha \in \mathbb{R} \mid \alpha y \leq x\}
\end{aligned}
$$

Shorthand: $\leq \equiv \preceq_{K}$

- Let K be a cone in a real vector space V
- Let $y \in K$ and $x \in V$. We say y dominates x if

$$
\alpha y \preceq_{K} x \preceq_{K} \beta y, \quad \text { for some } \alpha, \beta \in \mathbb{R} .
$$

Max-min gauges

$$
\begin{aligned}
& M_{K}(x / y):=\inf \{\beta \in \mathbb{R} \mid x \leq \beta y\} \\
& m_{K}(x / y):=\sup \{\alpha \in \mathbb{R} \mid \alpha y \leq x\}
\end{aligned}
$$

Shorthand: $\leq \equiv \preceq_{K}$

- Parts: We have an equivalence relation $x \sim_{K} y$ on K if x dominates y and vice versa.
- Let K be a cone in a real vector space V
- Let $y \in K$ and $x \in V$. We say y dominates x if

$$
\alpha y \preceq_{K} x \preceq_{K} \beta y, \quad \text { for some } \alpha, \beta \in \mathbb{R} .
$$

Max-min gauges

$$
\begin{aligned}
& M_{K}(x / y):=\inf \{\beta \in \mathbb{R} \mid x \leq \beta y\} \\
& m_{K}(x / y):=\sup \{\alpha \in \mathbb{R} \mid \alpha y \leq x\} .
\end{aligned}
$$

Shorthand: $\leq \equiv \preceq_{K}$

- Parts: We have an equivalence relation $x \sim_{K} y$ on K if x dominates y and vice versa. The equivalence classes are called parts of the cone.

Hilbert projective metric

- If $x \sim_{K} y$ with $y \neq 0$, then $\exists \alpha, \beta>0 \quad$ s.t. $\alpha y \leq x \leq \beta y$.

Hilbert projective metric

- If $x \sim_{K} y$ with $y \neq 0$, then $\exists \alpha, \beta>0 \quad$ s.t. $\alpha y \leq x \leq \beta y$.

Def. (Hilbert metric.) Let $x \sim_{K} y$ and $y \neq 0$. Then,

$$
d_{H}(x, y):=\log \frac{M(x / y)}{m(x / y)}
$$

Hilbert projective metric

- If $x \sim_{K} y$ with $y \neq 0$, then $\exists \alpha, \beta>0 \quad$ s.t. $\alpha y \leq x \leq \beta y$.

Def. (Hilbert metric.) Let $x \sim_{K} y$ and $y \neq 0$. Then,

$$
d_{H}(x, y):=\log \frac{M(x / y)}{m(x / y)}
$$

Proposition. Let K be a cone in $V ;\left(K, d_{H}\right)$ satisfies:

- $d_{H}(x, y) \geq 0$, and $d_{H}(x, y)=d_{H}(y, x)$ for all $x, y \in K$
- $d_{H}(x, z) \leq d_{H}(x, y)+d_{H}(y, z)$ for all $x \sim_{K} y \sim_{K} z$, and

■ $d_{H}(\alpha x, \beta y)=d_{H}(x, y)$ for all $\alpha, \beta>0$ and $x, y \in K$.
If K is closed, then $d_{H}(x, y)=0$ iff $x=\lambda y$ for some $\lambda>0$. In this case, if $X \subset K$ satisfies that for each $x \in K \backslash\{0\}$ there is a unique $\lambda>0$ such that $\lambda x \in X$ and P is a part of K, then $\left(P \cap X, d_{H}\right)$ is a genuine metric space.

Proof: on blackboard

Def. (OPSH maps.) Let $K \subseteq V$ and $K^{\prime} \subseteq V^{\prime}$ be closed cones. The $f: K \rightarrow K^{\prime}$ is called order preserving if for $x \leq_{K} y, f(x) \leq_{K^{\prime}} f(y)$. It is homogeneous of degree r if $f(\lambda x)=\lambda^{r} f(x)$ for all $x \in K$ and $\lambda>0$. It is subhomogeneous if $\lambda f(x) \leq f(\lambda x)$ for all $x \in K$ and $0<\lambda<1$.

Exercise: Prove that if $f: K \rightarrow K^{\prime}$ is OPH of degree $r>0$ then

$$
d_{H}(f(x), f(y)) \leq r d_{H}(x, y)
$$

Def. (OPSH maps.) Let $K \subseteq V$ and $K^{\prime} \subseteq V^{\prime}$ be closed cones. The $f: K \rightarrow K^{\prime}$ is called order preserving if for $x \leq_{K} y, f(x) \leq_{K^{\prime}} f(y)$. It is homogeneous of degree r if $f(\lambda x)=\lambda^{r} f(x)$ for all $x \in K$ and $\lambda>0$. It is subhomogeneous if $\lambda f(x) \leq f(\lambda x)$ for all $x \in K$ and $0<\lambda<1$.

Exercise: Prove that if $f: K \rightarrow K^{\prime}$ is OPH of degree $r>0$ then

$$
d_{H}(f(x), f(y)) \leq r d_{H}(x, y)
$$

- In particular, if $r=1$, then f is nonexpansive (in d_{H})

Birkhoff's theorem

- Let L be a linear operator on a cone $K(L: K \rightarrow K)$

Birkhoff's theorem

- Let L be a linear operator on a cone $K(L: K \rightarrow K)$

Contraction ratio
$\kappa(L):=\inf \left\{\lambda \geq 0 \mid d_{H}(L x, L y) \leq \lambda d_{H}(x, y)\right.$ for all $x \sim_{K} y$ in $\left.K\right\}$.

Birkhoff's theorem

- Let L be a linear operator on a cone $K(L: K \rightarrow K)$

Contraction ratio
$\kappa(L):=\inf \left\{\lambda \geq 0 \mid d_{H}(L x, L y) \leq \lambda d_{H}(x, y)\right.$ for all $x \sim_{K} y$ in $\left.K\right\}$.
Theorem (Birkhoff.) Let $\Delta(L):=\sup \left\{d_{H}(L x, L y) \mid L x \sim_{K} L y\right\}$ be the projective diameter of L. Then

$$
\kappa(L)=\tanh \left(\frac{1}{4} \Delta(L)\right)
$$

Birkhoff's theorem

- Let L be a linear operator on a cone $K(L: K \rightarrow K)$

Contraction ratio

$\kappa(L):=\inf \left\{\lambda \geq 0 \mid d_{H}(L x, L y) \leq \lambda d_{H}(x, y)\right.$ for all $x \sim_{K} y$ in $\left.K\right\}$.
Theorem (Birkhoff.) Let $\Delta(L):=\sup \left\{d_{H}(L x, L y) \mid L x \sim_{K} L y\right\}$ be the projective diameter of L. Then

$$
\kappa(L)=\tanh \left(\frac{1}{4} \Delta(L)\right)
$$

- If $\Delta(L)<\infty$, then we have a strict contraction!

Application to Pagerank eigenvector

- Markov transition matrix $A \in \mathbb{R}_{+}^{n \times n}$
- Column stochastic: $a_{i j} \geq 0$ and $\sum_{i} a_{i j}=1$ for $1 \leq j \leq n$
- Markov transition matrix $A \in \mathbb{R}_{+}^{n \times n}$
- Column stochastic: $a_{i j} \geq 0$ and $\sum_{i} a_{i j}=1$ for $1 \leq j \leq n$
- Consider cone $K \equiv \mathbb{R}_{+}^{n}$
- Suppose $\Delta(A)<\infty$ - (next slide)

Application to Pagerank eigenvector

- Markov transition matrix $A \in \mathbb{R}_{+}^{n \times n}$
- Column stochastic: $a_{i j} \geq 0$ and $\sum_{i} a_{i j}=1$ for $1 \leq j \leq n$
- Consider cone $K \equiv \mathbb{R}_{+}^{n}$
- Suppose $\Delta(A)<\infty$ - (next slide)
- Then $d_{H}(A x, A y) \leq \kappa(A) d_{H}(x, y)$ - strict contraction

Application to Pagerank eigenvector

- Markov transition matrix $A \in \mathbb{R}_{+}^{n \times n}$
- Column stochastic: $a_{i j} \geq 0$ and $\sum_{i} a_{i j}=1$ for $1 \leq j \leq n$
- Consider cone $K \equiv \mathbb{R}_{+}^{n}$
- Suppose $\Delta(A)<\infty$ - (next slide)
- Then $d_{H}(A x, A y) \leq \kappa(A) d_{H}(x, y)$ - strict contraction
- Need to argue that $\left(\Delta_{n}, d_{H}\right)$ is a complete metric space
- Markov transition matrix $A \in \mathbb{R}_{+}^{n \times n}$
- Column stochastic: $a_{i j} \geq 0$ and $\sum_{i} a_{i j}=1$ for $1 \leq j \leq n$
- Consider cone $K \equiv \mathbb{R}_{+}^{n}$
- Suppose $\Delta(A)<\infty$ - (next slide)
- Then $d_{H}(A x, A y) \leq \kappa(A) d_{H}(x, y)$ - strict contraction
- Need to argue that $\left(\Delta_{n}, d_{H}\right)$ is a complete metric space
- Invoke Banach contraction theorem.
- Markov transition matrix $A \in \mathbb{R}_{+}^{n \times n}$
- Column stochastic: $a_{i j} \geq 0$ and $\sum_{i} a_{i j}=1$ for $1 \leq j \leq n$
- Consider cone $K \equiv \mathbb{R}_{+}^{n}$
- Suppose $\Delta(A)<\infty$ - (next slide)
- Then $d_{H}(A x, A y) \leq \kappa(A) d_{H}(x, y)$ - strict contraction
- Need to argue that $\left(\Delta_{n}, d_{H}\right)$ is a complete metric space
- Invoke Banach contraction theorem.
- Linear rate of convergence

Application to Pagerank eigenvector

- Let $K=\mathbb{R}_{+}^{n}$ and $K^{\prime}=\mathbb{R}_{+}^{m}$, and $A \in \mathbb{R}^{m \times n}$

Application to Pagerank eigenvector

- Let $K=\mathbb{R}_{+}^{n}$ and $K^{\prime}=\mathbb{R}_{+}^{m}$, and $A \in \mathbb{R}^{m \times n}$
- $A(K) \subseteq K^{\prime}$ iff $a_{i j} \geq 0$

Application to Pagerank eigenvector

- Let $K=\mathbb{R}_{+}^{n}$ and $K^{\prime}=\mathbb{R}_{+}^{m}$, and $A \in \mathbb{R}^{m \times n}$
- $A(K) \subseteq K^{\prime}$ iff $a_{i j} \geq 0$
- $x \sim_{K} y$ is equivalent to $I_{x}:=\left\{i \mid x_{i}>0\right\}=\left\{i \mid y_{i}>0\right\}$

Application to Pagerank eigenvector

- Let $K=\mathbb{R}_{+}^{n}$ and $K^{\prime}=\mathbb{R}_{+}^{m}$, and $A \in \mathbb{R}^{m \times n}$
- $A(K) \subseteq K^{\prime}$ iff $a_{i j} \geq 0$
- $x \sim_{K} y$ is equivalent to $I_{x}:=\left\{i \mid x_{i}>0\right\}=\left\{i \mid y_{i}>0\right\}$
- In this case, we obtain

$$
d_{H}(x, y)=\log \left(\max _{i, j \in I_{x}} \frac{x_{i} y_{j}}{x_{j} y_{i}}\right)
$$

Application to Pagerank eigenvector

- Let $K=\mathbb{R}_{+}^{n}$ and $K^{\prime}=\mathbb{R}_{+}^{m}$, and $A \in \mathbb{R}^{m \times n}$
- $A(K) \subseteq K^{\prime}$ iff $a_{i j} \geq 0$
- $x \sim_{K} y$ is equivalent to $I_{x}:=\left\{i \mid x_{i}>0\right\}=\left\{i \mid y_{i}>0\right\}$
- In this case, we obtain

$$
d_{H}(x, y)=\log \left(\max _{i, j \in I_{x}} \frac{x_{i} y_{j}}{x_{j} y_{i}}\right)
$$

Lemma If $A \in \mathbb{R}_{+}^{m \times n}$. If there exists $J \subset[n]$ s.t. $A e_{i} \sim_{K^{\prime}} A e_{j}$ for all $i, j \in J$, and $A e_{i}=0$ for all $i \notin J$ then the projective diameter

$$
\Delta(A)=\max _{i, j \in J} d_{H}\left(A e_{i}, A e_{j}\right)<\infty
$$

More applications

- Geometric optimization on the psd cone

Sra, Hosseini (2013). "Conic geometric optimisation on the manifold of positive definite matrices." arXiv:1312.1039.

- MDPs, Stochastic games, Nonlinear eigenvalue problems, etc.
© Nonlinear functional analysis-Vol. 1 (Fixed-point theorems). E. Zeidler.
^ Nonlinear Perron-Frobenius theory. Lemmens, Nussbaum (2013).

