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Incremental gradient methods

min F (x) = 1
m

∑m

i=1
fi(x)

I We saw incremental gradient methods

xk+1 = xk − ηk
m∇fi(k)(xk), k ≥ 0.

I View as gradient-descent with perturbed gradients

xk+1 = xk − ηk
m (∇F (xk) + ek)

I Perturbation slows down rate of convergence. Typically
ηk = O(1/k); convergence rate also O(1/k) (sublinear).

I Can we reduce impact of perturbation to speed up?
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Stochastic gradients

minF (x) = 1
m

∑m
i=1 fi(x)

The incremental gradient method (IGM)

I Let x0 ∈ Rn

I For k ≥ 0
1 Pick i(k) ∈ {1, 2, . . . ,m} uniformly at random
2 xk+1 = xk − ηk∇fi(k)(xk)

g ≡ ∇fi(k) may be viewed as a stochastic gradient

g := gtrue + e, where e is mean-zero noise: E[e] = 0
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Stochastic gradients

I Index i(k) chosen uniformly from {1, . . . ,m}
I Thus, in expectation:

E[g] =

Ei[∇fi(x)] =
∑

i

1
m∇fi(x) = ∇F (x)

I Alternatively, E[g − gtrue] = E[e] = 0.

I We call g an unbiased estimate of the gradient

I Here, we obtained g in a two step process:

◦ Sample: pick an index i(k) unif. at random
◦ Oracle: Compute a stochastic gradient based on i(k)
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Stochastic gradients – more generally

xk+1 = xk − ηkgk(xk, ξk),

where ξk is a rv such that

Eξk [gk(xk, ξk)|xk] = ∇F (xk).

I That is, gk is a stochastic gradient.

Example: IGM with gk = ∇fi(k)(xk) uses ξk = i(k)

I gk equals ∇F only in expectation

I Individual values can vary a lot

I This variance (E[‖g −∇F‖2]) influences rate of convergence.
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Controlling variance

I Instead of using gk = ∇fi(k)(xk), correct it by using true

gradient every m steps (recall: F = 1
m

∑m
i=1 fi(x))

I Reduces variance of gk(xk, ξk); speeds up convergence

∇F (x̄) = 1
m

∑
i
fi(x̄)

xk+1 = xk − ηk[∇fi(k)(xk)−∇fi(k)(x̄) +∇F (x̄)︸ ︷︷ ︸
gk(xk,ξk)

]

I Thus, with ξk = i(k), Eξ[gk|xk] = ∇F (xk)

Same expectation, lower variance

Say x̄, xk → x∗. Then ∇F (x̄)→ 0. Thus, if ∇fi(x̄)→ ∇fi(x∗), then

∇fi(xk)−∇fi(x̄) +∇F (x̄)→ ∇fi(xk)−∇fi(x∗)→ 0.
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SG with variance reduction

For s ≥ 1:

1 x̄← x̄s−1
2 ḡ ← ∇F (x̄) (full gradient computation)

3 x0 = x̄; t← rand(1,m) (randomized stopping)

4 For k = 0, 1, . . . , t− 1

Randomly pick i(k) ∈ [1..m]
xk+1 = xk − ηk(∇fi(k)(xk)−∇fi(k)(x̄) + ḡ)

5 x̄s ← xt

Theorem Assume each fi(x) is smooth convex and F (x) is strongly-
convex. Then, for sufficiently large n, there is α < 1 s.t.

E[F (x̄s)− F (x∗)] ≤ αs[F (x̄0)− F (x∗)]

Rmk: Typically for stochastic methods we make stmts of the form

E[F (xk)− F (x∗)] ≤ O(1/k)
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Stochastic Optimization
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Stochastic optimization – example

Stochastic LP

min x1 + x2

ω1x1 + x2 ≥ 10

ω2x1 + x2 ≥ 5

x1, x2 ≥ 0,

where ω1 ∼ U [1, 5] and ω2 ∼ U [1/3, 1]

I The constraints are not deterministic!

I But we have an idea about what randomness is there

I How do we solve this LP?

I What does it even mean to solve it?

I If ω has been observed, problem becomes deterministic, and
can be solved as a usual LP (aka wait-and-watch)
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I But we cannot “wait-and-watch” —

we need to decide on x
before knowing the value of ω

I What to do without knowing exact values for ω1, ω2?

I Some ideas

◦ Guess the uncertainty
◦ Probabilistic / Chance constraints
◦ . . .
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Stochastic optimization – modeling

Some guesses

♠ Unbiased / Average case: Choose mean values for each r.v.

♠ Robust / Worst case: Choose worst case values

♠ Explorative / Best case: Choose best case values

♠ None of these: Sample...

11 / 35



Stochastic optimization – example

min x1 + x2

ω1x1 + x2 ≥ 10

ω2x1 + x2 ≥ 5

x1, x2 ≥ 0,

where ω1 ∼ U [1, 5] and ω2 ∼ U [1/3, 1]

Unbiased / Average case:

E[ω1] = 3, E[ω2] = 2/3

min x1 + x2

3x1 + x2 ≥ 10

(2/3)x1 + x2 ≥ 5

x1, x2 ≥ 0,

x∗1 + x∗2 = 5.7143...

(x∗1, x
∗
2) ≈ (15/7, 25/7).

12 / 35



Stochastic optimization – example

min x1 + x2

ω1x1 + x2 ≥ 10

ω2x1 + x2 ≥ 5

x1, x2 ≥ 0,

where ω1 ∼ U [1, 5] and ω2 ∼ U [1/3, 1]

Worst case:

ω1 = 1, ω2 = 1/3

min x1 + x2

1x1 + x2 ≥ 10

(1/3)x1 + x2 ≥ 5

x1, x2 ≥ 0,

x∗1 + x∗2 = 10

(x∗1, x
∗
2) ≈ (41/12, 79/12).
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Stochastic optimization – example

min x1 + x2

ω1x1 + x2 ≥ 10

ω2x1 + x2 ≥ 5

x1, x2 ≥ 0,

where ω1 ∼ U [1, 5] and ω2 ∼ U [1/3, 1]

Best case:

ω1 = 5, E[ω2] = 1

min x1 + x2

5x1 + x2 ≥ 10

1x1 + x2 ≥ 5

x1, x2 ≥ 0,

x∗1 + x∗2 = 5

(x∗1, x
∗
2) ≈ (17/8, 23/8).
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Stochastic optimization via sampling

minF (x) := Eξ[f(x, ξ)]

I ξ follows some known distribution

I Previous example, ξ took values in a discrete set of size m
(might as well say ξ ∈ {1, . . . ,m})

I so that f(x, ξ) = fξ(x); so assuming uniform distribution, we
had F (x) = Eξf(x, ξ) = 1

m

∑m
i=1 fi(x)

I But ξ can be non-discrete; we won’t be able to compute the
expectation in closed form, since

F (x) =

∫
f(x, ξ)dP (ξ),

is a difficult high-dimensional integral.
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Stochastic optimization – setup

minx∈X F (x) := Eξ[f(x, ξ)]

Setup and Assumptions

1. X ⊂ Rn compact convex set

2. ξ is a random vector whose probability distribution P is supported
on Ω ⊂ Rd; so f : X × Ω→ R
3. The expectation

E[f(x, ξ)] =
∫

Ω f(x, ξ)dP (ξ)

is well-defined and finite valued for every x ∈ X .
4. For every ξ ∈ Ω, f(·, ξ) is convex.

Convex stochastic optimization problem
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Stochastic optimization – setup

I Cannot compute expectation in general

I Computational techniques based on sampling

Assumption 1: Possible to generate independent identically dis-
tributed (iid) samples ξ1, ξ2, . . .
Assumption 2: For pair (x, ξ) ∈ X × Ω, oracle yields stochastic
gradient g(x, ξ), i.e.,

G(x) := E[g(x, ξ)] s.t. G(x) ∈ ∂F (x).

Theorem Let ξ ∈ Ω; If f(·, ξ) is convex, and F (·) is finite valued in
a neighborhood of x, then

∂F (x) = E[∂xf(x, ξ)].

I So g(x, ω) ∈ ∂xf(x, ω) is a stochastic subgradient.
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Stochastic optimization – approaches

♣ Stochastic Approximation (SA)

I Sample ξk iid

I Generate stochastic subgradient g(x, ξ)
I Use that in a subgradient method

♣ Sample average approximation (SAA)

I Generate m iid samples, ξ1, . . . , ξm
I Consider empirical objective F̂m := m−1

∑
i f(x, ξi)

I SAA refers to creation of this sample average problem
I Minimizing F̂m still needs to be done!
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Stochastic approximation – SA

SA or stochastic (sub)-gradient

I Let x0 ∈ X
I For k ≥ 0

◦ Sample ωk; obtain g(xk, ξk) from oracle
◦ Update xk+1 = PX (xk − αkg(xk, ξk)), where αk > 0

We’ll simply write

xk+1 = PX
(
xk − αkgk

)
Does this work?
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Stochastic approximation – analysis

Setup

I xk depends on rvs ξ1, . . . , ξk−1, so itself random

I Of course, xk does not depend on ξk

I Subgradient method analysis hinges upon: ‖xk − x∗‖2

I Stochastic subgradient hinges upon: E[‖xk − x∗‖2]

Denote: Rk := ‖xk − x∗‖2 and rk := E[Rk] = E[‖xk − x∗‖2]

Bounding Rk+1

Rk+1 = ‖xk+1 − x∗‖22 = ‖PX (xk − αkgk)− PX (x∗)‖22
≤ ‖xk − x∗ − αkgk‖22
= Rk + α2

k‖gk‖22 − 2αk〈gk, xk − x∗〉.
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Stochastic approximation – analysis

Rk+1 ≤ Rk + α2
k‖gk‖22 − 2αk〈gk, xk − x∗〉

I Assume: ‖gk‖2 ≤M on X
I Taking expectation:

rk+1 ≤ rk + α2
kM

2 − 2αkE[〈gk, xk − x∗〉].

I We need to now get a handle on the last term

I Since xk is independent of ξk, we have

E[〈xk − x∗, g(xk, ξk)〉] = E
{
E[〈xk − x∗, g(xk, ξk)〉 | ξ[1..(k−1)]]

}
= E

{
〈xk − x∗, E[g(xk, ξk) | ξ[1..(k−1)]]〉

}
= E[〈xk − x∗, Gk〉], Gk ∈ ∂F (xk).
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I We need to now get a handle on the last term

I Since xk is independent of ξk, we have
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E
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Stochastic approximation – analysis

It remains to bound: E[〈xk − x∗, Gk〉]

I Since F is cvx, F (x) ≥ F (xk) + 〈Gk, x− xk〉 for any x ∈ X .

I Thus, in particular

2αkE[F (x∗)− F (xk)] ≥ 2αkE[〈Gk, x∗ − xk〉]

Plug this bound back into the rk+1 inequality:

rk+1 ≤ rk + α2
kM

2 − 2αkE[〈Gk, xk − x∗〉]
2αkE[〈Gk, xk − x∗〉] ≤ rk − rk+1 + αkM

2

2αkE[F (xk)− F (x∗)] ≤ rk − rk+1 + αkM
2.

We’ve bounded the expected progress; What now?
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Stochastic approximation – analysis

2αkE[F (xk)− F (x∗)] ≤ rk − rk+1 + αkM
2.

Sum up over i = 1, . . . , k, to obtain∑k

i=1
(2αiE[F (xi)− f(x∗)]) ≤ r1 − rk+1 +M2

∑
i
α2
i

≤ r1 +M2
∑

i
α2
i .

Divide both sides by
∑

i αi, so
I Set γi = αi∑k

i αi
.

I Thus, γi ≥ 0 and
∑

i γi = 1

E
[∑

i
γi(F (xi)− F (x∗))

]
≤
r1 +M2

∑
i α

2
i

2
∑

i αi
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Stochastic approximation – analysis

I Bound looks similar to bound in subgradient method

I But we wish to say something about xk

I Since γi ≥ 0 and
∑k

i γi = 1, and we have γiF (xi)

I Easier to talk about averaged

x̄k :=
∑k

i
γixi.

I f(x̄k) ≤
∑

i γiF (xi) due to convexity

I So we finally obtain the inequality

E
[
F (x̄k)− F (x∗)

]
≤
r1 +M2

∑
i α

2
i

2
∑

i αi
.
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Stochastic approximation – finally

♠ Let DX := maxx∈X ‖x− x∗‖2 (act. only need ‖x1 − x∗‖ ≤ DX )

♠ Assume αi = α is a constant. Observe that

E[F (x̄k)− F (x∗)] ≤
D2
X +M2kα2

2kα

♠ Minimize the rhs over α > 0 to obtain
E[F (x̄k)− F (x∗)] ≤ DXM√

k

♠ If k is not fixed in advance, then choose

αi =
θDX

M
√
i
, i = 1, 2, . . .

♠ Analyze E[F (x̄k)− F (x∗)] with this choice of stepsize

We showed O(1/
√
k) rate
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Stochastic approximation – remarks

Theorem Let f(x, ξ) be C1
L convex. Let ek := ∇F (xk)− gk satisfy

E[ek] = 0. Let ‖xi − x∗‖ ≤ D. Also, let αi = 1/(L+ ηi). Then,

E
[∑k

i=1
F (xi+1)− F (x∗)

]
≤ D2

2αk
+
∑k

i=1

E[‖ei‖2]
2ηi

.

As before, by using x̄k = 1
k

∑k
i=1 xi+1 we get

E[F (x̄k)− F (x∗)] ≤ D2

2αkk
+ 1

k

∑k

i=1

E[‖ei‖2]
2ηi

.

I Using αi = L+ ηi where ηi ∝ 1/
√
i we obtain

E[F (x̄k)− F (x∗)] = O(LD
2

k ) +O(σD√
k

)

where σ bounds the variance E[‖ei‖2]

Minimax optimal rate

26 / 35



Stochastic approximation – remarks

Theorem Let f(x, ξ) be C1
L convex. Let ek := ∇F (xk)− gk satisfy

E[ek] = 0. Let ‖xi − x∗‖ ≤ D. Also, let αi = 1/(L+ ηi). Then,

E
[∑k

i=1
F (xi+1)− F (x∗)

]
≤ D2

2αk
+
∑k

i=1

E[‖ei‖2]
2ηi

.

As before, by using x̄k = 1
k

∑k
i=1 xi+1 we get

E[F (x̄k)− F (x∗)] ≤ D2

2αkk
+ 1

k

∑k

i=1

E[‖ei‖2]
2ηi

.

I Using αi = L+ ηi where ηi ∝ 1/
√
i we obtain

E[F (x̄k)− F (x∗)] = O(LD
2

k ) +O(σD√
k

)

where σ bounds the variance E[‖ei‖2]

Minimax optimal rate

26 / 35



Stochastic approximation – remarks

Theorem Let f(x, ξ) be C1
L convex. Let ek := ∇F (xk)− gk satisfy

E[ek] = 0. Let ‖xi − x∗‖ ≤ D. Also, let αi = 1/(L+ ηi). Then,

E
[∑k

i=1
F (xi+1)− F (x∗)

]
≤ D2

2αk
+
∑k

i=1

E[‖ei‖2]
2ηi

.

As before, by using x̄k = 1
k

∑k
i=1 xi+1 we get

E[F (x̄k)− F (x∗)] ≤ D2

2αkk
+ 1

k

∑k

i=1

E[‖ei‖2]
2ηi

.

I Using αi = L+ ηi where ηi ∝ 1/
√
i we obtain

E[F (x̄k)− F (x∗)] = O(LD
2

k ) +O(σD√
k

)

where σ bounds the variance E[‖ei‖2]

Minimax optimal rate

26 / 35



Stochastic approximation – remarks

Theorem Let f(x, ξ) be C1
L convex. Let ek := ∇F (xk)− gk satisfy

E[ek] = 0. Let ‖xi − x∗‖ ≤ D. Also, let αi = 1/(L+ ηi). Then,

E
[∑k

i=1
F (xi+1)− F (x∗)

]
≤ D2

2αk
+
∑k

i=1

E[‖ei‖2]
2ηi

.

As before, by using x̄k = 1
k

∑k
i=1 xi+1 we get

E[F (x̄k)− F (x∗)] ≤ D2

2αkk
+ 1

k

∑k

i=1

E[‖ei‖2]
2ηi

.

I Using αi = L+ ηi where ηi ∝ 1/
√
i we obtain

E[F (x̄k)− F (x∗)] = O(LD
2

k ) +O(σD√
k

)

where σ bounds the variance E[‖ei‖2]

Minimax optimal rate

26 / 35



Stochastic approximation – remarks

Theorem Let f(x, ξ) be C1
L convex. Let ek := ∇F (xk)− gk satisfy

E[ek] = 0. Let ‖xi − x∗‖ ≤ D. Also, let αi = 1/(L+ ηi). Then,

E
[∑k

i=1
F (xi+1)− F (x∗)

]
≤ D2

2αk
+
∑k

i=1

E[‖ei‖2]
2ηi

.

As before, by using x̄k = 1
k

∑k
i=1 xi+1 we get

E[F (x̄k)− F (x∗)] ≤ D2

2αkk
+ 1

k

∑k

i=1

E[‖ei‖2]
2ηi

.

I Using αi = L+ ηi where ηi ∝ 1/
√
i we obtain

E[F (x̄k)− F (x∗)] = O(LD
2

k ) +O(σD√
k

)

where σ bounds the variance E[‖ei‖2]

Minimax optimal rate

26 / 35



Stochastic approximation – remarks

Theorem Suppose f(x, ξ) are convex and F (x) is µ-strongly convex.

Let x̄k :=
∑k

i=0 θixi, where θi = 2(i+1)
(k+1)(k+2) , we obtain

E[F (x̄k)− F (x∗)] ≤ 2M2

µ2(k + 1)
.

Lacoste-Julien, Schmidt, Bach (2012).

With uniform averaging x̄k = 1
k

∑
i xi, we get O(log k/k).
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Sample average approximation

Assumption: regularization ‖x‖2 ≤ B; ξ ∈ Ω closed, bounded.

Function estimate: F (x) = E[f(x, ξ)]
Subgradient in ∂F (x) = E[g(x, ξ)]

Sample Average Approximation (SAA):

Collect samples ξ1, . . . , ωm

Empirical objective: F̂m(x) := 1
m

∑m
i=1 f(x, ξi)

aka Empirical Risk Minimization

Confusing: We often optimize F̂m using stochastic
subgradient; but theoretical guarantees are then only on the
empirical suboptimality E[F̂m(x̄k)] ≤ . . .
For guarantees on F (x̄k) more work; (regularization + conc.)
F (x̄k)− F (x∗) ≤ O(1/

√
k) +O(1/

√
m)
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Collect samples ξ1, . . . , ωm

Empirical objective: F̂m(x) := 1
m

∑m
i=1 f(x, ξi)

aka Empirical Risk Minimization

Confusing: We often optimize F̂m using stochastic
subgradient; but theoretical guarantees are then only on the
empirical suboptimality E[F̂m(x̄k)] ≤ . . .
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Online optimization
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Online optimization

• We have fixed and known f(x, ξ)

• ξ1, ξ2, . . . presented to us sequentially

Can be chosen adversarially!

• Guess xk; Observe ξk; incur cost f(xk, ξk); Update to xk+1

• We get to see things only sequentially; sequence of samples
shown to us by nature may depend on our guesses

• So a typical goal is to minimize Regret

1
T

∑T
k=1 f(xk, zk)−minx∈X

1
T

∑T
k=1 f(x, zk)

• That is, difference from the best possible solution we could have
attained, had we been shown all the examples (zk).

• Online optimization is an important idea in machine learning,
game theory, decision making, etc.
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Online gradient descent

Based on Zinkevich (2003)

Slight generalization:
f(x, ξ) convex (in x); possibly nonsmooth

x ∈ X , a closed, bounded set

Simplify notation: fk(x) ≡ f(x, ξk)

Regret RT :=
∑T

k=1 fk(xk)−minx∈X
∑T

k=1 fk(x)
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Online gradient descent

Algorithm:

1 Select some x0 ∈ X , and α0 > 0

2 Round k of algo (k ≥ 0):

Output xk
Receive k-th function fk
Incur loss fk(xk)
Pick gk ∈ ∂fk(xk)
Update: xk+1 = PX (xk − αkgk)

Using αk = c/
√
k + 1 and assuming ‖gk‖2 ≤ G, can be

shown that average regret 1
TRT ≤ O(1/

√
T )
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OGD – regret bound

Assumption: Lipschitz condition ‖∂f‖2 ≤ G

x∗ = argmin
x∈X

T∑
k=1

fk(x)

Since gk ∈ ∂fk(xk), we have

fk(x
∗) ≥ fk(xk) + 〈gk, x∗ − xk〉, or

fk(xk)− fk(x∗) ≤ 〈gk, xk − x∗〉

Further analysis depends on bounding

‖xk+1 − x∗‖22
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OGD regret – bounding distance

Recall: xk+1 = PX (xk − αkgk). Thus,

‖xk+1 − x∗‖22 = ‖PX (xk − αkgk)− x∗‖22
= ‖PX (xk − αkgk)− PX (x∗)‖22

(PX is nonexpan.) ≤ ‖xk − x∗ − αkgk‖22
= ‖xk − x∗‖22 + α2

k‖gk‖22 − 2αk〈gk, xk − x∗〉

〈gk, xk − x∗〉 ≤
‖xk − x∗‖22 − ‖xk+1 − x∗‖22

2αk
+
αk

2
‖gk‖22

Now invoke fk(xk)− fk(x∗) ≤ 〈gk, xk − x∗〉

fk(xk)− fk(x∗) ≤ ‖xk − x
∗‖22 − ‖xk+1 − x∗‖22

2αk
+
αk

2
‖gk‖22

Sum over k = 1, . . . , T , let αk = c/
√
k + 1, use ‖gk‖2 ≤ G

Obtain RT ≤ O(
√
T )
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