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Incremental gradient methods

min F(x) = % ZZl fi(x)

» We saw incremental gradient methods

Tpy1 = Tp — BV fiy (2r), k>0,

» View as gradient-descent with perturbed gradients
Tp1 = o — B (VEF(2) + €p)

» Perturbation slows down rate of convergence. Typically

ne = O(1/k); convergence rate also O(1/k) (sublinear).

» Can we reduce impact of perturbation to speed up?
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Stochastic gradients

min F'(z)

1

T m
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Stochastic gradients

min F(z) = =37 fi(z)

The incremental gradient method (IGM)
» Let zg € R

» For k>0
Pick i(k) € {1,2,...,m} uniformly at random

Trr1 = T — MV fir) (Tr)

9 = V fix) may be viewed as a stochastic gradient

g = g'™¢ + e, where e is mean-zero noise: Ele] =0
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Stochastic gradients

» Index i(k) chosen uniformly from {1,...,m}

» Thus, in expectation:
Elg] =
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Elg] = Ei[Vfi(z)] = ) _ 7 Vil

» Alternatively, E[g — ¢"™"¢] = El[e] = 0.

7m}

VF(x)

35



Stochastic gradients

» Index i(k) chosen uniformly from {1,...,m}

» Thus, in expectation:

Elg] = Ei[Vfi(2)] = ) 7 Vfi(z) = VF(x)

» Alternatively, E[g — ¢"™"¢] = El[e] = 0.

» We call g an unbiased estimate of the gradient
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Stochastic gradients

v

Index i(k) chosen uniformly from {1,...,m}

Thus, in expectation:

Elg] = Ei[Vfi(2)] = ) 7 Vfi(z) = VF(x)

Alternatively, E[g — g*™¢] = E[e] = 0.
We call g an unbiased estimate of the gradient
Here, we obtained g in a two step process:

o Sample: pick an index i(k) unif. at random
o Oracle: Compute a stochastic gradient based on i(k)



Stochastic gradients — more generally

Thi1 = Tk — MGk (Tk, &),

where & is a rv such that

Eg, [9k (zk, §k) k] = VF (2).
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Stochastic gradients — more generally

Tr1 = Tk — MGk (Ths Ek)
where & is a rv such that
Ee, [gk(xr: Sk)|wk] = VF ().
» That is, gi is a stochastic gradient.

Example: IGM with g, = V f)(z) uses & = i(k)
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Stochastic gradients — more generally

Tht1 = Tk — MGk (T, k)

where & is a rv such that

Ee, [gk(xr: Sk)|wk] = VF ().
» That is, gi is a stochastic gradient.
Example: IGM with g, = V f)(z) uses & = i(k)

» gi equals VF only in expectation
» Individual values can vary a lot

» This variance (E[||g — VF|?]) influences rate of convergence.
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Controlling variance

» Instead of using g, = V fix)(z ) correct it by using true
gradient every m steps (recaII = L5, fi(2))

» Reduces variance of g (z, &k); speeds up convergence
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» Instead of using gr. = V fix)(zx), correct it by using true
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VE@) = 5> fi(@)
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Controlling variance

» Instead of using gr. = V fix)(zx), correct it by using true
gradient every m steps (recaII F=2L15"m fi2)

» Reduces variance of gi(zy,&k); speeds up convergence

VE@) = 5> fi(@)
Tey1 = Tk — [V i (@) — Vg (@) + VF(2)]

Ik (;;,Ek)

» Thus, with & = i(k), E¢[gr|zi] = VF(x)

6
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Controlling variance

» Instead of using gr. = V fix)(zx), correct it by using true
gradient every m steps (recaII F=2L15"m fi2)

» Reduces variance of gi(zy,&k); speeds up convergence

VE@) = 5> fi(@)
Tey1 = Tk — [V i (@) — Vg (@) + VF(2)]

Ik (;;,Ek)

» Thus, with § =i(k), Eﬁ[gk’l'k} = VF(xg)

‘ Same expectation, lower variance

6

35



Controlling variance

» Instead of using gr. = V fix)(zx), correct it by using true
gradient every m steps (recaII F=2L15"m fi2)

» Reduces variance of gi(zy,&k); speeds up convergence

VE@) = 5> fi(@)
Tey1 = Tk — [V i (@) — Vg (@) + VF(2)]

Ik (;;,Ek)

» Thus, with § =i(k), Eﬁ[gk’l'k} = VF(xg)

‘ Same expectation, lower variance

Say Z,z, — z*. Then VF(z) — 0.

6
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Controlling variance

» Instead of using gr. = V fix)(zx), correct it by using true
gradient every m steps (recaII F=2L15"m fi2)

» Reduces variance of gi(zy,&k); speeds up convergence

VE@) = 5> fi(@)
Tey1 = Tk — [V i (@) — Vg (@) + VF(2)]

Ik (;;,Ek)

» Thus, with § =i(k), Eﬁ[gk’l'k} = VF(xg)

‘ Same expectation, lower variance

Say T,z — . Then VF(Z) — 0. Thus, if Vfi(Z) = V fi(z"), then

6

35



Controlling variance

» Instead of using gr. = V fix)(zx), correct it by using true
gradient every m steps (recaII F=2L15"m fi2)

» Reduces variance of gi(zy,&k); speeds up convergence

VE@) = 5> fi(@)
Tey1 = Tk — [V i (@) — Vg (@) + VF(2)]

Ik (;;,Ek)

» Thus, with § =i(k), Eﬁ[gk’l'k} = VF(xg)

‘ Same expectation, lower variance

Say T,z — . Then VF(Z) — 0. Thus, if Vfi(Z) = V fi(z"), then

Vii(zr) = Vfi(@) + VF(Z) = Vfi(zr) = Vfi(z") = 0.

6
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SG with variance reduction

m For s > 1:
T Ts—1
g« VF(z) (full gradient computation)
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g« VF(z) (full gradient computation)
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SG with variance reduction

m Fors>1:
T 4= Ts-1
g« VF(z) (full gradient computation)
To=1T; t+4 RAND(l, m) (randomized stopping)

Fork=0,1,...,t—1

®m Randomly pick i(k) € [1..m]

B w1 = o — Me(Vfigy (T) — Vi) (Z) + )
R
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SG with variance reduction

m For s > 1:
T Ts—1
g« VF(z) (full gradient computation)
o =T; t<+ RAND(1,m) (randomized stopping)

Fork=0,1,...,t—1

m Randomly pick i(k) € [1..m]

w21 =2k — (Vi (2k) = Vi (2) + )
Ts ¢ Tt

Theorem Assume each f;(z) is smooth convex and F'(z) is strongly-
convex. Then, for sufficiently large n, there is a < 1 s.t.

E[F(z,) — F(z")] < o®[F(To) — F(z")]
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SG with variance reduction

m For s> 1:
T Ts—1
g« VF(z) (full gradient computation)
o =T; t<+ RAND(1,m) (randomized stopping)

For k=0,1,....t—1

m Randomly pick i(k) € [1..m]

B 21 =26 — (Vi (Tk) — Vi) (T) + 9)
Ts ¢ Tt

Theorem Assume each f;(z) is smooth convex and F'(z) is strongly-
convex. Then, for sufficiently large n, there is a < 1 s.t.

E[F(z,) — F(z")] < o®[F(To) — F(z")]

Rmk: Typically for stochastic methods we make stmts of the form

E[F(zx) — F(27)] < O(1/k)
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Stochastic optimization — example

Stochastic LP

min T + X2
wiry+x2 > 10
wory + T2 =

x1,x2 > 0,

where wy ~ U[1,5] and wy ~ U[1/3,1]



Stochastic optimization — example

Stochastic LP

min x1 + X9
wir1 +x2 > 10
wory + T2 =

x1,x2 > 0,

where wy ~ U[1,5] and wy ~ U[1/3,1]
» The constraints are not deterministic!

» But we have an idea about what randomness is there
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Stochastic optimization — example

Stochastic LP

min x1 + X9
wiry+x2 > 10
wox1 +x2 >

x1,Ty > 0,

where wy ~ U[1,5] and wy ~ U[1/3,1]
» The constraints are not deterministic!
» But we have an idea about what randomness is there
» How do we solve this LP?

» What does it even mean to solve it?
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Stochastic optimization — example

vVvyyvyyvyy

Stochastic LP

min x1 + X9
wizy +x2 > 10
woxy +x2 2>

x1,x2 > 0,

where wy ~ U[1,5] and wy ~ U[1/3,1]
The constraints are not deterministic!
But we have an idea about what randomness is there
How do we solve this LP?
What does it even mean to solve it?

If w has been observed, problem becomes deterministic, and
can be solved as a usual LP (aka wait-and-watch)

35



Stochastic optimization — example

» But we cannot “wait-and-watch” —
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Stochastic optimization — example

» But we cannot “wait-and-watch” — we need to decide on z
before knowing the value of w

» What to do without knowing exact values for wy, ws?

» Some ideas

o Guess the uncertainty
o Probabilistic / Chance constraints

o ...
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Stochastic optimization — modeling

Some guesses

& Unbiased / Average case: Choose mean values for each r.v.

& Robust / Worst case: Choose worst case values
& Explorative / Best case: Choose best case values
& None of these: Sample...
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Stochastic optimization — example

min xj + o

w1T1 + X9 > 10
war1 + T2 > 5
T1,T9 > 0,

where wy ~ U[1,5] and wy ~ U[1/3,1]

Unbiased / Average case:
E[wl] = 3, E[WQ] = 2/3

min 1 + =9 xy + s =5.7143...

3T1 + 22
(2/3)1‘1 —+ X9

€1, T2

5

AVARAVARIV]

)

10 (z7,23) =~ (15/7,25/7).
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Stochastic optimization — example

min xj + o

w1T1 + X9 > 10
war1 + T2 > 5
T1,T9 > 0,

where wy ~ U[1,5] and wy ~ U[1/3,1]

Worst case:
w1 = 1, Wy = 1/3

min x1 + o xT"i_x;:lO
11 + 22
(1/3)1‘1 + Z9

€1, T2

5

AVARAVARIV]

)

10 (21, 23) ~ (41/12,79/12).
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Stochastic optimization — example

min xj + o

w1T1 + X9 > 10
war1 + T2 > 5
T1,T9 > 0,

where wy ~ U[1,5] and wy ~ U[1/3,1]

Best case:
w1 = 5, E[wg] =1

. * *_
min x4+ 2 ry+x3=95
oT1 + T2

1z + 22

AVAR VARV

Ty, T2

10 (w7, 23) =~ (17/8,23/8).
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Stochastic optimization via sampling

min F(z) := E¢[f(x, €)]

» ¢ follows some known distribution
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» ¢ follows some known distribution

» Previous example, & took values in a discrete set of size m
(might as well say £ € {1,...,m})

» so that f(x,&) = fe(x); so assuming uniform distribution, we

had F(z) = Ecf(2,&) = 2 S0 | fi(z)
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Stochastic optimization via sampling

>
4

>

min F(z) := E¢[f(x,§)]

¢ follows some known distribution

Previous example, £ took values in a discrete set of size m
(might as well say £ € {1,...,m})

so that f(x,&) = fe(x); so assuming uniform distribution, we
had F(z) = B¢ f(z.€) = ; Y% fi(w)

But £ can be non-discrete; we won't be able to compute the
expectation in closed form, since

F(z) = / f(x,©)dP(),

is a difficult high-dimensional integral.

15/35



Stochastic optimization — setup

mingey F(x) = E¢[f(z,§)]

Setup and Assumptions

1. X C R™ compact convex set
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Stochastic optimization — setup

mingcy F(z) 1= B[ f(2, )]

Setup and Assumptions

1. X C R™ compact convex set

2. &is a random vector whose probability distribution P is supported
onQCRYs0f: XAXxQ—=R
3. The expectation

= Jo f(z,6)dP(§)

is well-defined and finite valued for every z € X.
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Stochastic optimization — setup

mingcy F(z) 1= B[ f(2, )]

Setup and Assumptions

1. X C R™ compact convex set

2. &is a random vector whose probability distribution P is supported
onQCRYs0f: XAXxQ—=R

3. The expectation

= Jo f(z,6)dP(§)

is well-defined and finite valued for every z € X.
4. For every £ € Q, f(+,&) is convex.

‘ Convex stochastic optimization problem

16 /35



Stochastic optimization — setup

» Cannot compute expectation in general
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Stochastic optimization — setup

» Cannot compute expectation in general

» Computational techniques based on sampling

Assumption 1: Possible to generate independent identically dis-
tributed (iid) samples &1, &o, . ..

Assumption 2: For pair (z,£) € X x €, oracle yields stochastic
gradient g(z, &), i.e.,

G(z) :=E[g(z,&)] st. G(z) € IF(x).
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Stochastic optimization — setup

» Cannot compute expectation in general

» Computational techniques based on sampling

Assumption 1: Possible to generate independent identically dis-
tributed (iid) samples &1, &o, . ..

Assumption 2: For pair (z,£) € X x €, oracle yields stochastic
gradient g(z,€), i.e.,

G(z) :=E[g(z,&)] st. G(z) € IF(x).

Theorem Let £ € Q; If f(-,€) is convex, and F(-) is finite valued in
a neighborhood of z, then

OF (x) = E[0, f(z,€)].

» So g(z,w) € O, f(x,w) is a stochastic subgradient.

17/35



Stochastic optimization — approaches

& Stochastic Approximation (SA)
» Sample & iid
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Stochastic optimization — approaches

& Stochastic Approximation (SA)
» Sample & iid
» Generate stochastic subgradient g(z,§)
» Use that in a subgradient method

& Sample average approximation (SAA)

» Generate m iid samples, £1,...,&m
» Consider empirical objective F,,, :=m™~ 1>, f(x,&)
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Stochastic optimization — approaches

& Stochastic Approximation (SA)
» Sample & iid
» Generate stochastic subgradient g(z,§)
» Use that in a subgradient method
& Sample average approximation (SAA)
» Generate m iid samples, £1,...,&m
» Consider empirical objective F, := m™! > f(x,&)
» SAA refers to creation of this sample average problem
» Minimizing F}, still needs to be done!

18/35



Stochastic approximation — SA

SA or stochastic (sub)-gradient

» letzge X
» For k>0

o Sample wg; obtain g(zk, &) from oracle
o Update z;11 = Py (xr — agg(xk, &), where ag > 0
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Stochastic approximation — SA

SA or stochastic (sub)-gradient

» letzge X
» For k>0

o Sample wy; obtain g(zk, &) from oracle
o Update z;11 = Py (xr — agg(xk, &), where ag > 0

We'll simply write

Try1 = Px(xp — apgr)

Q A,
O }
e ’/s’ Does this work?

19/35



Stochastic approximation — analysis

Setup

» x; depends on rvs &1,...,&k_1, so itself random
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Stochastic approximation — analysis

Setup
» x; depends on rvs &1,...,&k_1, so itself random
» Of course, xj does not depend on &
» Subgradient method analysis hinges upon: ||z — z*||?

» Stochastic subgradient hinges upon: E[||x), — 2*||?]
Denote: Ry := ||z — 2*||? and 7t := E[Rg] = E|||lzx — z*||?]
Bounding Ry

Rer1 = lzgpr — 2*|3 = [[Pr(aex — argr) — Px(2")]3

o — 2% — argrll3
= Ry + oillgrll3 — 200 (gk, z1 — 2*).

IN

20/35



Stochastic approximation — analysis

Riv1 < Ry + o ||gnll3 — 20 gk, o — 2*)
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» Assume: ||gklla < M on X
» Taking expectation:
That < 1+ oG M? = 200 E[(gi, z — 27)].
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» We need to now get a handle on the last term

» Since x is independent of &, we have
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» Assume: ||gklla < M on X
» Taking expectation:
eyt < 7+ i M? — 20 E[(g, z — )]

» We need to now get a handle on the last term

» Since x is independent of &, we have

El(zr — 2%, g(zx,&))] = EA{E[(zr — 2%, g(zk, &) | n.e—1y]}
E {(z — 2", Elg(xr, &) | p.w-1)]) }
= E[(zr — 2%, Gk)], Gk € OF (xy).
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‘ It remains to bound: E[(x) — x*, Gi)] ‘

» Since F'is cvx, F(z) > F(zk) + (Gk, * — xg) for any z € X

» Thus, in particular
204 E[F(2*) — F (k)] > 204 E[(Gg, =¥ — xy)]
Plug this bound back into the 751 inequality:

rie1 < Tk + apM? = 204 E[(Gy, mp — 7))
20, E[(G,y g — %) < rp — rpyn + g M3
<

20, E[F(x) — F(x%)] g — Tha1 + apM?.

‘ We've bounded the expected progress; What now? ‘




Stochastic approximation — analysis

204 E[F () — F(2*)] < rg — riqn + M2
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Sum up over i = 1,..., k, to obtain

S QaEF@) - f@)]) < mo-ri + MY a?
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20, E[F(zy) — F(2*)] < 7 — mpg1 + o M.

Sum up over i = 1,..., k, to obtain

k
> QaE[F(zi) = f@")]) < rm—rpp+ M2y of
< 7’1+M22.a?.

Divide both sides by >, a;, so

» Set Vi = Z%iai.

» Thus, v, >0and >, v =1

71 —i—MQZioz%

E [Zl 7%i(F(zi) = F(2%)] < = S
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Stochastic approximation — analysis

Bound looks similar to bound in subgradient method
But we wish to say something about xy,
Since v; > 0 and Z,’f ~vi = 1, and we have v, F'(x;)

Easier to talk about averaged

Ty 1= Zf Vii-

f(Zr) <> 7iF (z;) due to convexity
So we finally obtain the inequality

E[F(z) — F(z*)] < s +2]\§i i?i iy
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Stochastic approximation — finally

& Let Dy := maxgex ||z — 2*||2 (act. only need ||z; — 2*|| < Dy)

& Assume a; = v is a constant. Observe that

BIF(3) - Fla")] < 2t M0k

- 2k
& Minimize the rhs over a > 0 to obtain
E[F(z:) — F(a*)] < 2
& If k is not fixed in advance, then choose
o = QDX, i=1,2,...
M\i

& Analyze E[F(z)) — F(z*)] with this choice of stepsize
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& Let Dy := maxgex ||z — 2*||2 (act. only need ||z; — 2*|| < Dy)

& Assume a; = v is a constant. Observe that

BIF(3) - Fla")] < 2t M0k

- 2k
& Minimize the rhs over a > 0 to obtain
E[F(z:) — F(a*)] < 2
& If k is not fixed in advance, then choose
o = HDX, i=1,2,...
M\i

& Analyze E[F(z)) — F(z*)] with this choice of stepsize

‘ We showed O(1/vk) rate
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Stochastic approximation — remarks

Theorem Let f(x,&) be C} convex. Let ey, := VF(zy) — g satisfy
Elex] = 0. Let ||z; — z*|| < D. Also, let o; = 1/(L + ;). Then,

k
E[Zile(ml) — F(z*)] < 2% + Z L en
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Theorem Let f(x,&) be C} convex. Let ey, := VF(zy) — g satisfy
Elex] = 0. Let ||z; — z*|| < D. Also, let o; = 1/(L + ;). Then,

k
E[Zile(ml) — F(z*)] < 2% + Z L en

As before, by using T = %21:1 Tit+1 We get

E[F () ~ F(a)] < 2 + £ Y Ellel®

» Using a; = L + n; where 7; 1/\/5 we obtain

E[F(z) — F(z*)] = O(22) + O(2R)

where o bounds the variance E[||e;||?]

Minimax optimal rate
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Stochastic approximation — remarks

Theorem Suppose f(x,§) are convex and F'(x) is u-strongly convex.
Let zj, := Zf:o 0;z;, where 0; = % we obtain
BIF(@) — F@)] € -t
¢ = p2(k+ 1)

Lacoste-Julien, Schmidt, Bach (2012).

27 /35



Stochastic approximation — remarks

Theorem Suppose f(x,§) are convex and F'(x) is u-strongly convex.
Let zj, := Zf:o 0;z;, where 0; = % we obtain
BIF(@) — F@)] € -t
¢ = p2(k+ 1)

Lacoste-Julien, Schmidt, Bach (2012).
With uniform averaging 7y = %Ez x;, we get O(logk/k).
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Sample average approximation

Assumption: regularization ||z]|2 < B; £ € € closed, bounded. )

Function estimate: F'(z) = E[f(
Subgradient in 0F(z) = E[g(x

Sample Average Approximation (SAA):
m Collect samples &1,...,wm,

m Empirical objective: Fy,(z) := 23" f(x,&)

—m
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Sample average approximation

Assumption: regularization [|z||2 < B; £ € § closed, bounded. )

Sample Average Approximation (SAA):

Collect samples &1, ..., wm
Empirical objective: Fy,(z) := L 3" f(z,&)

—m

aka Empirical Risk Minimization

Confusing: We often optimize F, using stochastic
subgradient; but theoretical guarantees are then only on the

empirical suboptimality E[F,,(Z)] <

m For guarantees on F'(Z)) more work; (regularization + conc.)

F(zy) — F(a*) < O(1/Vk) + O(1/y/m)

28 /35



Online optimization
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Online optimization

We have fixed and known f(z,§)

&1,&9, ... presented to us sequentially

‘ Can be chosen adversarially!

Guess z; Observe ; incur cost f(xg,&;); Update to xpq

We get to see things only sequentially; sequence of samples
shown to us by nature may depend on our guesses

So a typical goal is to minimize Regret

T . T
> hey f(@r, 25) — mingex & > p_q f(, 25)

That is, difference from the best possible solution we could have
attained, had we been shown all the examples (z).

Online optimization is an important idea in machine learning,
game theory, decision making, etc.
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Online gradient descent

Based on Zinkevich (2003)

Slight generalization:
f(z,&) convex (in x); possibly nonsmooth
r € X, a closed, bounded set
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Online gradient descent

Based on Zinkevich (2003)

Slight generalization:
f(z,&) convex (in x); possibly nonsmooth
r € X, a closed, bounded set

‘ Simplify notation: fi(z) = f(x, &) ‘

Regret Ry := 22:1 fre(zr) — mingexy 22:1 fr(z)
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Online gradient descent

Algorithm:

Select some zg € X, and ag > 0
Round k of algo (k > 0):
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Algorithm:
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m Output zy,
Receive k-th function fj
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Online gradient descent

Algorithm:

Select some zg € X, and ag > 0
Round k of algo (k > 0):
m Output zy,
Receive k-th function fj
Incur loss fi(zk)
Pick g € O fi (k)
Update: Tpy1 = Px(.’Ijk — Oékgk)

Using o, = ¢/ k + 1 and assuming ||gx||2 < G, can be
shown that average regret %RT < O(l/\/T)
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OGD - regret bound

Assumption: Lipschitz condition ||0f]2 < G |

33/35



OGD - regret bound

Assumption: Lipschitz condition ||0f]2 < G )

T
xt = argminz fr(x)
reX =1

33/35



OGD - regret bound

Assumption: Lipschitz condition ||0f]2 < G )

T
xt = argminz fr(x)
reX =1

Since g € O fx(zk), we have

fe(@*) > fe(wk) + (gk, z* — x), or
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OGD - regret bound

Assumption: Lipschitz condition ||0f|l2 < G ]

T
= argminz fr(x)
reX =1

Since gi € 0fi(xr), we have

fe(@*) > fe(wk) + (gk, z* — x), or
Je(wg) — fr(@®) < (gr, op — 2%)

Further analysis depends on bounding

k1 — 2713
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OGD regret — bounding distance

Recall: 2441 = Px (2 — aggr). Thus,

|zre1 — %5 = ||Pr(or — argr) — 2|3
= || Px(xr — cawgr) — Px(2z")|3
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Recall: zy41 = Px(zr — argk). Thus,

ka1 — 23

(PX is nonexpan.)

<gk‘7 T — CE'*>

<

| Py () — agr) — x*|3

| Px(z — argr) — Pr(2*)|)3

o) — 2% — crgill3

lzr, = 2™ [13 + aillgkll3 — 200 (gn, 21 — )

or — 213 — ller — 2*|3

Qak

ng%
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Recall: zy41 = Px(zr — argk). Thus,

|2kt1 — 23 = ||Px(zk — argr) — =[5
| Px (2k — argr) — Pr(x*)]3
(PX is nonexpan.) < ||£Uk -z - aka“%

= ok — 2*|3 + fllgrll3 — 20 (gk, z — 2¥)

xp — 5|2 = lxper — z*|12 g
<gk7 Th —:L'*> < H k ”2 ” +1 H2 + 7”91@“%
Qak 2

Now invoke fi(zx) — fu(z*) < (gk, T — =*)

xE — 25|12 = leper — %12 s
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OGD regret — bounding distance

Recall: zy41 = Px(zr — argk). Thus,

|2kt1 — 23 = ||Px(zk — argr) — =[5
= || Px(xr — cawgr) — Px(z")|3
(PX is nonexpan.) < ||£Uk -z - akaHg

= Jzx —2")3 + allgrll3 — 20k (g, or —27)

xp — 5|2 = lxper — z*|12 g
<gk7 Th —:L'*> < H k ”2 ” +1 H2 + Hng%
20&]c 2

Now invoke fi(zx) — fu(z*) < (gk, T — =*)

< e =23 — llwnss — 27|13

Fe(wr) — fu(z®) < Do

Sumover k=1,...,T, let ap =c¢/Vk+ 1, use ||gi]l2 < G

(823 2
+ % gl

Obtain Ry < O(VT)
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