Advanced Optimization

(10-801: CMU)

Lecture 21 Incremental methods; Stochastic Optimization 02 Apr 2014

Suvrit Sra

$$\min \quad F(x) = \frac{1}{m} \sum_{i=1}^{m} f_i(x)$$

$$\min \quad F(x) = \frac{1}{m} \sum_{i=1}^{m} f_i(x)$$

► We saw incremental gradient methods

$$x_{k+1} = x_k - \frac{\eta_k}{m} \nabla f_{i(k)}(x_k), \quad k \ge 0.$$

$$\min \quad F(x) = \frac{1}{m} \sum_{i=1}^{m} f_i(x)$$

▶ We saw incremental gradient methods

$$x_{k+1} = x_k - \frac{\eta_k}{m} \nabla f_{i(k)}(x_k), \quad k \ge 0.$$

► View as gradient-descent with perturbed gradients

$$x_{k+1} = x_k - \frac{\eta_k}{m} (\nabla F(x_k) + \frac{\mathbf{e_k}}{})$$

$$\min \quad F(x) = \frac{1}{m} \sum_{i=1}^{m} f_i(x)$$

▶ We saw incremental gradient methods

$$x_{k+1} = x_k - \frac{\eta_k}{m} \nabla f_{i(k)}(x_k), \quad k \ge 0.$$

► View as gradient-descent with perturbed gradients

$$x_{k+1} = x_k - \frac{\eta_k}{m} (\nabla F(x_k) + \frac{\mathbf{e_k}}{})$$

▶ Perturbation slows down rate of convergence. Typically $\eta_k = O(1/k)$; convergence rate also O(1/k) (sublinear).

$$\min \quad F(x) = \frac{1}{m} \sum_{i=1}^{m} f_i(x)$$

► We saw incremental gradient methods

$$x_{k+1} = x_k - \frac{\eta_k}{m} \nabla f_{i(k)}(x_k), \quad k \ge 0.$$

► View as gradient-descent with perturbed gradients

$$x_{k+1} = x_k - \frac{\eta_k}{m} (\nabla F(x_k) + \mathbf{e_k})$$

- ▶ Perturbation slows down rate of convergence. Typically $\eta_k = O(1/k)$; convergence rate also O(1/k) (sublinear).
- ► Can we reduce impact of perturbation to speed up?

$$\min F(x) = \frac{1}{m} \sum_{i=1}^{m} f_i(x)$$

$$\min F(x) = \frac{1}{m} \sum_{i=1}^{m} f_i(x)$$

The incremental gradient method (IGM)

- ▶ Let $x_0 \in \mathbb{R}^n$
- ▶ For $k \ge 0$

$$\min F(x) = \frac{1}{m} \sum_{i=1}^{m} f_i(x)$$

The incremental gradient method (IGM)

- ▶ Let $x_0 \in \mathbb{R}^n$
- ightharpoonup For k > 0
 - 1 Pick $i(k) \in \{1, 2, ..., m\}$ uniformly at random
 - $x_{k+1} = x_k \eta_k \nabla f_{i(k)}(x_k)$

$$\min F(x) = \frac{1}{m} \sum_{i=1}^{m} f_i(x)$$

The incremental gradient method (IGM)

- ▶ Let $x_0 \in \mathbb{R}^n$
- ightharpoonup For k > 0
 - 1 Pick $i(k) \in \{1, 2, ..., m\}$ uniformly at random
 - $x_{k+1} = x_k \eta_k \nabla f_{i(k)}(x_k)$

 $g \equiv \nabla f_{i(k)}$ may be viewed as a stochastic gradient

$$\min F(x) = \frac{1}{m} \sum_{i=1}^{m} f_i(x)$$

The incremental gradient method (IGM)

- ▶ Let $x_0 \in \mathbb{R}^n$
- ightharpoonup For k > 0
 - 1 Pick $i(k) \in \{1, 2, ..., m\}$ uniformly at random
 - $x_{k+1} = x_k \eta_k \nabla f_{i(k)}(x_k)$

$$g \equiv \nabla f_{i(k)}$$
 may be viewed as a **stochastic gradient**

$$g := g^{\mathsf{true}} + e$$
, where e is mean-zero noise: $\mathbb{E}[e] = 0$

- ▶ Index i(k) chosen uniformly from $\{1, ..., m\}$
- ► Thus, in expectation:

$$\mathbb{E}[g] =$$

- ▶ Index i(k) chosen uniformly from $\{1, ..., m\}$
- ► Thus, in expectation:

$$\mathbb{E}[g] = \mathbb{E}_i[\nabla f_i(x)]$$

- ▶ Index i(k) chosen uniformly from $\{1, ..., m\}$
- ► Thus, in expectation:

$$\mathbb{E}[g] = \mathbb{E}_i[\nabla f_i(x)] = \sum_i \frac{1}{m} \nabla f_i(x) =$$

- ▶ Index i(k) chosen uniformly from $\{1, ..., m\}$
- ► Thus, in expectation:

$$\mathbb{E}[g] = \mathbb{E}_i[\nabla f_i(x)] = \sum_i \frac{1}{m} \nabla f_i(x) = \nabla F(x)$$

- ▶ Index i(k) chosen uniformly from $\{1, ..., m\}$
- ► Thus, in expectation:

$$\mathbb{E}[g] = \mathbb{E}_i[\nabla f_i(x)] = \sum_i \frac{1}{m} \nabla f_i(x) = \nabla F(x)$$

▶ Alternatively, $\mathbb{E}[g - g^{\mathsf{true}}] = \mathbb{E}[e] = 0.$

- ▶ Index i(k) chosen uniformly from $\{1, ..., m\}$
- ► Thus, in expectation:

$$\mathbb{E}[g] = \mathbb{E}_i[\nabla f_i(x)] = \sum_i \frac{1}{m} \nabla f_i(x) = \nabla F(x)$$

- ▶ Alternatively, $\mathbb{E}[g g^{\mathsf{true}}] = \mathbb{E}[e] = 0.$
- ▶ We call g an **unbiased estimate** of the gradient

- ▶ Index i(k) chosen uniformly from $\{1, ..., m\}$
- ► Thus, in expectation:

$$\mathbb{E}[g] = \mathbb{E}_i[\nabla f_i(x)] = \sum_i \frac{1}{m} \nabla f_i(x) = \nabla F(x)$$

- ▶ Alternatively, $\mathbb{E}[g g^{\mathsf{true}}] = \mathbb{E}[e] = 0.$
- ▶ We call g an **unbiased estimate** of the gradient
- \blacktriangleright Here, we **obtained** g in a two step process:
 - \circ Sample: pick an index i(k) unif. at random
 - \circ Oracle: Compute a stochastic gradient based on i(k)

$$x_{k+1} = x_k - \eta_k g_k(x_k, \xi_k),$$

where ξ_k is a rv such that

$$\mathbb{E}_{\xi_k}[g_k(x_k,\xi_k)|x_k] = \nabla F(x_k).$$

$$x_{k+1} = x_k - \eta_k g_k(x_k, \xi_k),$$

where ξ_k is a rv such that

$$\mathbb{E}_{\xi_k}[g_k(x_k,\xi_k)|x_k] = \nabla F(x_k).$$

▶ That is, g_k is a **stochastic gradient**.

$$x_{k+1} = x_k - \eta_k g_k(x_k, \xi_k),$$

where ξ_k is a rv such that

$$\mathbb{E}_{\xi_k}[g_k(x_k, \xi_k)|x_k] = \nabla F(x_k).$$

▶ That is, g_k is a **stochastic gradient**.

Example: IGM with $g_k = \nabla f_{i(k)}(x_k)$ uses $\xi_k = i(k)$

$$x_{k+1} = x_k - \eta_k g_k(x_k, \xi_k),$$

where ξ_k is a rv such that

$$\mathbb{E}_{\xi_k}[g_k(x_k, \xi_k)|x_k] = \nabla F(x_k).$$

▶ That is, g_k is a **stochastic gradient**.

Example: IGM with
$$g_k = \nabla f_{i(k)}(x_k)$$
 uses $\xi_k = i(k)$

- $ightharpoonup g_k$ equals ∇F only in expectation
- ► Individual values can vary a lot

$$x_{k+1} = x_k - \eta_k g_k(x_k, \xi_k),$$

where ξ_k is a rv such that

$$\mathbb{E}_{\xi_k}[g_k(x_k, \xi_k)|x_k] = \nabla F(x_k).$$

▶ That is, g_k is a **stochastic gradient**.

Example: IGM with $g_k = \nabla f_{i(k)}(x_k)$ uses $\xi_k = i(k)$

- $ightharpoonup q_k$ equals ∇F only in expectation
- ► Individual values can vary a lot
- ▶ This variance $(\mathbb{E}[\|g \nabla F\|^2])$ influences rate of convergence.

▶ Instead of using $g_k = \nabla f_{i(k)}(x_k)$, correct it by using true gradient every m steps (recall: $F = \frac{1}{m} \sum_{i=1}^m f_i(x)$)

- ▶ Instead of using $g_k = \nabla f_{i(k)}(x_k)$, correct it by using true gradient every m steps (recall: $F = \frac{1}{m} \sum_{i=1}^m f_i(x)$)
- ▶ Reduces variance of $g_k(x_k, \xi_k)$; speeds up convergence

- ▶ Instead of using $g_k = \nabla f_{i(k)}(x_k)$, correct it by using true gradient every m steps (recall: $F = \frac{1}{m} \sum_{i=1}^m f_i(x)$)
- ▶ Reduces variance of $g_k(x_k, \xi_k)$; speeds up convergence

$$\nabla F(\bar{x}) = \frac{1}{m} \sum_{i} f_{i}(\bar{x})$$

$$x_{k+1} = x_{k} - \eta_{k} \left[\underbrace{\nabla f_{i(k)}(x_{k}) - \underbrace{\nabla f_{i(k)}(\bar{x}) + \nabla F(\bar{x})}}_{g_{k}(x_{k}, \xi_{k})} \right]$$

- ▶ Instead of using $g_k = \nabla f_{i(k)}(x_k)$, correct it by using true gradient every m steps (recall: $F = \frac{1}{m} \sum_{i=1}^m f_i(x)$)
- ▶ Reduces variance of $g_k(x_k, \xi_k)$; speeds up convergence

$$\nabla F(\bar{x}) = \frac{1}{m} \sum_{i} f_{i}(\bar{x})$$

$$x_{k+1} = x_{k} - \eta_{k} \left[\underbrace{\nabla f_{i(k)}(x_{k}) - \nabla f_{i(k)}(\bar{x}) + \nabla F(\bar{x})}_{g_{k}(x_{k}, \xi_{k})} \right]$$

▶ Thus, with $\xi_k = i(k)$, $\mathbb{E}_{\xi}[g_k|x_k] = \nabla F(x_k)$

- ▶ Instead of using $g_k = \nabla f_{i(k)}(x_k)$, correct it by using true gradient every m steps (recall: $F = \frac{1}{m} \sum_{i=1}^m f_i(x)$)
- ▶ Reduces variance of $g_k(x_k, \xi_k)$; speeds up convergence

$$\nabla F(\bar{x}) = \frac{1}{m} \sum_{i} f_{i}(\bar{x})$$

$$x_{k+1} = x_{k} - \eta_{k} \left[\underbrace{\nabla f_{i(k)}(x_{k}) - \nabla f_{i(k)}(\bar{x}) + \nabla F(\bar{x})}_{g_{k}(x_{k}, \xi_{k})} \right]$$

▶ Thus, with $\xi_k = i(k)$, $\mathbb{E}_{\xi}[g_k|x_k] = \nabla F(x_k)$

Same expectation, lower variance

- ▶ Instead of using $g_k = \nabla f_{i(k)}(x_k)$, correct it by using true gradient every m steps (recall: $F = \frac{1}{m} \sum_{i=1}^m f_i(x)$)
- ▶ Reduces variance of $g_k(x_k, \xi_k)$; speeds up convergence

$$\nabla F(\bar{x}) = \frac{1}{m} \sum_{i} f_{i}(\bar{x})$$

$$x_{k+1} = x_{k} - \eta_{k} \left[\underbrace{\nabla f_{i(k)}(x_{k}) - \nabla f_{i(k)}(\bar{x}) + \nabla F(\bar{x})}_{g_{k}(x_{k}, \xi_{k})} \right]$$

▶ Thus, with $\xi_k = i(k)$, $\mathbb{E}_{\xi}[g_k|x_k] = \nabla F(x_k)$

Same expectation, lower variance

Say $\bar{x}, x_k \to x^*$. Then $\nabla F(\bar{x}) \to 0$.

- ▶ Instead of using $g_k = \nabla f_{i(k)}(x_k)$, correct it by using true gradient every m steps (recall: $F = \frac{1}{m} \sum_{i=1}^m f_i(x)$)
- ▶ Reduces variance of $g_k(x_k, \xi_k)$; speeds up convergence

$$\nabla F(\bar{x}) = \frac{1}{m} \sum_{i} f_{i}(\bar{x})$$

$$x_{k+1} = x_{k} - \eta_{k} \left[\underbrace{\nabla f_{i(k)}(x_{k}) - \nabla f_{i(k)}(\bar{x}) + \nabla F(\bar{x})}_{g_{k}(x_{k}, \xi_{k})} \right]$$

▶ Thus, with $\xi_k = i(k)$, $\mathbb{E}_{\xi}[g_k|x_k] = \nabla F(x_k)$

Same expectation, lower variance

Say $\bar{x}, x_k \to x^*$. Then $\nabla F(\bar{x}) \to 0$. Thus, if $\nabla f_i(\bar{x}) \to \nabla f_i(x^*)$, then

- ▶ Instead of using $g_k = \nabla f_{i(k)}(x_k)$, correct it by using true gradient every m steps (recall: $F = \frac{1}{m} \sum_{i=1}^m f_i(x)$)
- ▶ Reduces variance of $g_k(x_k, \xi_k)$; speeds up convergence

$$\nabla F(\bar{x}) = \frac{1}{m} \sum_{i} f_{i}(\bar{x})$$

$$x_{k+1} = x_{k} - \eta_{k} \left[\underbrace{\nabla f_{i(k)}(x_{k}) - \nabla f_{i(k)}(\bar{x}) + \nabla F(\bar{x})}_{g_{k}(x_{k}, \xi_{k})} \right]$$

▶ Thus, with $\xi_k = i(k)$, $\mathbb{E}_{\xi}[g_k|x_k] = \nabla F(x_k)$

Same expectation, lower variance

Say
$$\bar{x}, x_k \to x^*$$
. Then $\nabla F(\bar{x}) \to 0$. Thus, if $\nabla f_i(\bar{x}) \to \nabla f_i(x^*)$, then
$$\nabla f_i(x_k) - \nabla f_i(\bar{x}) + \nabla F(\bar{x}) \to \nabla f_i(x_k) - \nabla f_i(x^*) \to 0.$$

- For $s \ge 1$:
 - $\bar{x} \leftarrow \bar{x}_{s-1}$
 - $\mathbf{2} \ \bar{g} \leftarrow \nabla F(\bar{x})$

(full gradient computation)

■ For s > 1:

```
1 \bar{x} \leftarrow \bar{x}_{s-1}
2 \bar{g} \leftarrow \nabla F(\bar{x}) (full gradient computation)
```

 $x_0 = \bar{x}; \quad t \leftarrow \text{RAND}(1, m)$ (randomized stopping)

■ For s > 1:

$$\bar{x} \leftarrow \bar{x}_{s-1}$$

3
$$x_0 = \bar{x}; \quad t \leftarrow \text{RAND}(1, m)$$
 (randomized stopping)

4 For
$$k = 0, 1, \dots, t-1$$

■ Randomly pick
$$i(k) \in [1..m]$$

$$x_{k+1} = x_k - \eta_k (\nabla f_{i(k)}(x_k) - \nabla f_{i(k)}(\bar{x}) + \bar{g})$$

For $s \geq 1$:

$$\bar{x} \leftarrow \bar{x}_{s-1}$$

3
$$x_0 = \bar{x}; \quad t \leftarrow \text{RAND}(1, m)$$
 (randomized stopping)

4 For
$$k = 0, 1, \dots, t-1$$

■ Randomly pick
$$i(k) \in [1..m]$$

$$x_{k+1} = x_k - \eta_k (\nabla f_{i(k)}(x_k) - \nabla f_{i(k)}(\bar{x}) + \bar{g})$$

$$\bar{x}_s \leftarrow x_t$$

■ For s > 1:

$$\bar{x} \leftarrow \bar{x}_{s-1}$$

3
$$x_0 = \bar{x}; \quad t \leftarrow \text{RAND}(1, m)$$
 (randomized stopping)

4 For
$$k = 0, 1, \dots, t-1$$

■ Randomly pick
$$i(k) \in [1..m]$$

$$x_{k+1} = x_k - \eta_k(\nabla f_{i(k)}(x_k) - \nabla f_{i(k)}(\bar{x}) + \bar{g})$$

$$\bar{x}_s \leftarrow x_t$$

Theorem Assume each $f_i(x)$ is smooth convex and F(x) is strongly-convex. Then, for sufficiently large n, there is $\alpha < 1$ s.t.

$$\mathbb{E}[F(\bar{x}_s) - F(x^*)] \le \alpha^s [F(\bar{x}_0) - F(x^*)]$$

SG with variance reduction

- For s > 1:
 - $\bar{x} \leftarrow \bar{x}_{s-1}$

 - 3 $x_0 = \bar{x}; \quad t \leftarrow \text{RAND}(1, m)$ (randomized stopping)
 - 4 For $k = 0, 1, \dots, t 1$
 - Randomly pick $i(k) \in [1..m]$
 - $x_{k+1} = x_k \eta_k(\nabla f_{i(k)}(x_k) \nabla f_{i(k)}(\bar{x}) + \bar{g})$
 - $\bar{x}_s \leftarrow x_t$

Theorem Assume each $f_i(x)$ is smooth convex and F(x) is strongly-convex. Then, for sufficiently large n, there is $\alpha < 1$ s.t.

$$\mathbb{E}[F(\bar{x}_s) - F(x^*)] \le \alpha^s [F(\bar{x}_0) - F(x^*)]$$

Rmk: Typically for stochastic methods we make stmts of the form

$$\mathbb{E}[F(x_k) - F(x^*)] \le O(1/k)$$

Stochastic Optimization

Stochastic LP

where $\omega_1 \sim \mathcal{U}[1,5]$ and $\omega_2 \sim \mathcal{U}[1/3,1]$

where
$$\omega_1 \sim \mathcal{U}[1,5]$$
 and $\omega_2 \sim \mathcal{U}[1/3,1]$

- ► The constraints are not deterministic!
- ▶ But we have an idea about what randomness is there

where
$$\omega_1 \sim \mathcal{U}[1,5]$$
 and $\omega_2 \sim \mathcal{U}[1/3,1]$

- ► The constraints are not deterministic!
- ▶ But we have an idea about what randomness is there
- ▶ How do we *solve* this LP?

where
$$\omega_1 \sim \mathcal{U}[1,5]$$
 and $\omega_2 \sim \mathcal{U}[1/3,1]$

- ► The constraints are not deterministic!
- ▶ But we have an idea about what randomness is there
- ▶ How do we *solve* this LP?
- ▶ What does it even mean to solve it?

where
$$\omega_1 \sim \mathcal{U}[1,5]$$
 and $\omega_2 \sim \mathcal{U}[1/3,1]$

- ▶ The constraints are not deterministic!
- ▶ But we have an idea about what randomness is there
- ► How do we solve this LP?
- ▶ What does it even mean to solve it?
- ▶ If ω has been observed, problem becomes deterministic, and can be solved as a usual LP (aka wait-and-watch)

▶ But we cannot "wait-and-watch" —

 \blacktriangleright But we cannot "wait-and-watch" — we need to decide on x before knowing the value of ω

- \blacktriangleright But we cannot "wait-and-watch" we need to decide on x before knowing the value of ω
- ▶ What to do without knowing exact values for ω_1, ω_2 ?

- \blacktriangleright But we cannot "wait-and-watch" we need to decide on x before knowing the value of ω
- ▶ What to do without knowing exact values for ω_1, ω_2 ?
- ► Some ideas
 - Guess the uncertainty
 - Probabilistic / Chance constraints
 - 0 ...

Stochastic optimization – modeling

Some guesses

- ♦ *Unbiased / Average case:* Choose **mean values** for each r.v.
- ♠ Robust / Worst case: Choose worst case values
- ♠ Explorative / Best case: Choose best case values
- ♠ None of these: Sample...

$$\min x_1 + x_2
\omega_1 x_1 + x_2 \ge 10
\omega_2 x_1 + x_2 \ge 5
x_1, x_2 \ge 0,$$

where $\omega_1 \sim \mathcal{U}[1,5]$ and $\omega_2 \sim \mathcal{U}[1/3,1]$

Unbiased / Average case:

$$\mathbb{E}[\omega_1] = 3, \quad \mathbb{E}[\omega_2] = 2/3$$

$$\min \quad x_1 + x_2 \qquad x_1^* + x_2^* = \mathbf{5.7143...}$$

$$3x_1 + x_2 \quad \ge \quad 10 \qquad (x_1^*, x_2^*) \approx (15/7, 25/7).$$

$$(2/3)x_1 + x_2 \quad \ge \quad 5$$

$$x_1, x_2 \quad \ge \quad 0,$$

$$\min x_1 + x_2
\omega_1 x_1 + x_2 \ge 10
\omega_2 x_1 + x_2 \ge 5
x_1, x_2 \ge 0,$$

where $\omega_1 \sim \mathcal{U}[1,5]$ and $\omega_2 \sim \mathcal{U}[1/3,1]$

Worst case:

$$\omega_{1} = 1, \quad \omega_{2} = 1/3$$

$$\min \quad x_{1} + x_{2} \qquad x_{1}^{*} + x_{2}^{*} = \mathbf{10}$$

$$1x_{1} + x_{2} \quad \geq \quad 10 \qquad (x_{1}^{*}, x_{2}^{*}) \approx (41/12, 79/12).$$

$$(1/3)x_{1} + x_{2} \quad \geq \quad 5$$

$$x_{1}, x_{2} \quad \geq \quad 0,$$

$$\min x_1 + x_2
\omega_1 x_1 + x_2 \ge 10
\omega_2 x_1 + x_2 \ge 5
x_1, x_2 \ge 0,$$

where $\omega_1 \sim \mathcal{U}[1,5]$ and $\omega_2 \sim \mathcal{U}[1/3,1]$

Best case:

$$\omega_1 = 5, \quad \mathbb{E}[\omega_2] = 1$$

$$\min \quad x_1 + x_2 \qquad \qquad x_1^* + x_2^* = \mathbf{5}$$

$$5x_1 + x_2 \quad \ge \quad 10 \qquad (x_1^*, x_2^*) \approx (17/8, 23/8).$$

$$1x_1 + x_2 \quad \ge \quad 5$$

$$x_1, x_2 \quad \ge \quad 0,$$

$$\min F(x) := \mathbb{E}_{\xi}[f(x,\xi)]$$

 \blacktriangleright ξ follows some **known** distribution

$$\min F(x) := \mathbb{E}_{\xi}[f(x,\xi)]$$

- \blacktriangleright ξ follows some **known** distribution
- ▶ Previous example, ξ took values in a **discrete set** of size m (might as well say $\xi \in \{1, ..., m\}$)

$$\min F(x) := \mathbb{E}_{\xi}[f(x,\xi)]$$

- \blacktriangleright ξ follows some **known** distribution
- ▶ Previous example, ξ took values in a **discrete set** of size m (might as well say $\xi \in \{1, ..., m\}$)
- ▶ so that $f(x,\xi) = f_{\xi}(x)$; so assuming uniform distribution, we had $F(x) = \mathbb{E}_{\xi} f(x,\xi) = \frac{1}{m} \sum_{i=1}^{m} f_{i}(x)$

$$\min F(x) := \mathbb{E}_{\xi}[f(x,\xi)]$$

- \blacktriangleright ξ follows some **known** distribution
- ▶ Previous example, ξ took values in a **discrete set** of size m (might as well say $\xi \in \{1, ..., m\}$)
- ▶ so that $f(x,\xi) = f_{\xi}(x)$; so assuming uniform distribution, we had $F(x) = \mathbb{E}_{\xi} f(x,\xi) = \frac{1}{m} \sum_{i=1}^{m} f_{i}(x)$
- ▶ But ξ can be **non-discrete**; we won't be able to compute the expectation in closed form, since

$$F(x) = \int f(x,\xi)dP(\xi),$$

is a difficult high-dimensional integral.

$$\min_{x \in \mathcal{X}} F(x) := \mathbb{E}_{\xi}[f(x, \xi)]$$

Setup and Assumptions

1. $\mathcal{X} \subset \mathbb{R}^n$ compact convex set

$$\min_{x \in \mathcal{X}} F(x) := \mathbb{E}_{\xi}[f(x, \xi)]$$

Setup and Assumptions

- **1.** $\mathcal{X} \subset \mathbb{R}^n$ compact convex set
- **2.** ξ is a random vector whose probability distribution P is supported on $\Omega \subset \mathbb{R}^d$; so $f: \mathcal{X} \times \Omega \to \mathbb{R}$

$$\min_{x \in \mathcal{X}} F(x) := \mathbb{E}_{\xi}[f(x, \xi)]$$

Setup and Assumptions

- **1.** $\mathcal{X} \subset \mathbb{R}^n$ compact convex set
- **2.** ξ is a random vector whose probability distribution P is supported on $\Omega \subset \mathbb{R}^d$; so $f: \mathcal{X} \times \Omega \to \mathbb{R}$
- 3. The expectation

$$\mathbb{E}[f(x,\xi)] = \int_{\Omega} f(x,\xi) dP(\xi)$$

is well-defined and finite valued for every $x \in \mathcal{X}$.

$$\min_{x \in \mathcal{X}} F(x) := \mathbb{E}_{\xi}[f(x, \xi)]$$

Setup and Assumptions

- **1.** $\mathcal{X} \subset \mathbb{R}^n$ compact convex set
- **2.** ξ is a random vector whose probability distribution P is supported on $\Omega \subset \mathbb{R}^d$; so $f: \mathcal{X} \times \Omega \to \mathbb{R}$
- 3. The expectation

$$\mathbb{E}[f(x,\xi)] = \int_{\Omega} f(x,\xi) dP(\xi)$$

is well-defined and finite valued for every $x \in \mathcal{X}$.

4. For every $\xi \in \Omega$, $f(\cdot, \xi)$ is convex.

Convex stochastic optimization problem

► Cannot compute expectation in general

- ► Cannot compute expectation in general
- ► Computational techniques based on sampling

- ► Cannot compute expectation in general
- Computational techniques based on sampling

Assumption 1: Possible to generate independent identically distributed (iid) samples ξ_1, ξ_2, \dots

Assumption 2: For pair $(x,\xi)\in\mathcal{X}\times\Omega$, oracle yields stochastic gradient $g(x,\xi)$, i.e.,

$$G(x) := \mathbb{E}[g(x,\xi)]$$
 s.t. $G(x) \in \partial F(x)$.

- ► Cannot compute expectation in general
- ► Computational techniques based on sampling

Assumption 1: Possible to generate independent identically distributed (iid) samples ξ_1, ξ_2, \ldots

Assumption 2: For pair $(x,\xi)\in\mathcal{X}\times\Omega$, oracle yields stochastic gradient $g(x,\xi)$, i.e.,

$$G(x) := \mathbb{E}[g(x,\xi)]$$
 s.t. $G(x) \in \partial F(x)$.

Theorem Let $\xi \in \Omega$; If $f(\cdot, \xi)$ is convex, and $F(\cdot)$ is finite valued in a neighborhood of x, then

$$\partial F(x) = \mathbb{E}[\partial_x f(x,\xi)].$$

- ► Cannot compute expectation in general
- ► Computational techniques based on sampling

Assumption 1: Possible to generate independent identically distributed (iid) samples ξ_1, ξ_2, \dots

Assumption 2: For pair $(x,\xi)\in\mathcal{X}\times\Omega$, oracle yields stochastic gradient $g(x,\xi)$, i.e.,

$$G(x) := \mathbb{E}[g(x,\xi)]$$
 s.t. $G(x) \in \partial F(x)$.

Theorem Let $\xi \in \Omega$; If $f(\cdot, \xi)$ is convex, and $F(\cdot)$ is finite valued in a neighborhood of x, then

$$\partial F(x) = \mathbb{E}[\partial_x f(x,\xi)].$$

▶ So $g(x,\omega) \in \partial_x f(x,\omega)$ is a stochastic subgradient.

- ♣ Stochastic Approximation (SA)
 - ightharpoonup Sample ξ_k iid

- Stochastic Approximation (SA)
 - ▶ Sample ξ_k iid
 - ▶ Generate stochastic subgradient $g(x,\xi)$

- Stochastic Approximation (SA)
 - ▶ Sample ξ_k iid
 - ▶ Generate stochastic subgradient $g(x,\xi)$
 - ▶ Use that in a subgradient method

- Stochastic Approximation (SA)
 - ▶ Sample ξ_k iid
 - ▶ Generate stochastic subgradient $g(x,\xi)$
 - ▶ Use that in a subgradient method
- Sample average approximation (SAA)

- Stochastic Approximation (SA)
 - ▶ Sample ξ_k iid
 - ▶ Generate stochastic subgradient $g(x,\xi)$
 - ▶ Use that in a subgradient method
- Sample average approximation (SAA)
 - ▶ Generate m iid samples, ξ_1, \ldots, ξ_m

- Stochastic Approximation (SA)
 - ▶ Sample ξ_k iid
 - ▶ Generate stochastic subgradient $g(x,\xi)$
 - ▶ Use that in a subgradient method
- Sample average approximation (SAA)
 - ▶ Generate m iid samples, ξ_1, \ldots, ξ_m
 - ▶ Consider empirical objective $\hat{F}_m := m^{-1} \sum_i f(x, \xi_i)$

- Stochastic Approximation (SA)
 - ▶ Sample ξ_k iid
 - ▶ Generate stochastic subgradient $g(x,\xi)$
 - ▶ Use that in a subgradient method
- Sample average approximation (SAA)
 - ▶ Generate m iid samples, ξ_1, \ldots, ξ_m
 - ► Consider empirical objective $\hat{F}_m := m^{-1} \sum_i f(x, \xi_i)$
 - ► SAA refers to creation of this **sample average problem**
 - ▶ Minimizing \hat{F}_m still needs to be done!

Stochastic approximation – SA

SA or stochastic (sub)-gradient

- ▶ Let $x_0 \in \mathcal{X}$
- ightharpoonup For k > 0
 - Sample ω_k ; obtain $g(x_k, \xi_k)$ from oracle
 - \circ Update $x_{k+1} = P_{\mathcal{X}}(x_k \alpha_k g(x_k, \xi_k))$, where $\alpha_k > 0$

Stochastic approximation – SA

SA or stochastic (sub)-gradient

- ▶ Let $x_0 \in \mathcal{X}$
- ightharpoonup For k > 0
 - Sample ω_k ; obtain $g(x_k, \xi_k)$ from oracle
 - \circ Update $x_{k+1} = P_{\mathcal{X}}(x_k \alpha_k g(x_k, \xi_k))$, where $\alpha_k > 0$

We'll simply write

$$x_{k+1} = P_{\mathcal{X}} \big(x_k - \alpha_k g_k \big)$$

Stochastic approximation – SA

SA or stochastic (sub)-gradient

- ▶ Let $x_0 \in \mathcal{X}$
- ightharpoonup For k > 0
 - Sample ω_k ; obtain $g(x_k, \xi_k)$ from oracle
 - \circ Update $x_{k+1} = P_{\mathcal{X}}(x_k \alpha_k g(x_k, \xi_k))$, where $\alpha_k > 0$

We'll simply write

$$x_{k+1} = P_{\mathcal{X}} (x_k - \alpha_k g_k)$$

Does this work?

Setup

 $\blacktriangleright x_k$ depends on rvs ξ_1, \ldots, ξ_{k-1} , so itself random

- $\blacktriangleright x_k$ depends on rvs ξ_1, \ldots, ξ_{k-1} , so itself random
- ▶ Of course, x_k does not depend on ξ_k

- $\blacktriangleright x_k$ depends on rvs ξ_1, \ldots, ξ_{k-1} , so itself random
- ▶ Of course, x_k does not depend on ξ_k
- ▶ Subgradient method analysis hinges upon: $||x_k x^*||^2$

- $\blacktriangleright x_k$ depends on rvs ξ_1, \ldots, ξ_{k-1} , so itself random
- ▶ Of course, x_k does not depend on ξ_k
- ▶ Subgradient method analysis hinges upon: $||x_k x^*||^2$
- ▶ Stochastic subgradient hinges upon: $\mathbb{E}[||x_k x^*||^2]$

- $\blacktriangleright x_k$ depends on rvs ξ_1, \ldots, ξ_{k-1} , so itself random
- ▶ Of course, x_k does not depend on ξ_k
- ▶ Subgradient method analysis hinges upon: $||x_k x^*||^2$
- ▶ Stochastic subgradient hinges upon: $\mathbb{E}[\|x_k x^*\|^2]$

Denote:
$$R_k := ||x_k - x^*||^2$$
 and $r_k := \mathbb{E}[R_k] = \mathbb{E}[||x_k - x^*||^2]$

Setup

- $\blacktriangleright \ x_k$ depends on rvs ξ_1, \ldots, ξ_{k-1} , so itself random
- ▶ Of course, x_k does not depend on ξ_k
- ▶ Subgradient method analysis hinges upon: $||x_k x^*||^2$
- lacktriangle Stochastic subgradient hinges upon: $\mathbb{E}[\|x_k x^*\|^2]$

Denote:
$$R_k := ||x_k - x^*||^2$$
 and $r_k := \mathbb{E}[R_k] = \mathbb{E}[||x_k - x^*||^2]$

Bounding R_{k+1}

$$R_{k+1} = \|x_{k+1} - x^*\|_2^2 = \|P_{\mathcal{X}}(x_k - \alpha_k g_k) - P_{\mathcal{X}}(x^*)\|_2^2$$

Setup

- $\blacktriangleright x_k$ depends on rvs ξ_1, \ldots, ξ_{k-1} , so itself random
- ▶ Of course, x_k does not depend on ξ_k
- ▶ Subgradient method analysis hinges upon: $||x_k x^*||^2$
- lacktriangle Stochastic subgradient hinges upon: $\mathbb{E}[\|x_k x^*\|^2]$

Denote:
$$R_k := ||x_k - x^*||^2$$
 and $r_k := \mathbb{E}[R_k] = \mathbb{E}[||x_k - x^*||^2]$

Bounding R_{k+1}

$$R_{k+1} = \|x_{k+1} - x^*\|_2^2 = \|P_{\mathcal{X}}(x_k - \alpha_k g_k) - P_{\mathcal{X}}(x^*)\|_2^2$$

$$\leq \|x_k - x^* - \alpha_k g_k\|_2^2$$

Setup

- $\blacktriangleright x_k$ depends on rvs ξ_1, \ldots, ξ_{k-1} , so itself random
- ▶ Of course, x_k does not depend on ξ_k
- ▶ Subgradient method analysis hinges upon: $||x_k x^*||^2$
- lacktriangle Stochastic subgradient hinges upon: $\mathbb{E}[\|x_k x^*\|^2]$

Denote:
$$R_k := \|x_k - x^*\|^2$$
 and $r_k := \mathbb{E}[R_k] = \mathbb{E}[\|x_k - x^*\|^2]$

Bounding R_{k+1}

$$R_{k+1} = \|x_{k+1} - x^*\|_2^2 = \|P_{\mathcal{X}}(x_k - \alpha_k g_k) - P_{\mathcal{X}}(x^*)\|_2^2$$

$$\leq \|x_k - x^* - \alpha_k g_k\|_2^2$$

$$= R_k + \alpha_k^2 \|g_k\|_2^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle.$$

$$R_{k+1} \le R_k + \alpha_k^2 ||g_k||_2^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

$$R_{k+1} \le R_k + \alpha_k^2 ||g_k||_2^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

- ▶ Assume: $||g_k||_2 \le M$ on \mathcal{X}
- ► Taking expectation:

$$r_{k+1} \le r_k + \alpha_k^2 M^2 - 2\alpha_k \mathbb{E}[\langle g_k, x_k - x^* \rangle].$$

$$R_{k+1} \le R_k + \alpha_k^2 ||g_k||_2^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

- ▶ Assume: $||g_k||_2 \le M$ on \mathcal{X}
- ► Taking expectation:

$$r_{k+1} \le r_k + \alpha_k^2 M^2 - 2\alpha_k \mathbb{E}[\langle g_k, x_k - x^* \rangle].$$

▶ We need to now get a handle on the last term

$$R_{k+1} \le R_k + \alpha_k^2 ||g_k||_2^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

- ▶ Assume: $||g_k||_2 \le M$ on \mathcal{X}
- ► Taking expectation:

$$r_{k+1} \le r_k + \alpha_k^2 M^2 - 2\alpha_k \mathbb{E}[\langle g_k, x_k - x^* \rangle].$$

- ▶ We need to now get a handle on the last term
- ▶ Since x_k is independent of ξ_k , we have

$$\mathbb{E}[\langle x_k - x^*, g(x_k, \xi_k) \rangle] =$$

$$R_{k+1} \le R_k + \alpha_k^2 ||g_k||_2^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

- ▶ Assume: $||g_k||_2 \le M$ on \mathcal{X}
- ► Taking expectation:

$$r_{k+1} \le r_k + \alpha_k^2 M^2 - 2\alpha_k \mathbb{E}[\langle g_k, x_k - x^* \rangle].$$

- ▶ We need to now get a handle on the last term
- ▶ Since x_k is independent of ξ_k , we have

$$\mathbb{E}[\langle x_k - x^*, g(x_k, \xi_k) \rangle] = \mathbb{E}\left\{ \mathbb{E}[\langle x_k - x^*, g(x_k, \xi_k) \rangle \mid \xi_{[1..(k-1)]}] \right\}$$

$$R_{k+1} \le R_k + \alpha_k^2 ||g_k||_2^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

- ▶ Assume: $||g_k||_2 \le M$ on \mathcal{X}
- ► Taking expectation:

$$r_{k+1} \le r_k + \alpha_k^2 M^2 - 2\alpha_k \mathbb{E}[\langle g_k, x_k - x^* \rangle].$$

- ▶ We need to now get a handle on the last term
- ▶ Since x_k is independent of ξ_k , we have

$$\mathbb{E}[\langle x_k - x^*, g(x_k, \xi_k) \rangle] = \mathbb{E} \{ \mathbb{E}[\langle x_k - x^*, g(x_k, \xi_k) \rangle \mid \xi_{[1..(k-1)]}] \}
= \mathbb{E} \{ \langle x_k - x^*, \mathbb{E}[g(x_k, \xi_k) \mid \xi_{[1..(k-1)]}] \rangle \}
=$$

$$R_{k+1} \le R_k + \alpha_k^2 ||g_k||_2^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

- ▶ Assume: $||g_k||_2 \le M$ on \mathcal{X}
- ► Taking expectation:

$$r_{k+1} \le r_k + \alpha_k^2 M^2 - 2\alpha_k \mathbb{E}[\langle g_k, x_k - x^* \rangle].$$

- ▶ We need to now get a handle on the last term
- ▶ Since x_k is independent of ξ_k , we have

$$\begin{split} \mathbb{E}[\langle x_k - x^*, \, g(x_k, \xi_k) \rangle] &= \mathbb{E}\left\{\mathbb{E}[\langle x_k - x^*, \, g(x_k, \xi_k) \rangle \mid \xi_{[1..(k-1)]}]\right\} \\ &= \mathbb{E}\left\{\langle x_k - x^*, \, \mathbb{E}[g(x_k, \xi_k) \mid \xi_{[1..(k-1)]}] \rangle\right\} \\ &= \mathbb{E}[\langle x_k - x^*, \, G_k \rangle], \quad G_k \in \partial F(x_k). \end{split}$$

It remains to bound: $\mathbb{E}[\langle x_k - x^*, G_k \rangle]$

It remains to bound: $\mathbb{E}[\langle x_k - x^*, G_k \rangle]$

▶ Since F is cvx, $F(x) \ge F(x_k) + \langle G_k, x - x_k \rangle$ for any $x \in \mathcal{X}$.

It remains to bound: $\mathbb{E}[\langle x_k - x^*, G_k \rangle]$

- ▶ Since F is cvx, $F(x) \ge F(x_k) + \langle G_k, x x_k \rangle$ for any $x \in \mathcal{X}$.
- ► Thus, in particular

$$2\alpha_k \mathbb{E}[F(x^*) - F(x_k)] \ge 2\alpha_k \mathbb{E}[\langle G_k, x^* - x_k \rangle]$$

It remains to bound: $\mathbb{E}[\langle x_k - x^*, G_k \rangle]$

- ▶ Since F is cvx, $F(x) \ge F(x_k) + \langle G_k, x x_k \rangle$ for any $x \in \mathcal{X}$.
- ► Thus, in particular

$$2\alpha_k \mathbb{E}[F(x^*) - F(x_k)] \ge 2\alpha_k \mathbb{E}[\langle G_k, x^* - x_k \rangle]$$

Plug this bound back into the r_{k+1} inequality:

$$r_{k+1} \leq r_k + \alpha_k^2 M^2 - 2\alpha_k \mathbb{E}[\langle G_k, x_k - x^* \rangle]$$

It remains to bound: $\mathbb{E}[\langle x_k - x^*, G_k \rangle]$

- ▶ Since F is cvx, $F(x) \ge F(x_k) + \langle G_k, x x_k \rangle$ for any $x \in \mathcal{X}$.
- ► Thus, in particular

$$2\alpha_k \mathbb{E}[F(x^*) - F(x_k)] \ge 2\alpha_k \mathbb{E}[\langle G_k, x^* - x_k \rangle]$$

Plug this bound back into the r_{k+1} inequality:

$$r_{k+1} \leq r_k + \alpha_k^2 M^2 - 2\alpha_k \mathbb{E}[\langle G_k, x_k - x^* \rangle]$$
$$2\alpha_k \mathbb{E}[\langle G_k, x_k - x^* \rangle] \leq r_k - r_{k+1} + \alpha_k M^2$$

It remains to bound: $\mathbb{E}[\langle x_k - x^*, G_k \rangle]$

- ▶ Since F is cvx, $F(x) \ge F(x_k) + \langle G_k, x x_k \rangle$ for any $x \in \mathcal{X}$.
- ► Thus, in particular

$$2\alpha_k \mathbb{E}[F(x^*) - F(x_k)] \ge 2\alpha_k \mathbb{E}[\langle G_k, x^* - x_k \rangle]$$

Plug this bound back into the r_{k+1} inequality:

$$r_{k+1} \leq r_k + \alpha_k^2 M^2 - 2\alpha_k \mathbb{E}[\langle G_k, x_k - x^* \rangle]$$

$$2\alpha_k \mathbb{E}[\langle G_k, x_k - x^* \rangle] \leq r_k - r_{k+1} + \alpha_k M^2$$

$$2\alpha_k \mathbb{E}[F(x_k) - F(x^*)] \leq r_k - r_{k+1} + \alpha_k M^2.$$

It remains to bound: $\mathbb{E}[\langle x_k - x^*, G_k \rangle]$

- ▶ Since F is cvx, $F(x) \ge F(x_k) + \langle G_k, x x_k \rangle$ for any $x \in \mathcal{X}$.
- ► Thus, in particular

$$2\alpha_k \mathbb{E}[F(x^*) - F(x_k)] \ge 2\alpha_k \mathbb{E}[\langle G_k, x^* - x_k \rangle]$$

Plug this bound back into the r_{k+1} inequality:

$$r_{k+1} \leq r_k + \alpha_k^2 M^2 - 2\alpha_k \mathbb{E}[\langle G_k, x_k - x^* \rangle]$$

$$2\alpha_k \mathbb{E}[\langle G_k, x_k - x^* \rangle] \leq r_k - r_{k+1} + \alpha_k M^2$$

$$2\alpha_k \mathbb{E}[F(x_k) - F(x^*)] \leq r_k - r_{k+1} + \alpha_k M^2.$$

We've bounded the expected progress; What now?

$$2\alpha_k \mathbb{E}[F(x_k) - F(x^*)] \le r_k - r_{k+1} + \alpha_k M^2.$$

$$2\alpha_k \mathbb{E}[F(x_k) - F(x^*)] \le r_k - r_{k+1} + \alpha_k M^2.$$

Sum up over $i = 1, \dots, k$, to obtain

$$\sum_{i=1}^{k} (2\alpha_{i} \mathbb{E}[F(x_{i}) - f(x^{*})]) \leq r_{1} - r_{k+1} + M^{2} \sum_{i} \alpha_{i}^{2}$$

$$2\alpha_k \mathbb{E}[F(x_k) - F(x^*)] \le r_k - r_{k+1} + \alpha_k M^2.$$

Sum up over $i = 1, \dots, k$, to obtain

$$\sum_{i=1}^{k} (2\alpha_{i} \mathbb{E}[F(x_{i}) - f(x^{*})]) \leq r_{1} - r_{k+1} + M^{2} \sum_{i} \alpha_{i}^{2}$$

$$\leq r_{1} + M^{2} \sum_{i} \alpha_{i}^{2}.$$

$$2\alpha_k \mathbb{E}[F(x_k) - F(x^*)] \le r_k - r_{k+1} + \alpha_k M^2.$$

Sum up over $i = 1, \dots, k$, to obtain

$$\sum_{i=1}^{k} (2\alpha_{i} \mathbb{E}[F(x_{i}) - f(x^{*})]) \leq r_{1} - r_{k+1} + M^{2} \sum_{i} \alpha_{i}^{2}$$

$$\leq r_{1} + M^{2} \sum_{i} \alpha_{i}^{2}.$$

Divide both sides by $\sum_i \alpha_i$, so

$$2\alpha_k \mathbb{E}[F(x_k) - F(x^*)] \le r_k - r_{k+1} + \alpha_k M^2.$$

Sum up over $i = 1, \dots, k$, to obtain

$$\sum_{i=1}^{k} (2\alpha_{i} \mathbb{E}[F(x_{i}) - f(x^{*})]) \leq r_{1} - r_{k+1} + M^{2} \sum_{i} \alpha_{i}^{2}$$

$$\leq r_{1} + M^{2} \sum_{i} \alpha_{i}^{2}.$$

Divide both sides by $\sum_i \alpha_i$, so

- ightharpoonup Set $\gamma_i = rac{lpha_i}{\sum_i^k lpha_i}$.
- ▶ Thus, $\gamma_i \ge 0$ and $\sum_i \gamma_i = 1$

$$2\alpha_k \mathbb{E}[F(x_k) - F(x^*)] \le r_k - r_{k+1} + \alpha_k M^2.$$

Sum up over $i = 1, \dots, k$, to obtain

$$\sum_{i=1}^{k} (2\alpha_{i} \mathbb{E}[F(x_{i}) - f(x^{*})]) \leq r_{1} - r_{k+1} + M^{2} \sum_{i} \alpha_{i}^{2}$$

$$\leq r_{1} + M^{2} \sum_{i} \alpha_{i}^{2}.$$

Divide both sides by $\sum_{i} \alpha_{i}$, so

- ightharpoonup Set $\gamma_i = \frac{\alpha_i}{\sum_i^k \alpha_i}$.
- ▶ Thus, $\gamma_i \geq 0$ and $\sum_i \gamma_i = 1$

$$\mathbb{E}\left[\sum_{i} \gamma_{i}(F(x_{i}) - F(x^{*}))\right] \leq \frac{r_{1} + M^{2} \sum_{i} \alpha_{i}^{2}}{2 \sum_{i} \alpha_{i}}$$

▶ Bound looks similar to bound in subgradient method

- ▶ Bound looks similar to bound in subgradient method
- lacktriangle But we wish to say something about x_k

- ▶ Bound looks similar to bound in subgradient method
- ▶ But we wish to say something about x_k
- ▶ Since $\gamma_i \ge 0$ and $\sum_i^k \gamma_i = 1$, and we have $\gamma_i F(x_i)$

- ▶ Bound looks similar to bound in subgradient method
- ▶ But we wish to say something about x_k
- ▶ Since $\gamma_i \ge 0$ and $\sum_i^k \gamma_i = 1$, and we have $\gamma_i F(x_i)$
- ► Easier to talk about averaged

$$\bar{x}_k := \sum_{i=1}^k \gamma_i x_i.$$

- Bound looks similar to bound in subgradient method
- lacktriangle But we wish to say something about x_k
- ▶ Since $\gamma_i \geq 0$ and $\sum_i^k \gamma_i = 1$, and we have $\gamma_i F(x_i)$
- ► Easier to talk about averaged

$$\bar{x}_k := \sum_{i=1}^k \gamma_i x_i.$$

▶ $f(\bar{x}_k) \leq \sum_i \gamma_i F(x_i)$ due to convexity

- ▶ Bound looks similar to bound in subgradient method
- ▶ But we wish to say something about x_k
- ▶ Since $\gamma_i \geq 0$ and $\sum_i^k \gamma_i = 1$, and we have $\gamma_i F(x_i)$
- ► Easier to talk about averaged

$$\bar{x}_k := \sum_{i=1}^k \gamma_i x_i.$$

- ▶ $f(\bar{x}_k) \leq \sum_i \gamma_i F(x_i)$ due to convexity
- ► So we finally obtain the inequality

$$\mathbb{E}\big[F(\bar{x}_k) - F(x^*)\big] \le \frac{r_1 + M^2 \sum_i \alpha_i^2}{2 \sum_i \alpha_i}.$$

Stochastic approximation – finally

- \spadesuit Let $D_{\mathcal{X}} := \max_{x \in \mathcal{X}} \|x x^*\|_2$ (act. only need $\|x_1 x^*\| \leq D_{\mathcal{X}}$)
- \spadesuit Assume $\alpha_i = \alpha$ is a constant. Observe that

$$\mathbb{E}[F(\bar{x}_k) - F(x^*)] \le \frac{D_{\mathcal{X}}^2 + M^2 k \alpha^2}{2k\alpha}$$

- \spadesuit Minimize the rhs over $\alpha>0$ to obtain $\mathbb{E}[F(\bar{x}_k)-F(x^*)]\leq \frac{D\chi M}{\sqrt{k}}$
- \spadesuit If k is not fixed in advance, then choose

$$\alpha_i = \frac{\theta D_{\mathcal{X}}}{M\sqrt{i}}, \quad i = 1, 2, \dots$$

 \spadesuit Analyze $\mathbb{E}[F(\bar{x}_k) - F(x^*)]$ with this choice of stepsize

Stochastic approximation – finally

- \spadesuit Let $D_{\mathcal{X}} := \max_{x \in \mathcal{X}} \|x x^*\|_2$ (act. only need $\|x_1 x^*\| \leq D_{\mathcal{X}}$)
- \spadesuit Assume $\alpha_i = \alpha$ is a constant. Observe that

$$\mathbb{E}[F(\bar{x}_k) - F(x^*)] \le \frac{D_{\mathcal{X}}^2 + M^2 k \alpha^2}{2k\alpha}$$

- \spadesuit Minimize the rhs over $\alpha>0$ to obtain $\mathbb{E}[F(\bar{x}_k)-F(x^*)]\leq \frac{D\chi M}{\sqrt{k}}$
- \spadesuit If k is not fixed in advance, then choose

$$\alpha_i = \frac{\theta D_{\mathcal{X}}}{M\sqrt{i}}, \quad i = 1, 2, \dots$$

 \spadesuit Analyze $\mathbb{E}[F(\bar{x}_k) - F(x^*)]$ with this choice of stepsize

We showed $O(1/\sqrt{k})$ rate

Theorem Let $f(x,\xi)$ be C_L^1 convex. Let $e_k:=\nabla F(x_k)-g_k$ satisfy $\mathbb{E}[e_k]=0$. Let $\|x_i-x^*\|\leq D$. Also, let $\alpha_i=1/(L+\eta_i)$. Then,

$$\mathbb{E}\left[\sum_{i=1}^{k} F(x_{i+1}) - F(x^*)\right] \le \frac{D^2}{2\alpha_k} + \sum_{i=1}^{k} \frac{\mathbb{E}[\|e_i\|^2]}{2\eta_i}.$$

Theorem Let $f(x,\xi)$ be C_L^1 convex. Let $e_k:=\nabla F(x_k)-g_k$ satisfy $\mathbb{E}[e_k]=0$. Let $\|x_i-x^*\|\leq D$. Also, let $\alpha_i=1/(L+\eta_i)$. Then,

$$\mathbb{E}\left[\sum_{i=1}^{k} F(x_{i+1}) - F(x^*)\right] \le \frac{D^2}{2\alpha_k} + \sum_{i=1}^{k} \frac{\mathbb{E}[\|e_i\|^2]}{2\eta_i}.$$

As before, by using $\bar{x}_k = \frac{1}{k} \sum_{i=1}^k x_{i+1}$ we get

$$\mathbb{E}[F(\bar{x}_k) - F(x^*)] \le \frac{D^2}{2\alpha_k k} + \frac{1}{k} \sum_{i=1}^k \frac{\mathbb{E}[\|e_i\|^2]}{2\eta_i}.$$

Theorem Let $f(x,\xi)$ be C_L^1 convex. Let $e_k := \nabla F(x_k) - g_k$ satisfy $\mathbb{E}[e_k] = 0$. Let $||x_i - x^*|| \le D$. Also, let $\alpha_i = 1/(L + \eta_i)$. Then,

$$\mathbb{E}\left[\sum_{i=1}^{k} F(x_{i+1}) - F(x^*)\right] \le \frac{D^2}{2\alpha_k} + \sum_{i=1}^{k} \frac{\mathbb{E}[\|e_i\|^2]}{2\eta_i}.$$

As before, by using $\bar{x}_k = \frac{1}{k} \sum_{i=1}^k x_{i+1}$ we get

$$\mathbb{E}[F(\bar{x}_k) - F(x^*)] \le \frac{D^2}{2\alpha_k k} + \frac{1}{k} \sum_{i=1}^k \frac{\mathbb{E}[\|e_i\|^2]}{2\eta_i}.$$

▶ Using $\alpha_i = L + \eta_i$ where $\eta_i \propto 1/\sqrt{i}$ we obtain

Theorem Let $f(x,\xi)$ be C_L^1 convex. Let $e_k := \nabla F(x_k) - g_k$ satisfy $\mathbb{E}[e_k] = 0$. Let $||x_i - x^*|| \le D$. Also, let $\alpha_i = 1/(L + \eta_i)$. Then,

$$\mathbb{E}\left[\sum_{i=1}^{k} F(x_{i+1}) - F(x^*)\right] \le \frac{D^2}{2\alpha_k} + \sum_{i=1}^{k} \frac{\mathbb{E}[\|e_i\|^2]}{2\eta_i}.$$

As before, by using $\bar{x}_k = \frac{1}{k} \sum_{i=1}^k x_{i+1}$ we get

$$\mathbb{E}[F(\bar{x}_k) - F(x^*)] \le \frac{D^2}{2\alpha_k k} + \frac{1}{k} \sum_{i=1}^k \frac{\mathbb{E}[\|e_i\|^2]}{2\eta_i}.$$

▶ Using $\alpha_i = L + \eta_i$ where $\eta_i \propto 1/\sqrt{i}$ we obtain

$$\mathbb{E}[F(\bar{x}_k) - F(x^*)] = O(\frac{LD^2}{k}) + O(\frac{\sigma D}{\sqrt{k}})$$

where σ bounds the variance $\mathbb{E}[\|e_i\|^2]$

Theorem Let $f(x,\xi)$ be C_L^1 convex. Let $e_k := \nabla F(x_k) - g_k$ satisfy $\mathbb{E}[e_k] = 0$. Let $||x_i - x^*|| \le D$. Also, let $\alpha_i = 1/(L + \eta_i)$. Then,

$$\mathbb{E}\left[\sum_{i=1}^{k} F(x_{i+1}) - F(x^*)\right] \le \frac{D^2}{2\alpha_k} + \sum_{i=1}^{k} \frac{\mathbb{E}[\|e_i\|^2]}{2\eta_i}.$$

As before, by using $\bar{x}_k = \frac{1}{k} \sum_{i=1}^k x_{i+1}$ we get

$$\mathbb{E}[F(\bar{x}_k) - F(x^*)] \le \frac{D^2}{2\alpha_k k} + \frac{1}{k} \sum_{i=1}^k \frac{\mathbb{E}[\|e_i\|^2]}{2\eta_i}.$$

▶ Using $\alpha_i = L + \eta_i$ where $\eta_i \propto 1/\sqrt{i}$ we obtain

$$\mathbb{E}[F(\bar{x}_k) - F(x^*)] = O(\frac{LD^2}{k}) + O(\frac{\sigma D}{\sqrt{k}})$$

where σ bounds the variance $\mathbb{E}[\|e_i\|^2]$

Minimax optimal rate

Theorem Suppose $f(x,\xi)$ are convex and F(x) is μ -strongly convex.

Let
$$\bar{x}_k := \sum_{i=0}^k \theta_i x_i$$
, where $\theta_i = \frac{2(i+1)}{(k+1)(k+2)}$, we obtain

$$\mathbb{E}[F(\bar{x}_k) - F(x^*)] \le \frac{2M^2}{\mu^2(k+1)}.$$

Lacoste-Julien, Schmidt, Bach (2012).

Theorem Suppose $f(x,\xi)$ are convex and F(x) is μ -strongly convex. Let $\bar{x}_k := \sum_{i=0}^k \theta_i x_i$, where $\theta_i = \frac{2(i+1)}{(k+1)(k+2)}$, we obtain

$$\mathbb{E}[F(\bar{x}_k) - F(x^*)] \le \frac{2M^2}{\mu^2(k+1)}.$$

Lacoste-Julien, Schmidt, Bach (2012).

With uniform averaging $\bar{x}_k = \frac{1}{k} \sum_i x_i$, we get $O(\log k/k)$.

Assumption: regularization $||x||_2 \leq B$; $\xi \in \Omega$ closed, bounded.

Function estimate:
$$F(x) = \mathbb{E}[f(x,\xi)]$$

Subgradient in $\partial F(x) = \mathbb{E}[g(x,\xi)]$

- Collect samples ξ_1, \ldots, ω_m
- Empirical objective: $\hat{F}_m(x) := \frac{1}{m} \sum_{i=1}^m f(x, \xi_i)$

Assumption: regularization $||x||_2 \leq B$; $\xi \in \Omega$ closed, bounded.

Function estimate:
$$F(x) = \mathbb{E}[f(x,\xi)]$$

Subgradient in $\partial F(x) = \mathbb{E}[g(x,\xi)]$

- Collect samples ξ_1, \ldots, ω_m
- Empirical objective: $\hat{F}_m(x) := \frac{1}{m} \sum_{i=1}^m f(x, \xi_i)$
- aka Empirical Risk Minimization

Assumption: regularization $||x||_2 \leq B$; $\xi \in \Omega$ closed, bounded.

Function estimate:
$$F(x) = \mathbb{E}[f(x,\xi)]$$

Subgradient in $\partial F(x) = \mathbb{E}[g(x,\xi)]$

- Collect samples ξ_1, \ldots, ω_m
- Empirical objective: $\hat{F}_m(x) := \frac{1}{m} \sum_{i=1}^m f(x, \xi_i)$
- aka Empirical Risk Minimization
- Confusing: We often optimize \hat{F}_m using stochastic subgradient; but theoretical guarantees are then only on the *empirical* suboptimality $E[\hat{F}_m(\bar{x}_k)] \leq \dots$

Assumption: regularization $||x||_2 \leq B$; $\xi \in \Omega$ closed, bounded.

Function estimate:
$$F(x) = \mathbb{E}[f(x,\xi)]$$

Subgradient in $\partial F(x) = \mathbb{E}[g(x,\xi)]$

- Collect samples ξ_1, \ldots, ω_m
- Empirical objective: $\hat{F}_m(x) := \frac{1}{m} \sum_{i=1}^m f(x, \xi_i)$
- aka Empirical Risk Minimization
- Confusing: We often optimize \hat{F}_m using stochastic subgradient; but theoretical guarantees are then only on the empirical suboptimality $E[\hat{F}_m(\bar{x}_k)] \leq \dots$
- For guarantees on $F(\bar{x}_k)$ more work; (regularization + conc.) $F(\bar{x}_k) F(x^*) \le O(1/\sqrt{k}) + O(1/\sqrt{m})$

• We have fixed and known $f(x,\xi)$

- We have *fixed* and *known* $f(x, \xi)$
- ξ_1, ξ_2, \dots presented to us sequentially

- We have *fixed* and *known* $f(x,\xi)$
- ξ_1, ξ_2, \ldots presented to us sequentially

Can be chosen adversarially!

• Guess x_k ;

- We have *fixed* and *known* $f(x, \xi)$
- ξ_1, ξ_2, \dots presented to us sequentially

Can be chosen adversarially!

• Guess x_k ; Observe ξ_k ;

- We have *fixed* and *known* $f(x,\xi)$
- ξ_1, ξ_2, \dots presented to us sequentially

Can be chosen adversarially!

• Guess x_k ; Observe ξ_k ; incur cost $f(x_k, \xi_k)$;

- We have *fixed* and *known* $f(x, \xi)$
- ξ_1, ξ_2, \dots presented to us sequentially

Can be chosen adversarially!

• Guess x_k ; Observe ξ_k ; incur cost $f(x_k, \xi_k)$; Update to x_{k+1}

- We have *fixed* and *known* $f(x,\xi)$
- ξ_1, ξ_2, \ldots presented to us sequentially

- Guess x_k ; Observe ξ_k ; incur cost $f(x_k, \xi_k)$; Update to x_{k+1}
- We get to see things only sequentially; sequence of samples shown to us by nature may depend on our guesses

- We have *fixed* and *known* $f(x,\xi)$
- ξ_1, ξ_2, \ldots presented to us sequentially

- Guess x_k ; Observe ξ_k ; incur cost $f(x_k, \xi_k)$; Update to x_{k+1}
- We get to see things only sequentially; sequence of samples shown to us by nature may depend on our guesses
- So a typical goal is to minimize Regret

- We have *fixed* and *known* $f(x,\xi)$
- ξ_1, ξ_2, \ldots presented to us sequentially

- Guess x_k ; Observe ξ_k ; incur cost $f(x_k, \xi_k)$; Update to x_{k+1}
- We get to see things only sequentially; sequence of samples shown to us by nature may depend on our guesses
- So a typical goal is to minimize Regret

$$\frac{1}{T} \sum_{k=1}^{T} f(x_k, z_k) - \min_{x \in \mathcal{X}} \frac{1}{T} \sum_{k=1}^{T} f(x, z_k)$$

- We have *fixed* and *known* $f(x,\xi)$
- ξ_1, ξ_2, \ldots presented to us sequentially

Can be chosen adversarially!

- Guess x_k ; Observe ξ_k ; incur cost $f(x_k, \xi_k)$; Update to x_{k+1}
- We get to see things only sequentially; sequence of samples shown to us by nature may depend on our guesses
- So a typical goal is to minimize Regret

$$\frac{1}{T} \sum_{k=1}^{T} f(x_k, z_k) - \min_{x \in \mathcal{X}} \frac{1}{T} \sum_{k=1}^{T} f(x, z_k)$$

• That is, difference from the best possible solution we could have attained, had we been shown all the examples (z_k) .

- We have *fixed* and *known* $f(x,\xi)$
- ξ_1, ξ_2, \dots presented to us sequentially

- Guess x_k ; Observe ξ_k ; incur cost $f(x_k, \xi_k)$; Update to x_{k+1}
- We get to see things only sequentially; sequence of samples shown to us by nature may depend on our guesses
- So a typical goal is to minimize Regret

$$\frac{1}{T} \sum_{k=1}^{T} f(x_k, z_k) - \min_{x \in \mathcal{X}} \frac{1}{T} \sum_{k=1}^{T} f(x, z_k)$$

- That is, difference from the best possible solution we could have attained, had we been shown all the examples (z_k) .
- Online optimization is an important idea in machine learning, game theory, decision making, etc.

Based on Zinkevich (2003)

```
Slight generalization: f(x,\xi) convex (in x); possibly nonsmooth x\in\mathcal{X}, a closed, bounded set
```

Based on Zinkevich (2003)

Slight generalization:
$$f(x,\xi)$$
 convex (in x); possibly nonsmooth $x\in\mathcal{X}$, a closed, bounded set

Simplify notation: $f_k(x) \equiv f(x, \xi_k)$

Regret
$$R_T := \sum_{k=1}^T f_k(x_k) - \min_{x \in \mathcal{X}} \sum_{k=1}^T f_k(x)$$

- **1** Select some $x_0 \in \mathcal{X}$, and $\alpha_0 > 0$
- 2 Round k of algo $(k \ge 0)$:

- **1** Select some $x_0 \in \mathcal{X}$, and $\alpha_0 > 0$
- 2 Round k of algo $(k \ge 0)$:
 - lacksquare Output x_k

- **1** Select some $x_0 \in \mathcal{X}$, and $\alpha_0 > 0$
- **2** Round k of algo $(k \ge 0)$:
 - lacksquare Output x_k
 - Receive k-th function f_k

- **1** Select some $x_0 \in \mathcal{X}$, and $\alpha_0 > 0$
- **2** Round k of algo $(k \ge 0)$:
 - lacksquare Output x_k
 - Receive k-th function f_k
 - Incur loss $f_k(x_k)$

- **1** Select some $x_0 \in \mathcal{X}$, and $\alpha_0 > 0$
- **2** Round k of algo $(k \ge 0)$:
 - lacksquare Output x_k
 - Receive k-th function f_k
 - Incur loss $f_k(x_k)$
 - Pick $g_k \in \partial f_k(x_k)$

- **1** Select some $x_0 \in \mathcal{X}$, and $\alpha_0 > 0$
- **2** Round k of algo $(k \ge 0)$:
 - lacksquare Output x_k
 - Receive k-th function f_k
 - Incur loss $f_k(x_k)$
 - Pick $g_k \in \partial f_k(x_k)$ Update: $x_{k+1} = P_{\mathcal{X}}(x_k - \alpha_k g_k)$

Algorithm:

- **1** Select some $x_0 \in \mathcal{X}$, and $\alpha_0 > 0$
- **2** Round k of algo $(k \ge 0)$:
 - lacksquare Output x_k
 - Receive k-th function f_k
 - Incur loss $f_k(x_k)$
 - Pick $g_k \in \partial f_k(x_k)$ Update: $x_{k+1} = P_{\mathcal{X}}(x_k - \alpha_k q_k)$

Using $\alpha_k=c/\sqrt{k+1}$ and **assuming** $\|g_k\|_2\leq G$, can be shown that average regret $\frac{1}{T}R_T\leq O(1/\sqrt{T})$

Assumption: Lipschitz condition $\|\partial f\|_2 \leq G$

Assumption: Lipschitz condition $\|\partial f\|_2 \leq G$

$$x^* = \operatorname*{argmin}_{x \in \mathcal{X}} \sum_{k=1}^{T} f_k(x)$$

Assumption: Lipschitz condition $\|\partial f\|_2 \leq G$

$$x^* = \operatorname*{argmin}_{x \in \mathcal{X}} \sum_{k=1}^{T} f_k(x)$$

Since $g_k \in \partial f_k(x_k)$, we have

$$\begin{split} f_k(x^*) &\geq f_k(x_k) + \langle g_k, \, x^* - x_k \rangle, \text{ or } \\ f_k(x_k) - f_k(x^*) &\leq \langle g_k, \, x_k - x^* \rangle \end{split}$$

Assumption: Lipschitz condition $\|\partial f\|_2 \leq G$

$$x^* = \operatorname*{argmin}_{x \in \mathcal{X}} \sum_{k=1}^{T} f_k(x)$$

Since $g_k \in \partial f_k(x_k)$, we have

$$\begin{split} f_k(x^*) &\geq f_k(x_k) + \langle g_k, \, x^* - x_k \rangle, \text{ or } \\ f_k(x_k) - f_k(x^*) &\leq \langle g_k, \, x_k - x^* \rangle \end{split}$$

Further analysis depends on bounding

$$||x_{k+1} - x^*||_2^2$$

Recall:
$$x_{k+1} = P_{\mathcal{X}}(x_k - \alpha_k g_k)$$
. Thus,

$$||x_{k+1} - x^*||_2^2 = ||P_{\mathcal{X}}(x_k - \alpha_k g_k) - x^*||_2^2$$

= $||P_{\mathcal{X}}(x_k - \alpha_k g_k) - P_{\mathcal{X}}(x^*)||_2^2$

Recall:
$$x_{k+1} = P_{\mathcal{X}}(x_k - \alpha_k g_k)$$
. Thus,
$$\|x_{k+1} - x^*\|_2^2 = \|P_{\mathcal{X}}(x_k - \alpha_k g_k) - x^*\|_2^2$$

$$= \|P_{\mathcal{X}}(x_k - \alpha_k g_k) - P_{\mathcal{X}}(x^*)\|_2^2$$

$$(P_{\mathcal{X}} \text{ is nonexpan.}) \leq \|x_k - x^* - \alpha_k g_k\|_2^2$$

Recall:
$$x_{k+1} = P_{\mathcal{X}}(x_k - \alpha_k g_k)$$
. Thus,
$$\|x_{k+1} - x^*\|_2^2 = \|P_{\mathcal{X}}(x_k - \alpha_k g_k) - x^*\|_2^2 \\ = \|P_{\mathcal{X}}(x_k - \alpha_k g_k) - P_{\mathcal{X}}(x^*)\|_2^2$$

$$(P_{\mathcal{X}} \text{ is nonexpan.}) \leq \|x_k - x^* - \alpha_k g_k\|_2^2 \\ = \|x_k - x^*\|_2^2 + \alpha_k^2 \|g_k\|_2^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

$$\langle g_k, x_k - x^* \rangle \leq \frac{\|x_k - x^*\|_2^2 - \|x_{k+1} - x^*\|_2^2}{2\alpha_k} + \frac{\alpha_k}{2} \|g_k\|_2^2$$

Recall:
$$x_{k+1} = P_{\mathcal{X}}(x_k - \alpha_k g_k)$$
. Thus,

$$\begin{aligned} \|x_{k+1} - x^*\|_2^2 &= \|P_{\mathcal{X}}(x_k - \alpha_k g_k) - x^*\|_2^2 \\ &= \|P_{\mathcal{X}}(x_k - \alpha_k g_k) - P_{\mathcal{X}}(x^*)\|_2^2 \\ (P_{\mathcal{X}} \text{ is nonexpan.}) &\leq \|x_k - x^* - \alpha_k g_k\|_2^2 \\ &= \|x_k - x^*\|_2^2 + \alpha_k^2 \|g_k\|_2^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle \end{aligned}$$

$$\langle g_k, x_k - x^* \rangle \le \frac{\|x_k - x^*\|_2^2 - \|x_{k+1} - x^*\|_2^2}{2\alpha_k} + \frac{\alpha_k}{2} \|g_k\|_2^2$$

Now invoke $f_k(x_k) - f_k(x^*) \le \langle g_k, x_k - x^* \rangle$

$$f_k(x_k) - f_k(x^*) \le \frac{\|x_k - x^*\|_2^2 - \|x_{k+1} - x^*\|_2^2}{2\alpha_k} + \frac{\alpha_k}{2} \|g_k\|_2^2$$

Recall:
$$x_{k+1} = P_{\mathcal{X}}(x_k - \alpha_k g_k)$$
. Thus,

$$\begin{split} \|x_{k+1} - x^*\|_2^2 &= \|P_{\mathcal{X}}(x_k - \alpha_k g_k) - x^*\|_2^2 \\ &= \|P_{\mathcal{X}}(x_k - \alpha_k g_k) - P_{\mathcal{X}}(x^*)\|_2^2 \\ (P_{\mathcal{X}} \text{ is nonexpan.}) &\leq \|x_k - x^* - \alpha_k g_k\|_2^2 \\ &= \|x_k - x^*\|_2^2 + \alpha_k^2 \|g_k\|_2^2 - 2\alpha_k \langle g_k, \, x_k - x^* \rangle \end{split}$$

$$\langle g_k, x_k - x^* \rangle \le \frac{\|x_k - x^*\|_2^2 - \|x_{k+1} - x^*\|_2^2}{2\alpha_k} + \frac{\alpha_k}{2} \|g_k\|_2^2$$

Now invoke $f_k(x_k) - f_k(x^*) \le \langle g_k, x_k - x^* \rangle$

$$f_k(x_k) - f_k(x^*) \le \frac{\|x_k - x^*\|_2^2 - \|x_{k+1} - x^*\|_2^2}{2\alpha_k} + \frac{\alpha_k}{2} \|g_k\|_2^2$$

Sum over $k=1,\ldots,T$, let $\alpha_k=c/\sqrt{k+1}$, use $\|g_k\|_2\leq G$

Obtain
$$R_T \leq O(\sqrt{T})$$

References

- ♠ A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic programming. (2009)
- ♠ J. Linderoth. Lecture slides on Stochastic Programming (2003).