Advanced Optimization (10-801: CMU)

Lecture 19
Parallel proximal; Incremental gradient
26 Mar, 2014

Suvrit Sra

Douglas-Rachford
\square
$z \leftarrow \frac{1}{2}\left(I+R_{f} R_{h}\right) z$
\square $\min \quad f(x)+h(x)$

$$
z \leftarrow \frac{1}{2}\left(I+R_{f} R_{h}\right) z
$$

Reflection operator

$$
R_{f}:=2 \operatorname{prox}_{f}-I
$$

Douglas-Rachford

$$
\min \quad f(x)+h(x)
$$

$$
z \leftarrow \frac{1}{2}\left(I+R_{f} R_{h}\right) z
$$

Reflection operator

$$
R_{f}:=2 \operatorname{prox}_{f}-I
$$

Observe: $R_{f}=-R_{f^{*}}$ (another justification of "reflection")

Douglas-Rachford

$$
\min \quad f(x)+h(x)
$$

$$
z \leftarrow \frac{1}{2}\left(I+R_{f} R_{h}\right) z
$$

Reflection operator

$$
R_{f}:=2 \operatorname{prox}_{f}-I
$$

Observe: $R_{f}=-R_{f^{*}}$ (another justification of "reflection")

$$
\operatorname{prox}_{f}+\operatorname{prox}_{f^{*}}=I
$$

Douglas-Rachford

$$
\min \quad f(x)+h(x)
$$

$$
z \leftarrow \frac{1}{2}\left(I+R_{f} R_{h}\right) z
$$

Reflection operator

$$
R_{f}:=2 \operatorname{prox}_{f}-I
$$

Observe: $R_{f}=-R_{f^{*}}$ (another justification of "reflection")

$$
\begin{aligned}
\operatorname{prox}_{f}+\operatorname{prox}_{f^{*}} & =I \\
2 \operatorname{prox}_{f} & =2 I-2 \operatorname{prox}_{f^{*}}
\end{aligned}
$$

Douglas-Rachford

$$
\min \quad f(x)+h(x)
$$

$$
z \leftarrow \frac{1}{2}\left(I+R_{f} R_{h}\right) z
$$

Reflection operator

$$
R_{f}:=2 \operatorname{prox}_{f}-I
$$

Observe: $R_{f}=-R_{f^{*}}$ (another justification of "reflection")

$$
\begin{aligned}
\operatorname{prox}_{f}+\operatorname{prox}_{f^{*}} & =I \\
2 \operatorname{prox}_{f} & =2 I-2 \operatorname{prox}_{f^{*}} \\
2 \operatorname{prox}_{f}-I & =I-2 \operatorname{prox}_{f^{*}} \\
R_{f} & =-R_{f^{*}}
\end{aligned}
$$

Douglas-Rachford - open problem
$\min f(x)+g(x)+h(x)$

Douglas-Rachford - open problem

$$
\min f(x)+g(x)+h(x)
$$

$$
z \longleftarrow \frac{1}{2}\left(I+R_{f} R_{g} R_{h}\right) z
$$

Douglas-Rachford - open problem

$$
\min f(x)+g(x)+h(x)
$$

$$
\begin{aligned}
0 \in & \partial f(x)+\partial g(x)+\partial h(x) \\
3 x \in & (I+\partial f)(x)+(I+\partial g)(x)+(I+\partial h)(x) \\
3 x \in & (I+\partial f)(x)+z+w \\
& \text { now what? }
\end{aligned}
$$

$$
\min f(x)+g(x)+h(x)
$$

Partial solution (Borwein, Tam (2013))

$$
\begin{aligned}
T_{h f} & :=\frac{1}{2}\left(I+R_{f} R_{h}\right) \\
T_{[f g h]} & :=T_{h f} T_{g h} T_{f g} \\
z & \leftarrow T_{[f g h]} z
\end{aligned}
$$

$$
\min f(x)+g(x)+h(x)
$$

Partial solution (Borwein, Tam (2013))

$$
\begin{aligned}
T_{h f} & :=\frac{1}{2}\left(I+R_{f} R_{h}\right) \\
T_{[f g h]} & :=T_{h f} T_{g h} T_{f g} \\
z & \leftarrow T_{[f g h]} z
\end{aligned}
$$

- Works for more than 3 functions too!
- For two functions $T_{[f g]}=T_{g f} T_{f g}$
- Does not coincide with usual DR.
- Finding "correct" generalization an open problem

Parallel proximal methods
Optimizing separable objective functions

$$
\begin{aligned}
f(x) & :=\frac{1}{2}\|x-y\|_{2}^{2}+\sum_{i} f_{i}(x) \\
f(x) & :=\sum_{i} f_{i}(x)
\end{aligned}
$$

Parallel proximal methods

Optimizing separable objective functions

$$
\begin{aligned}
f(x) & :=\frac{1}{2}\|x-y\|_{2}^{2}+\sum_{i} f_{i}(x) \\
f(x) & :=\sum_{i} f_{i}(x)
\end{aligned}
$$

Let us consider

$$
\min \quad f(x)=\sum_{i=1}^{m} f_{i}(x), \quad x \in \mathbb{R}^{n}
$$

- Original problem over $\mathcal{H}=\mathbb{R}^{n}$

Product space technique

- Original problem over $\mathcal{H}=\mathbb{R}^{n}$
- Suppose we have $\sum_{i=1}^{m} f_{i}(x)$

Product space technique

- Original problem over $\mathcal{H}=\mathbb{R}^{n}$
- Suppose we have $\sum_{i=1}^{m} f_{i}(x)$
- Introduce new variables $\left(x_{1}, \ldots, x_{m}\right)$
- Original problem over $\mathcal{H}=\mathbb{R}^{n}$
- Suppose we have $\sum_{i=1}^{m} f_{i}(x)$
- Introduce new variables $\left(x_{1}, \ldots, x_{m}\right)$
- Now problem is over domain $\mathcal{H}^{m}:=\mathcal{H} \times \mathcal{H} \times \cdots \times \mathcal{H}$ (m-times)
- Original problem over $\mathcal{H}=\mathbb{R}^{n}$
- Suppose we have $\sum_{i=1}^{m} f_{i}(x)$
- Introduce new variables $\left(x_{1}, \ldots, x_{m}\right)$
- Now problem is over domain $\mathcal{H}^{m}:=\mathcal{H} \times \mathcal{H} \times \cdots \times \mathcal{H}$ (m-times)
- New constraint: $x_{1}=x_{2}=\ldots=x_{m}$

$$
\begin{array}{ll}
& \min _{\left(x_{1}, \ldots, x_{m}\right)} \quad \sum_{i} f_{i}\left(x_{i}\right) \\
\text { s.t. } & x_{1}=x_{2}=\cdots=x_{m}
\end{array}
$$

Technique due to: G. Pierra (1976)

Product space technique

Two block problem

$\min _{\boldsymbol{x}} f(\boldsymbol{x})+\mathbb{I}_{\mathcal{B}}(\boldsymbol{x})$
where $\boldsymbol{x} \in \mathcal{H}^{m}$ and $\mathcal{B}=\left\{\boldsymbol{z} \in \mathcal{H}^{m} \mid \boldsymbol{z}=(x, x, \ldots, x)\right\}$

Product space technique

Two block problem

$\min _{\boldsymbol{x}} f(\boldsymbol{x})+\mathbb{I}_{\mathcal{B}}(\boldsymbol{x})$
where $\boldsymbol{x} \in \mathcal{H}^{m}$ and $\mathcal{B}=\left\{\boldsymbol{z} \in \mathcal{H}^{m} \mid \boldsymbol{z}=(x, x, \ldots, x)\right\}$

- Let $\boldsymbol{y}=\left(y_{1}, \ldots, y_{m}\right)$

Product space technique

Two block problem

$\min _{\boldsymbol{x}} f(\boldsymbol{x})+\mathbb{I}_{\mathcal{B}}(\boldsymbol{x})$
where $\boldsymbol{x} \in \mathcal{H}^{m}$ and $\mathcal{B}=\left\{\boldsymbol{z} \in \mathcal{H}^{m} \mid \boldsymbol{z}=(x, x, \ldots, x)\right\}$

- Let $\boldsymbol{y}=\left(y_{1}, \ldots, y_{m}\right)$
$-\operatorname{prox}_{f}(\boldsymbol{y})=\left(\operatorname{prox}_{f_{1}}\left(y_{1}\right), \ldots, \operatorname{prox}_{f_{m}}\left(y_{m}\right)\right)$

Product space technique

Two block problem

$\min _{\boldsymbol{x}} f(\boldsymbol{x})+\mathbb{I}_{\mathcal{B}}(\boldsymbol{x})$
where $\boldsymbol{x} \in \mathcal{H}^{m}$ and $\mathcal{B}=\left\{\boldsymbol{z} \in \mathcal{H}^{m} \mid \boldsymbol{z}=(x, x, \ldots, x)\right\}$

- Let $\boldsymbol{y}=\left(y_{1}, \ldots, y_{m}\right)$
- $\operatorname{prox}_{f}(\boldsymbol{y})=\left(\operatorname{prox}_{f_{1}}\left(y_{1}\right), \ldots, \operatorname{prox}_{f_{m}}\left(y_{m}\right)\right)$
- $\operatorname{prox}_{\mathbb{I}_{\mathcal{B}}} \equiv \Pi_{\mathcal{B}}(\boldsymbol{y})$ can be solved as follows:

Product space technique

Two block problem

$$
\min _{\boldsymbol{x}} f(\boldsymbol{x})+\mathbb{I}_{\mathcal{B}}(\boldsymbol{x})
$$

$$
\text { where } \boldsymbol{x} \in \mathcal{H}^{m} \text { and } \mathcal{B}=\left\{\boldsymbol{z} \in \mathcal{H}^{m} \mid \boldsymbol{z}=(x, x, \ldots, x)\right\}
$$

- Let $\boldsymbol{y}=\left(y_{1}, \ldots, y_{m}\right)$
- $\operatorname{prox}_{f}(\boldsymbol{y})=\left(\operatorname{prox}_{f_{1}}\left(y_{1}\right), \ldots, \operatorname{prox}_{f_{m}}\left(y_{m}\right)\right)$
- $\operatorname{prox}_{\mathbb{I}_{\mathcal{B}}} \equiv \Pi_{\mathcal{B}}(\boldsymbol{y})$ can be solved as follows:

$$
\begin{array}{cc}
\min _{\boldsymbol{z} \in \mathcal{B}} & \frac{1}{2}\|\boldsymbol{z}-\boldsymbol{y}\|_{2}^{2} \\
\min _{x \in \mathcal{H}} & \sum_{i} \frac{1}{2}\left\|x-y_{i}\right\|_{2}^{2} \\
\Longrightarrow & x=\frac{1}{m} \sum_{i} y_{i}
\end{array}
$$

Product space technique

Two block problem

$$
\min _{\boldsymbol{x}} f(\boldsymbol{x})+\mathbb{I}_{\mathcal{B}}(\boldsymbol{x})
$$

where $\boldsymbol{x} \in \mathcal{H}^{m}$ and $\mathcal{B}=\left\{\boldsymbol{z} \in \mathcal{H}^{m} \mid \boldsymbol{z}=(x, x, \ldots, x)\right\}$

- Let $\boldsymbol{y}=\left(y_{1}, \ldots, y_{m}\right)$
- $\operatorname{prox}_{f}(\boldsymbol{y})=\left(\operatorname{prox}_{f_{1}}\left(y_{1}\right), \ldots, \operatorname{prox}_{f_{m}}\left(y_{m}\right)\right)$
- $\operatorname{prox}_{\mathbb{I}_{\mathcal{B}}} \equiv \Pi_{\mathcal{B}}(\boldsymbol{y})$ can be solved as follows:

$$
\begin{array}{cc}
\min _{\boldsymbol{z} \in \mathcal{B}} & \frac{1}{2}\|\boldsymbol{z}-\boldsymbol{y}\|_{2}^{2} \\
\min _{x \in \mathcal{H}} & \sum_{i} \frac{1}{2}\left\|x-y_{i}\right\|_{2}^{2} \\
\Longrightarrow & x=\frac{1}{m} \sum_{i} y_{i}
\end{array}
$$

Exercise: Work out the details of DR using the product space idea
This technique commonly exploited in ADMM too

Alternative: two block proximity

$$
\min _{x} \frac{1}{2}\|x-y\|_{2}^{2}+f(x)+h(x)
$$

Alternative: two block proximity

$$
\min _{x} \frac{1}{2}\|x-y\|_{2}^{2}+f(x)+h(x)
$$

Usually $\operatorname{prox}_{f+h} \neq \operatorname{prox}_{f} \circ \operatorname{prox}_{h}$

Alternative: two block proximity

$$
\min _{x} \frac{1}{2}\|x-y\|_{2}^{2}+f(x)+h(x)
$$

Usually $\operatorname{prox}_{f+h} \neq \operatorname{prox}_{f} \circ \operatorname{prox}_{h}$

Proximal-Dykstra method

1 Let $x_{0}=y ; u_{0}=0, z_{0}=0$
$2 k$-th iteration $(k \geq 0)$

Alternative: two block proximity

$$
\min _{x} \frac{1}{2}\|x-y\|_{2}^{2}+f(x)+h(x)
$$

Usually $\operatorname{prox}_{f+h} \neq \operatorname{prox}_{f} \circ \operatorname{prox}_{h}$

Proximal-Dykstra method

1 Let $x_{0}=y ; u_{0}=0, z_{0}=0$
$2 k$-th iteration $(k \geq 0)$

- $w_{k}=\operatorname{prox}_{f}\left(x_{k}+u_{k}\right)$

■ $u_{k+1}=x_{k}+u_{k}-w_{k}$

Alternative: two block proximity

$$
\min _{x} \frac{1}{2}\|x-y\|_{2}^{2}+f(x)+h(x)
$$

Usually $\operatorname{prox}_{f+h} \neq \operatorname{prox}_{f} \circ \operatorname{prox}_{h}$

Proximal-Dykstra method

1 Let $x_{0}=y ; u_{0}=0, z_{0}=0$
$2 k$-th iteration $(k \geq 0)$

- $w_{k}=\operatorname{prox}_{f}\left(x_{k}+u_{k}\right)$

■ $u_{k+1}=x_{k}+u_{k}-w_{k}$

- $x_{k+1}=\operatorname{prox}_{h}\left(w_{k}+z_{k}\right)$

■ $z_{k+1}=w_{k}+z_{k}-x_{k+1}$

Alternative: two block proximity

$$
\min _{x} \frac{1}{2}\|x-y\|_{2}^{2}+f(x)+h(x)
$$

Usually $\operatorname{prox}_{f+h} \neq \operatorname{prox}_{f} \circ \operatorname{prox}_{h}$

Proximal-Dykstra method

1 Let $x_{0}=y ; u_{0}=0, z_{0}=0$
$2 k$-th iteration $(k \geq 0)$
■ $w_{k}=\operatorname{prox}_{f}\left(x_{k}+u_{k}\right)$
■ $u_{k+1}=x_{k}+u_{k}-w_{k}$
■ $x_{k+1}=\operatorname{prox}_{h}\left(w_{k}+z_{k}\right)$
■ $z_{k+1}=w_{k}+z_{k}-x_{k+1}$
Why does it work?

Alternative: two block proximity

$$
\min _{x} \frac{1}{2}\|x-y\|_{2}^{2}+f(x)+h(x)
$$

$$
{\text { Usually } \operatorname{prox}_{f+h}}^{=} \operatorname{prox}_{f} \circ \operatorname{prox}_{h}
$$

Proximal-Dykstra method

1 Let $x_{0}=y ; u_{0}=0, z_{0}=0$
$2 k$-th iteration $(k \geq 0)$
■ $w_{k}=\operatorname{prox}_{f}\left(x_{k}+u_{k}\right)$
■ $u_{k+1}=x_{k}+u_{k}-w_{k}$
■ $x_{k+1}=\operatorname{prox}_{h}\left(w_{k}+z_{k}\right)$
■ $z_{k+1}=w_{k}+z_{k}-x_{k+1}$

Why does it work?

Exercise: Use the product-space technique to extend this to a parallel prox-Dykstra method for $m \geq 3$ functions.
Combettes, Pesquet (2010); Bauschke, Combettes (2012)

Proximal-Dykstra - some insight

$$
\min _{x} \frac{1}{2}\|x-y\|_{2}^{2}+f(x)+h(x)
$$

Proximal-Dykstra - some insight

$$
\min _{x} \frac{1}{2}\|x-y\|_{2}^{2}+f(x)+h(x)
$$

$$
L(x, z, w, \nu, \mu):=\frac{1}{2}\|x-y\|_{2}^{2}+f(z)+h(w)+\nu^{T}(x-z)+\mu^{T}(x-w)
$$

Proximal-Dykstra - some insight

$$
\min _{x} \frac{1}{2}\|x-y\|_{2}^{2}+f(x)+h(x)
$$

$$
L(x, z, w, \nu, \mu):=\frac{1}{2}\|x-y\|_{2}^{2}+f(z)+h(w)+\nu^{T}(x-z)+\mu^{T}(x-w)
$$

- Let's derive the dual from L :

$$
g(\nu, \mu) \quad:=\quad \inf _{x, z, w} L(x, z, \nu, \mu)
$$

Proximal-Dykstra - some insight

$$
\min _{x} \frac{1}{2}\|x-y\|_{2}^{2}+f(x)+h(x)
$$

$$
L(x, z, w, \nu, \mu):=\frac{1}{2}\|x-y\|_{2}^{2}+f(z)+h(w)+\nu^{T}(x-z)+\mu^{T}(x-w)
$$

- Let's derive the dual from L :

$$
\begin{aligned}
g(\nu, \mu) & :=\quad \inf _{x, z, w} L(x, z, \nu, \mu) \\
x-y+\nu+\mu=0 & \Longrightarrow \quad x=y-\nu-\mu
\end{aligned}
$$

Proximal-Dykstra - some insight

$$
\min _{x} \frac{1}{2}\|x-y\|_{2}^{2}+f(x)+h(x)
$$

$$
L(x, z, w, \nu, \mu):=\frac{1}{2}\|x-y\|_{2}^{2}+f(z)+h(w)+\nu^{T}(x-z)+\mu^{T}(x-w) .
$$

- Let's derive the dual from L :

$$
\begin{aligned}
g(\nu, \mu) & :=\quad \inf _{x, z, w} L(x, z, \nu, \mu) \\
x-y+\nu+\mu=0 & \Longrightarrow \quad x=y-\nu-\mu \\
\inf _{z} f(z)-\nu^{T} z & =-f^{*}(\nu), \quad\left(\text { similarly get }-h^{*}(\mu)\right)
\end{aligned}
$$

Proximal-Dykstra - some insight

$$
\min _{x} \frac{1}{2}\|x-y\|_{2}^{2}+f(x)+h(x)
$$

$$
L(x, z, w, \nu, \mu):=\frac{1}{2}\|x-y\|_{2}^{2}+f(z)+h(w)+\nu^{T}(x-z)+\mu^{T}(x-w) .
$$

- Let's derive the dual from L :

$$
\begin{aligned}
g(\nu, \mu) & :=\inf _{x, z, w} L(x, z, \nu, \mu) \\
x-y+\nu+\mu=0 & \Longrightarrow x=y-\nu-\mu \\
\inf _{z} f(z)-\nu^{T} z & =-f^{*}(\nu), \quad\left(\text { similarly get }-h^{*}(\mu)\right) \\
g(\nu, \mu) & =-\frac{1}{2}\|\nu+\mu\|_{2}^{2}+(\nu+\mu)^{T} y-f^{*}(\nu)-h^{*}(\mu)
\end{aligned}
$$

Equivalent dual problem

$$
\min G(\nu, \mu):=\frac{1}{2}\|\nu+\mu-y\|_{2}^{2}+f^{*}(\nu)+h^{*}(\mu)
$$

Proximal-Dykstra - key insight

Dual problem

$$
\min G(\nu, \mu):=\frac{1}{2}\|\nu+\mu-y\|_{2}^{2}+f^{*}(\nu)+h^{*}(\mu)
$$

Dual problem

$$
\min G(\nu, \mu):=\frac{1}{2}\|\nu+\mu-y\|_{2}^{2}+f^{*}(\nu)+h^{*}(\mu)
$$

Solve this dual via Block-Coordinate Descent!

Dual problem

$$
\min G(\nu, \mu):=\frac{1}{2}\|\nu+\mu-y\|_{2}^{2}+f^{*}(\nu)+h^{*}(\mu)
$$

Solve this dual via Block-Coordinate Descent!

$$
\begin{aligned}
\nu_{k+1} & =\operatorname{argmin}_{\nu} G\left(\nu, \mu_{k}\right) \\
\mu_{k+1} & =\operatorname{argmin}_{\mu} G\left(\nu_{k+1}, \mu\right)
\end{aligned}
$$

Dual problem

$$
\min G(\nu, \mu):=\frac{1}{2}\|\nu+\mu-y\|_{2}^{2}+f^{*}(\nu)+h^{*}(\mu)
$$

Solve this dual via Block-Coordinate Descent!

$$
\begin{aligned}
& \nu_{k+1}=\operatorname{argmin}_{\nu} G\left(\nu, \mu_{k}\right), \\
& \mu_{k+1}=\operatorname{argmin}_{\mu} G\left(\nu_{k+1}, \mu\right) . \\
& \hline
\end{aligned}
$$

Proximal-Dykstra - key insight

Dual problem

$$
\min G(\nu, \mu):=\frac{1}{2}\|\nu+\mu-y\|_{2}^{2}+f^{*}(\nu)+h^{*}(\mu) .
$$

Solve this dual via Block-Coordinate Descent!

$$
\begin{aligned}
\nu_{k+1} & =\operatorname{argmin}_{\nu} G\left(\nu, \mu_{k}\right) \\
\mu_{k+1} & =\operatorname{argmin}_{\mu} G\left(\nu_{k+1}, \mu\right)
\end{aligned}
$$

$$
0 \in \nu_{k+1}+\mu_{k}-y+\partial f^{*}\left(\nu_{k+1}\right) \Longrightarrow y-\mu_{k} \in \nu_{k+1}+\partial f^{*}\left(\nu_{k+1}\right)
$$

Proximal-Dykstra - key insight

Dual problem

$$
\min G(\nu, \mu):=\frac{1}{2}\|\nu+\mu-y\|_{2}^{2}+f^{*}(\nu)+h^{*}(\mu)
$$

Solve this dual via Block-Coordinate Descent!

$$
\begin{aligned}
\nu_{k+1} & =\operatorname{argmin}_{\nu} G\left(\nu, \mu_{k}\right) \\
\mu_{k+1} & =\operatorname{argmin}_{\mu} G\left(\nu_{k+1}, \mu\right)
\end{aligned}
$$

$$
0 \in \nu_{k+1}+\mu_{k}-y+\partial f^{*}\left(\nu_{k+1}\right) \Longrightarrow y-\mu_{k} \in \nu_{k+1}+\partial f^{*}\left(\nu_{k+1}\right)
$$

$$
\Longrightarrow \nu_{k+1}=\operatorname{prox}_{f *}\left(y-\mu_{k}\right) \Longrightarrow \nu_{k+1}=y-\mu_{k}-\operatorname{prox}_{f}\left(y-\mu_{k}\right)
$$

Proximal-Dykstra - key insight

Dual problem

$$
\min G(\nu, \mu):=\frac{1}{2}\|\nu+\mu-y\|_{2}^{2}+f^{*}(\nu)+h^{*}(\mu) .
$$

Solve this dual via Block-Coordinate Descent!

$$
\begin{aligned}
\nu_{k+1} & =\operatorname{argmin}_{\nu} G\left(\nu, \mu_{k}\right) \\
\mu_{k+1} & =\operatorname{argmin}_{\mu} G\left(\nu_{k+1}, \mu\right)
\end{aligned}
$$

$$
0 \in \nu_{k+1}+\mu_{k}-y+\partial f^{*}\left(\nu_{k+1}\right) \Longrightarrow y-\mu_{k} \in \nu_{k+1}+\partial f^{*}\left(\nu_{k+1}\right)
$$

$$
\Longrightarrow \nu_{k+1}=\operatorname{prox}_{f *}\left(y-\mu_{k}\right) \Longrightarrow \nu_{k+1}=y-\mu_{k}-\operatorname{prox}_{f}\left(y-\mu_{k}\right)
$$

Similarly, $\mu_{k+1}=y-\nu_{k+1}-\operatorname{prox}_{h}\left(y-\nu_{k+1}\right)$

Proximal-Dykstra - key insight

- $0 \in \nu_{k+1}+\mu_{k}-y+\partial f^{*}\left(\nu_{k+1}\right)$
- $0 \in \nu_{k+1}+\mu_{k+1}-y+\partial h^{*}\left(\mu_{k+1}\right)$.

Proximal-Dykstra - key insight

$$
\begin{aligned}
& -0 \in \nu_{k+1}+\mu_{k}-y+\partial f^{*}\left(\nu_{k+1}\right) \\
& \nu_{k+1}=y-\mu_{k}-\operatorname{prox}_{f}\left(y-\mu_{k}\right) \\
& \nu_{k+1}-y+\partial h^{*}\left(\mu_{k+1}\right) \\
& \mu_{k+1}=y-\nu_{k+1}-\operatorname{prox}_{h}\left(y-\nu_{k+1}\right)
\end{aligned}
$$

Proximal-Dykstra - key insight

$$
\begin{aligned}
& 0 \in \nu_{k+1}+\mu_{k}-y+\partial f^{*}\left(\nu_{k+1}\right) \\
& 0 \in \nu_{k+1}+\mu_{k+1}-y+\partial h^{*}\left(\mu_{k+1}\right) \\
& \nu_{k+1}=y-\mu_{k}-\operatorname{prox}_{f}\left(y-\mu_{k}\right) \\
& \mu_{k+1}=y-\nu_{k+1}-\operatorname{prox}_{h}\left(y-\nu_{k+1}\right)
\end{aligned}
$$

Now use Lagrangian stationarity condition

$$
x=y-\nu-\mu \Longrightarrow y-\mu=x+\nu
$$

to rewrite $B C D$ using primal and dual variables.

Proximal-Dykstra - key insight

$$
\begin{aligned}
& \quad 0 \in \nu_{k+1}+\mu_{k}-y+\partial f^{*}\left(\nu_{k+1}\right) \\
& -0 \in \nu_{k+1}+\mu_{k+1}-y+\partial h^{*}\left(\mu_{k+1}\right) \\
& \nu_{k+1}=y-\mu_{k}-\operatorname{prox}_{f}\left(y-\mu_{k}\right) \\
& \mu_{k+1}=y-\nu_{k+1}-\operatorname{prox}_{h}\left(y-\nu_{k+1}\right)
\end{aligned}
$$

Now use Lagrangian stationarity condition

$$
x=y-\nu-\mu \Longrightarrow y-\mu=x+\nu
$$

to rewrite $B C D$ using primal and dual variables.

BCD

$$
\begin{aligned}
\nu_{k+1} & =\operatorname{argmin}_{\nu} G\left(\nu, \mu_{k}\right) \\
\mu_{k+1} & =\operatorname{argmin}_{\mu} G\left(\nu_{k+1}, \mu\right)
\end{aligned}
$$

Proximal-Dykstra - key insight

$$
\begin{aligned}
& \quad 0 \in \nu_{k+1}+\mu_{k}-y+\partial f^{*}\left(\nu_{k+1}\right) \\
& -0 \in \nu_{k+1}+\mu_{k+1}-y+\partial h^{*}\left(\mu_{k+1}\right) \\
& \nu_{k+1}=y-\mu_{k}-\operatorname{prox}_{f}\left(y-\mu_{k}\right) \\
& \mu_{k+1}=y-\nu_{k+1}-\operatorname{prox}_{h}\left(y-\nu_{k+1}\right)
\end{aligned}
$$

Now use Lagrangian stationarity condition

$$
x=y-\nu-\mu \Longrightarrow y-\mu=x+\nu
$$

to rewrite $B C D$ using primal and dual variables.

Prox-Dykstra

$$
\begin{aligned}
w_{k} & \leftarrow \operatorname{prox}_{f}\left(x_{k}+\nu_{k}\right) \\
\nu_{k+1} & \leftarrow x_{k}+\nu_{k}-w_{k} \\
x_{k+1} & \leftarrow \operatorname{prox}_{h}\left(w_{k}+\mu_{k}\right) \\
\mu_{k+1} & \leftarrow \mu_{k}+w_{k}-x_{k+1}
\end{aligned}
$$

Example practical use

Anisotropic 2D-TV Proximity operator

$$
\min _{X} \quad \frac{1}{2}\|X-Y\|_{\mathrm{F}}^{2}+\sum_{i j} w_{i j}^{c}\left|x_{i, j+1}-x_{i j}\right|+\sum_{i j} w_{i j}^{r}\left|x_{i+1, j}-x_{i j}\right|
$$

Anisotropic 2D-TV Proximity operator

$$
\min _{X} \quad \frac{1}{2}\|X-Y\|_{\mathrm{F}}^{2}+\sum_{i j} w_{i j}^{c}\left|x_{i, j+1}-x_{i j}\right|+\sum_{i j} w_{i j}^{r}\left|x_{i+1, j}-x_{i j}\right|
$$

- Amenable to prox-Dykstra
- Used in (Barbero, Sra, ICML 2011).
- The subproblem:
$\min \frac{1}{2}\|a-b\|_{2}^{2}+\sum_{i} w_{i}\left|a_{i}-a_{i+1}\right|$ itself has been subject of over 15 papers!
- I still use it now and then

Incremental first-order methods

Separable objectives

$$
\min \quad f(x)=\sum_{i}^{m} f_{i}(x)+\lambda r(x)
$$

$$
\min \quad f(x)=\sum_{i}^{m} f_{i}(x)+\lambda r(x)
$$

Gradient / subgradient methods

$$
\begin{aligned}
x_{k+1} & =x_{k}-\alpha_{k} \nabla f\left(x_{k}\right) \quad \lambda=0 \\
x_{k+1} & =x_{k}-\alpha_{k} g\left(x_{k}\right), \quad g\left(x_{k}\right) \in \partial f\left(x_{k}\right)+\lambda \partial r\left(x_{k}\right) \\
x_{k+1} & =\operatorname{prox}_{\alpha_{k} r}\left(x_{k}-\alpha_{k} \nabla f\left(x_{k}\right)\right)
\end{aligned}
$$

Product-space based methods

$$
\begin{aligned}
\min F\left(x_{1}, \ldots, x_{m}\right) & +\mathbb{I}_{\mathcal{B}}\left(x_{1}, \ldots, x_{m}\right) \\
\left(x_{1, k+1}, \ldots, x_{m, k+1}\right) & \leftarrow \operatorname{prox}_{F}\left(y_{1, k}, \ldots, y_{m, k}\right)
\end{aligned}
$$

$$
\min \quad f(x)=\sum_{i}^{m} f_{i}(x)+\lambda r(x)
$$

Gradient / subgradient methods

$$
\begin{aligned}
x_{k+1} & =x_{k}-\alpha_{k} \nabla f\left(x_{k}\right) \quad \lambda=0 \\
x_{k+1} & =x_{k}-\alpha_{k} g\left(x_{k}\right), \quad g\left(x_{k}\right) \in \partial f\left(x_{k}\right)+\lambda \partial r\left(x_{k}\right) \\
x_{k+1} & =\operatorname{prox}_{\alpha_{k} r}\left(x_{k}-\alpha_{k} \nabla f\left(x_{k}\right)\right)
\end{aligned}
$$

Product-space based methods

$$
\begin{aligned}
\min F\left(x_{1}, \ldots, x_{m}\right) & +\mathbb{I}_{\mathcal{B}}\left(x_{1}, \ldots, x_{m}\right) \\
\left(x_{1, k+1}, \ldots, x_{m, k+1}\right) & \leftarrow \operatorname{prox}_{F}\left(y_{1, k}, \ldots, y_{m, k}\right)
\end{aligned}
$$

How much computation does one iteration take?

Incremental gradient methods

What if at iteration k, we randomly pick an integer

$$
i(k) \in\{1,2, \ldots, m\} ?
$$

Incremental gradient methods

What if at iteration k, we randomly pick an integer

$$
i(k) \in\{1,2, \ldots, m\} ?
$$

And instead just perform the update?

$$
x_{k+1}=x_{k}-\alpha_{k} \nabla f_{i(k)}\left(x_{k}\right)
$$

Incremental gradient methods

What if at iteration k, we randomly pick an integer

$$
i(k) \in\{1,2, \ldots, m\} ?
$$

And instead just perform the update?

$$
x_{k+1}=x_{k}-\alpha_{k} \nabla f_{i(k)}\left(x_{k}\right)
$$

- The update requires only gradient for $f_{i(k)}$
- One iteration now m times faster than with $\nabla f(x)$

Incremental gradient methods

What if at iteration k, we randomly pick an integer

$$
i(k) \in\{1,2, \ldots, m\} ?
$$

And instead just perform the update?

$$
x_{k+1}=x_{k}-\alpha_{k} \nabla f_{i(k)}\left(x_{k}\right)
$$

- The update requires only gradient for $f_{i(k)}$
- One iteration now m times faster than with $\nabla f(x)$

But does this make sense?

Incremental gradient methods

- Old idea; has been used extensively as backpropagation in neural networks, Widrow-Hoff least mean squares, gradient methods with errors, stochastic gradient, etc.

Incremental gradient methods

A Old idea; has been used extensively as backpropagation in neural networks, Widrow-Hoff least mean squares, gradient methods with errors, stochastic gradient, etc.
© Can "stream" through data - go through components one by one, say cyclically instead of randomly

Incremental gradient methods

A Old idea; has been used extensively as backpropagation in neural networks, Widrow-Hoff least mean squares, gradient methods with errors, stochastic gradient, etc.
© Can "stream" through data - go through components one by one, say cyclically instead of randomly
© For large m many $f_{i}(x)$ may have similar minimizers;

Incremental gradient methods

A Old idea; has been used extensively as backpropagation in neural networks, Widrow-Hoff least mean squares, gradient methods with errors, stochastic gradient, etc.
© Can "stream" through data - go through components one by one, say cyclically instead of randomly
© For large m many $f_{i}(x)$ may have similar minimizers; using the f_{i} individually we could take advantage, and greatly speed up.

Incremental gradient methods

A Old idea; has been used extensively as backpropagation in neural networks, Widrow-Hoff least mean squares, gradient methods with errors, stochastic gradient, etc.
© Can "stream" through data - go through components one by one, say cyclically instead of randomly
© For large m many $f_{i}(x)$ may have similar minimizers; using the f_{i} individually we could take advantage, and greatly speed up.
© Incremental methods usually effective far from the eventual limit (solution) - become very slow close to the solution.

Incremental gradient methods

A Old idea; has been used extensively as backpropagation in neural networks, Widrow-Hoff least mean squares, gradient methods with errors, stochastic gradient, etc.
© Can "stream" through data - go through components one by one, say cyclically instead of randomly
© For large m many $f_{i}(x)$ may have similar minimizers; using the f_{i} individually we could take advantage, and greatly speed up.
A Incremental methods usually effective far from the eventual limit (solution) - become very slow close to the solution.
© Several open questions related to convergence and rate of convergence (for both convex, nonconvex)

Incremental gradient methods

A Old idea; has been used extensively as backpropagation in neural networks, Widrow-Hoff least mean squares, gradient methods with errors, stochastic gradient, etc.
© Can "stream" through data - go through components one by one, say cyclically instead of randomly
© For large m many $f_{i}(x)$ may have similar minimizers; using the f_{i} individually we could take advantage, and greatly speed up.
A Incremental methods usually effective far from the eventual limit (solution) - become very slow close to the solution.
© Several open questions related to convergence and rate of convergence (for both convex, nonconvex)
© Usually randomization greatly simplifies convergence analysis

- Assume all variables involved are scalars.

$$
\min \quad f(x)=\frac{1}{2} \sum_{i=1}^{m}\left(a_{i} x-b_{i}\right)^{2}
$$

- Assume all variables involved are scalars.

$$
\min \quad f(x)=\frac{1}{2} \sum_{i=1}^{m}\left(a_{i} x-b_{i}\right)^{2}
$$

- Solving $f^{\prime}(x)=0$ we obtain

$$
x^{*}=\frac{\sum_{i} a_{i} b_{i}}{\sum_{i} a_{i}^{2}}
$$

- Assume all variables involved are scalars.

$$
\min \quad f(x)=\frac{1}{2} \sum_{i=1}^{m}\left(a_{i} x-b_{i}\right)^{2}
$$

- Solving $f^{\prime}(x)=0$ we obtain

$$
x^{*}=\frac{\sum_{i} a_{i} b_{i}}{\sum_{i} a_{i}^{2}}
$$

- Minimum of a single $f_{i}(x)=\frac{1}{2}\left(a_{i} x-b_{i}\right)^{2}$ is $x_{i}^{*}=b_{i} / a_{i}$
- Assume all variables involved are scalars.

$$
\min \quad f(x)=\frac{1}{2} \sum_{i=1}^{m}\left(a_{i} x-b_{i}\right)^{2}
$$

- Solving $f^{\prime}(x)=0$ we obtain

$$
x^{*}=\frac{\sum_{i} a_{i} b_{i}}{\sum_{i} a_{i}^{2}}
$$

- Minimum of a single $f_{i}(x)=\frac{1}{2}\left(a_{i} x-b_{i}\right)^{2}$ is $x_{i}^{*}=b_{i} / a_{i}$
- Notice now that

$$
x^{*} \in\left[\min _{i} x_{i}^{*}, \max _{i} x_{i}^{*}\right]=: R
$$

(Use: $\left.\sum_{i} a_{i} b_{i}=\sum_{i} a_{i}^{2}\left(b_{i} / a_{i}\right)\right)$

- Assume all variables involved are scalars.

$$
\min \quad f(x)=\frac{1}{2} \sum_{i=1}^{m}\left(a_{i} x-b_{i}\right)^{2}
$$

- Notice: $x^{*} \in\left[\min _{i} x_{i}^{*}, \max _{i} x_{i}^{*}\right]=: R$
- Assume all variables involved are scalars.

$$
\min \quad f(x)=\frac{1}{2} \sum_{i=1}^{m}\left(a_{i} x-b_{i}\right)^{2}
$$

- Notice: $x^{*} \in\left[\min _{i} x_{i}^{*}, \max _{i} x_{i}^{*}\right]=: R$
- If we have a scalar x that lies outside R ?
- We see that

$$
\begin{aligned}
\nabla f_{i}(x) & =a_{i}\left(a_{i} x-b_{i}\right) \\
\nabla f(x) & =\sum_{i} a_{i}\left(a_{i} x-b_{i}\right)
\end{aligned}
$$

- Assume all variables involved are scalars.

$$
\min \quad f(x)=\frac{1}{2} \sum_{i=1}^{m}\left(a_{i} x-b_{i}\right)^{2}
$$

- Notice: $x^{*} \in\left[\min _{i} x_{i}^{*}, \max _{i} x_{i}^{*}\right]=: R$
- If we have a scalar x that lies outside R ?
- We see that

$$
\begin{aligned}
& \nabla f_{i}(x)=a_{i}\left(a_{i} x-b_{i}\right) \\
& \nabla f(x)=\sum_{i} a_{i}\left(a_{i} x-b_{i}\right)
\end{aligned}
$$

- $\nabla f_{i}(x)$ has same sign as $\nabla f(x)$. So using $\nabla f_{i}(x)$ instead of $\nabla f(x)$ also ensures progress.
- Assume all variables involved are scalars.

$$
\min \quad f(x)=\frac{1}{2} \sum_{i=1}^{m}\left(a_{i} x-b_{i}\right)^{2}
$$

- Notice: $x^{*} \in\left[\min _{i} x_{i}^{*}, \max _{i} x_{i}^{*}\right]=: R$
- If we have a scalar x that lies outside R ?
- We see that

$$
\begin{aligned}
& \nabla f_{i}(x)=a_{i}\left(a_{i} x-b_{i}\right) \\
& \nabla f(x)=\sum_{i} a_{i}\left(a_{i} x-b_{i}\right)
\end{aligned}
$$

- $\nabla f_{i}(x)$ has same sign as $\nabla f(x)$. So using $\nabla f_{i}(x)$ instead of $\nabla f(x)$ also ensures progress.
- But once inside region R, no guarantee that incremental method will make progress towards optimum.

$$
\min \quad f(x)=\sum_{i} f_{i}(x)
$$

What if the f_{i} are nonsmooth?

$$
\min \quad f(x)=\sum_{i} f_{i}(x)
$$

What if the f_{i} are nonsmooth?

$$
x_{k+1}=\operatorname{prox}_{\alpha_{k} f}\left(x_{k}\right)
$$

Incremental proximal method

$$
\min f(x)=\sum_{i} f_{i}(x)
$$

What if the f_{i} are nonsmooth?

$$
\begin{gathered}
-x_{k+1}=\operatorname{prox}_{\alpha_{k} f}\left(x_{k}\right) \\
x_{k+1}=\operatorname{prox}_{\alpha_{k} f_{i(k)}}\left(x_{k}\right) \\
x_{k+1}=\operatorname{argmin}\left(\frac{1}{2}\left\|x-x_{k}\right\|_{2}^{2}+\alpha_{k} f_{i(k)}(x)\right)
\end{gathered}
$$

$i(k) \in\{1,2, \ldots, m\}$ picked uniformly at random.

Incremental proximal method

$$
\min f(x)=\sum_{i} f_{i}(x)
$$

What if the f_{i} are nonsmooth?

$$
\begin{gathered}
x_{k+1}=\operatorname{prox}_{\alpha_{k} f}\left(x_{k}\right) \\
x_{k+1}=\operatorname{prox}_{\alpha_{k} f_{i(k)}}\left(x_{k}\right)
\end{gathered}
$$

$$
x_{k+1}=\operatorname{argmin}\left(\frac{1}{2}\left\|x-x_{k}\right\|_{2}^{2}+\alpha_{k} f_{i(k)}(x)\right)
$$

$i(k) \in\{1,2, \ldots, m\}$ picked uniformly at random.
Convergence rate analysis?

Example

Example

Fermat-Weber problem

(historically the first facility-location problem)

$$
\min _{x} \quad \sum_{i} w_{i}\left\|x-a_{i}\right\|
$$

Example

Fermat-Weber problem

(historically the first facility-location problem)

$$
\min _{x} \quad \sum_{i} w_{i}\left\|x-a_{i}\right\|
$$

- Assuming $\|\cdot\|=\|\cdot\|_{2}$
- Also assume no a_{i} is an optimum
- [Weiszfeld; '37] Let $T:=x \mapsto\left(\sum_{i} \frac{w_{i} a_{i}}{\left\|x-a_{i}\right\|}\right) /\left(\sum_{i} \frac{w_{i}}{\left\|x-a_{i}\right\|}\right)$
- Assuming T is well-defined, $T^{k}\left(x_{0}\right) \rightarrow \operatorname{argmin}$
- [Kuhn; 73] completed the proof

Example

Fermat-Weber problem

(historically the first facility-location problem)

$$
\min _{x} \quad \sum_{i} w_{i}\left\|x-a_{i}\right\|
$$

- Assuming $\|\cdot\|=\|\cdot\|_{2}$
- Also assume no a_{i} is an optimum
- [Weiszfeld; '37] Let $T:=x \mapsto\left(\sum_{i} \frac{w_{i} a_{i}}{\left\|x-a_{i}\right\|}\right) /\left(\sum_{i} \frac{w_{i}}{\left\|x-a_{i}\right\|}\right)$
- Assuming T is well-defined, $T^{k}\left(x_{0}\right) \rightarrow \operatorname{argmin}$
- [Kuhn; 73] completed the proof
- What if $\|\cdot\|=\|\cdot\|_{p}$?
- 100s of papers discuss the Fermat-Weber problem

Fermat-Weber problem
 $$
\min _{x} \sum_{i} w_{i}\left\|x-a_{i}\right\|
$$

Fermat-Weber problem

$$
\min _{x} \quad \sum_{i} w_{i}\left\|x-a_{i}\right\|
$$

Now, $f_{i}(x):=w_{i}\left\|x-a_{i}\right\|_{2}$.

$$
\begin{gathered}
x_{k+1}=\operatorname{prox}_{\alpha_{k} f_{i(k)}}\left(x_{k}\right) \\
x_{k+1}=\operatorname{argmin}\left(\frac{1}{2}\left\|x-x_{k}\right\|_{2}^{2}+\alpha_{k} w_{i(k)}\left\|x-a_{i(k)}\right\|_{2}\right) \\
i(k) \in\{1,2, \ldots, m\} \text { picked uniformly at random }
\end{gathered}
$$

Fermat-Weber problem

$$
\min _{x} \quad \sum_{i} w_{i}\left\|x-a_{i}\right\|
$$

Now, $f_{i}(x):=w_{i}\left\|x-a_{i}\right\|_{2}$.

$$
\begin{gathered}
x_{k+1}=\operatorname{prox}_{\alpha_{k} f_{i(k)}}\left(x_{k}\right) \\
x_{k+1}=\operatorname{argmin}\left(\frac{1}{2}\left\|x-x_{k}\right\|_{2}^{2}+\alpha_{k} w_{i(k)}\left\|x-a_{i(k)}\right\|_{2}\right) \\
i(k) \in\{1,2, \ldots, m\} \text { picked uniformly at random. }
\end{gathered}
$$

Exercise: Obtain closed form solution to x_{k+1}

Fermat-Weber problem

$$
\min _{x} \quad \sum_{i} w_{i}\left\|x-a_{i}\right\|
$$

Now, $f_{i}(x):=w_{i}\left\|x-a_{i}\right\|_{2}$.

$$
\begin{gathered}
x_{k+1}=\operatorname{prox}_{\alpha_{k} f_{i(k)}}\left(x_{k}\right) \\
x_{k+1}=\operatorname{argmin}\left(\frac{1}{2}\left\|x-x_{k}\right\|_{2}^{2}+\alpha_{k} w_{i(k)}\left\|x-a_{i(k)}\right\|_{2}\right) \\
i(k) \in\{1,2, \ldots, m\} \text { picked uniformly at random. }
\end{gathered}
$$

Exercise: Obtain closed form solution to x_{k+1}
Rate of convergence? Most likely, sublinear?
Can we somehow get linear convergence?

Incremental proximal-gradients

$$
\min \quad \sum_{i} f_{i}(x)+r(x)
$$

Incremental proximal-gradients

$$
\begin{gathered}
\min \sum_{i} f_{i}(x)+r(x) \\
x_{k+1}=\operatorname{prox}_{\eta_{k} r}\left(x_{k}-\eta_{k} \sum_{i=1}^{m} \nabla f_{i}\left(z_{i}\right)\right), \quad k=0,1, \ldots
\end{gathered}
$$

Incremental proximal-gradients

$$
\begin{gathered}
\min \sum_{i} f_{i}(x)+r(x) \\
x_{k+1}=\operatorname{prox}_{\eta_{k} r}\left(x_{k}-\eta_{k} \sum_{i=1}^{m} \nabla f_{i}\left(z_{i}\right)\right), \quad k=0,1, \ldots, \\
z_{1}=x_{k} \\
z_{i+1}=z_{i}-\eta_{k} \nabla f_{i}\left(z_{i}\right), \quad i=1, \ldots, m-1 .
\end{gathered}
$$

Incremental proximal-gradients

$$
\begin{gathered}
\min \sum_{i} f_{i}(x)+r(x) \\
x_{k+1}=\operatorname{prox}_{\eta_{k} r}\left(x_{k}-\eta_{k} \sum_{i=1}^{m} \nabla f_{i}\left(z_{i}\right)\right), \quad k=0,1, \ldots, \\
z_{1}=x_{k} \\
z_{i+1}=z_{i}-\eta_{k} \nabla f_{i}\left(z_{i}\right), \quad i=1, \ldots, m-1
\end{gathered}
$$

We can choose $\eta_{k}=1 / L$, where L is Lipschitz constant of $\nabla f(x)$

Incremental proximal-gradients

$$
\begin{gathered}
\min \sum_{i} f_{i}(x)+r(x) \\
x_{k+1}=\operatorname{prox}_{\eta_{k} r}\left(x_{k}-\eta_{k} \sum_{i=1}^{m} \nabla f_{i}\left(z_{i}\right)\right), \quad k=0,1, \ldots, \\
z_{1}=x_{k} \\
z_{i+1}=z_{i}-\eta_{k} \nabla f_{i}\left(z_{i}\right), \quad i=1, \ldots, m-1 .
\end{gathered}
$$

We can choose $\eta_{k}=1 / L$, where L is Lipschitz constant of $\nabla f(x)$ Might be easier to analyze

$$
x_{k+1}=\operatorname{prox}_{\eta_{k} r}\left(x_{k}-\eta_{k} \sum_{i=1}^{m} \nabla f_{i}\left(z_{i}\right)\right), \quad k=0,1, \ldots,
$$

Incremental proximal-gradients

$$
\begin{gathered}
\min \sum_{i} f_{i}(x)+r(x) \\
x_{k+1}=\operatorname{prox}_{\eta_{k} r}\left(x_{k}-\eta_{k} \sum_{i=1}^{m} \nabla f_{i}\left(z_{i}\right)\right), \quad k=0,1, \ldots, \\
z_{1}=x_{k} \\
z_{i+1}=z_{i}-\eta_{k} \nabla f_{i}\left(z_{i}\right), \quad i=1, \ldots, m-1
\end{gathered}
$$

We can choose $\eta_{k}=1 / L$, where L is Lipschitz constant of $\nabla f(x)$ Might be easier to analyze

$$
\begin{aligned}
x_{k+1}= & \operatorname{prox}_{\eta_{k} r}\left(x_{k}-\eta_{k} \sum_{i=1}^{m} \nabla f_{i}\left(z_{i}\right)\right), \quad k=0,1, \ldots \\
& z_{1}=x_{k} \\
& z_{i+1}=\operatorname{prox}_{\eta_{k} r}\left(z_{i}-\eta_{k} \nabla f_{i}\left(z_{i}\right)\right), \quad i=1, \ldots, m-1
\end{aligned}
$$

Incremental proximal-gradients

$$
\begin{gathered}
\min \sum_{i} f_{i}(x)+r(x) \\
x_{k+1}=\operatorname{prox}_{\eta_{k} r}\left(x_{k}-\eta_{k} \sum_{i=1}^{m} \nabla f_{i}\left(z_{i}\right)\right), \quad k=0,1, \ldots, \\
z_{1}=x_{k} \\
z_{i+1}=z_{i}-\eta_{k} \nabla f_{i}\left(z_{i}\right), \quad i=1, \ldots, m-1
\end{gathered}
$$

We can choose $\eta_{k}=1 / L$, where L is Lipschitz constant of $\nabla f(x)$ Might be easier to analyze

$$
\begin{aligned}
x_{k+1}= & \operatorname{prox}_{\eta_{k} r}\left(x_{k}-\eta_{k} \sum_{i=1}^{m} \nabla f_{i}\left(z_{i}\right)\right), \quad k=0,1, \ldots \\
& z_{1}=x_{k} \\
& z_{i+1}=\operatorname{prox}_{\eta_{k} r}\left(z_{i}-\eta_{k} \nabla f_{i}\left(z_{i}\right)\right), \quad i=1, \ldots, m-1
\end{aligned}
$$

Moreover, analysis easier if we go through the f_{i} randomly (so-called stochastic)

Incremental methods: deterministic

$$
\min \quad\left(f(x)=\sum_{i} f_{i}(x)\right)+r(x)
$$

Gradient with error

$$
\begin{gathered}
\nabla f_{i(k)}(x)=\nabla f(x)+e \\
x_{k+1}=\operatorname{prox}_{\alpha r}\left[x_{k}-\alpha_{k}\left(\nabla f\left(x_{k}\right)+e_{k}\right)\right]
\end{gathered}
$$

Incremental methods: deterministic

$$
\min \quad\left(f(x)=\sum_{i} f_{i}(x)\right)+r(x)
$$

Gradient with error

$$
\begin{gathered}
\nabla f_{i(k)}(x)=\nabla f(x)+e \\
x_{k+1}=\operatorname{prox}_{\alpha r}\left[x_{k}-\alpha_{k}\left(\nabla f\left(x_{k}\right)+e_{k}\right)\right]
\end{gathered}
$$

So if in the limit error $\alpha_{k} e_{k}$ disappears, we should be ok!

Incremental gradient methods

Incremental gradient methods may be viewed as
Gradient methods with error in gradient computation

Incremental gradient methods

Incremental gradient methods may be viewed as
Gradient methods with error in gradient computation

- If we can control this error, we can control convergence

Incremental gradient methods

Incremental gradient methods may be viewed as
Gradient methods with error in gradient computation

- If we can control this error, we can control convergence
- Error makes even smooth case more like nonsmooth case

Incremental gradient methods

Incremental gradient methods may be viewed as
Gradient methods with error in gradient computation

- If we can control this error, we can control convergence
- Error makes even smooth case more like nonsmooth case
- So, convergence crucially depends on stepsize α_{k}

Incremental gradient methods

Incremental gradient methods may be viewed as
Gradient methods with error in gradient computation

- If we can control this error, we can control convergence
- Error makes even smooth case more like nonsmooth case
- So, convergence crucially depends on stepsize α_{k}

Some stepsize choices
^ $\alpha_{k}=c$, a small enough constant
© $\alpha_{k} \rightarrow 0, \sum_{k} \alpha_{k}=\infty$ (diminishing scalar)
© Constant for some iterations, diminish, again constant, repeat
© $\alpha_{k}=\min (c, a /(b+k))$, where $a, b, c>0$ (user chosen).

Incremental gradient - summary

A Usually much faster (large m) when far from convergence

Incremental gradient - summary

A Usually much faster (large m) when far from convergence
\uparrow Slow progress near optimum (because α_{k} often too small)

Incremental gradient - summary

A Usually much faster (large m) when far from convergence
\uparrow Slow progress near optimum (because α_{k} often too small)
© Constant step $\alpha_{k}=\alpha$, doesn't always yield convergence

Incremental gradient - summary

A Usually much faster (large m) when far from convergence
\uparrow Slow progress near optimum (because α_{k} often too small)
© Constant step $\alpha_{k}=\alpha$, doesn't always yield convergence
© Diminishing step $\alpha_{k}=O(1 / k)$ leads to convergence

Incremental gradient - summary

A Usually much faster (large m) when far from convergence
© Slow progress near optimum (because α_{k} often too small)
© Constant step $\alpha_{k}=\alpha$, doesn't always yield convergence
© Diminishing step $\alpha_{k}=O(1 / k)$ leads to convergence
A Usually slow, sublinear rate of convergence

Incremental gradient - summary

4. Usually much faster (large m) when far from convergence

A Slow progress near optimum (because α_{k} often too small)
© Constant step $\alpha_{k}=\alpha$, doesn't always yield convergence
© Diminishing step $\alpha_{k}=O(1 / k)$ leads to convergence
中 Usually slow, sublinear rate of convergence
A If f_{i} strongly convex, linear rate available (SAG, SVRG)

Incremental gradient - summary

A Usually much faster (large m) when far from convergence
A Slow progress near optimum (because α_{k} often too small)
© Constant step $\alpha_{k}=\alpha$, doesn't always yield convergence
© Diminishing step $\alpha_{k}=O(1 / k)$ leads to convergence
中 Usually slow, sublinear rate of convergence
© If f_{i} strongly convex, linear rate available (SAG, SVRG)
© Idea extends to subgradient, and proximal setups

Incremental gradient - summary

A Usually much faster (large m) when far from convergence
© Slow progress near optimum (because α_{k} often too small)
© Constant step $\alpha_{k}=\alpha$, doesn't always yield convergence
© Diminishing step $\alpha_{k}=O(1 / k)$ leads to convergence
© Usually slow, sublinear rate of convergence
© If f_{i} strongly convex, linear rate available (SAG, SVRG)
A Idea extends to subgradient, and proximal setups
© Some extensions also apply to nonconvex problems

Incremental gradient - summary

A Usually much faster (large m) when far from convergence
A Slow progress near optimum (because α_{k} often too small)
© Constant step $\alpha_{k}=\alpha$, doesn't always yield convergence
© Diminishing step $\alpha_{k}=O(1 / k)$ leads to convergence
© Usually slow, sublinear rate of convergence
A If f_{i} strongly convex, linear rate available (SAG, SVRG)
© Idea extends to subgradient, and proximal setups
A Some extensions also apply to nonconvex problems
© Some extend to parallel and distributed computation

- EE227A slides, S. Sra
© Introductory Lectures on Convex Optimization, Yu. Nesterov
A Proximal splitting methods, Combettes \& Pesquet

