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Douglas-Rachford

min f(x) + h(x)

z ← 1
2(I +RfRh)z

Reflection operator

Rf := 2 proxf −I.

Observe: Rf = −Rf∗ (another justification of “reflection”)

proxf + proxf∗ = I

2 proxf = 2I − 2 proxf∗

2 proxf −I = I − 2 proxf∗

Rf = −Rf∗
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Douglas-Rachford – open problem

min f(x) + g(x) + h(x)
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Douglas-Rachford – open problem

min f(x) + g(x) + h(x)

0 ∈ ∂f(x) + ∂g(x) + ∂h(x)

3x ∈ (I + ∂f)(x) + (I + ∂g)(x) + (I + ∂h)(x)

3x ∈ (I + ∂f)(x) + z + w

now what?
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Douglas-Rachford – open problem

min f(x) + g(x) + h(x)

Partial solution (Borwein, Tam (2013))

Thf := 1
2(I +RfRh)

T[fgh] := ThfTghTfg

z ← T[fgh]z
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Douglas-Rachford – open problem

min f(x) + g(x) + h(x)

Partial solution (Borwein, Tam (2013))

Thf := 1
2(I +RfRh)

T[fgh] := ThfTghTfg

z ← T[fgh]z

◦ Works for more than 3 functions too!

◦ For two functions T[fg] = TgfTfg

◦ Does not coincide with usual DR.

◦ Finding “correct” generalization an open problem
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Parallel proximal methods

Optimizing separable objective functions

f(x) := 1
2‖x− y‖

2
2 +

∑
i
fi(x)

f(x) :=
∑

i
fi(x)

Let us consider

min f(x) =
∑m

i=1
fi(x), x ∈ Rn.
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Product space technique

I Original problem over H = Rn

I Suppose we have
∑m

i=1 fi(x)

I Introduce new variables (x1, . . . , xm)

I Now problem is over domain Hm := H×H× · · · ×H (m-times)

I New constraint: x1 = x2 = . . . = xm

min
(x1,...,xm)

∑
i
fi(xi)

s.t. x1 = x2 = · · · = xm.

Technique due to: G. Pierra (1976)
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Product space technique

Two block problem

min
x
f(x) + IB(x)

where x ∈ Hm and B = {z ∈ Hm | z = (x, x, . . . , x)}

I Let y = (y1, . . . , ym)

I proxf (y) = (proxf1(y1), . . . ,proxfm(ym))

I proxIB ≡ ΠB(y) can be solved as follows:

minz∈B
1
2‖z − y‖22

minx∈H
∑

i
1
2‖x− yi‖

2
2

=⇒ x = 1
m

∑
i yi

Exercise: Work out the details of DR using the product space idea

This technique commonly exploited in ADMM too
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Alternative: two block proximity

minx
1
2
‖x− y‖22 + f(x) + h(x)

Usually proxf+h 6= proxf ◦ proxh

Proximal-Dykstra method

1 Let x0 = y; u0 = 0, z0 = 0
2 k-th iteration (k ≥ 0)

wk = proxf (xk + uk)
uk+1 = xk + uk − wk

xk+1 = proxh(wk + zk)
zk+1 = wk + zk − xk+1

Why does it work?

Exercise: Use the product-space technique to extend this to a
parallel prox-Dykstra method for m ≥ 3 functions.
Combettes, Pesquet (2010); Bauschke, Combettes (2012)
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Proximal-Dykstra – some insight

minx
1
2
‖x− y‖22 + f(x) + h(x)

L(x, z, w, ν, µ) := 1
2‖x− y‖

2
2+f(z)+h(w)+νT (x−z)+µT (x−w).

I Let’s derive the dual from L:

g(ν, µ) := inf
x,z,w

L(x, z, ν, µ)

x− y + ν + µ = 0 =⇒ x = y − ν − µ
inf
z
f(z)− νT z = −f∗(ν), (similarly get − h∗(µ))

g(ν, µ) = −1
2‖ν + µ‖22 + (ν + µ)T y − f∗(ν)− h∗(µ)

Equivalent dual problem

min G(ν, µ) := 1
2‖ν + µ− y‖22 + f∗(ν) + h∗(µ).

8 / 25



Proximal-Dykstra – some insight

minx
1
2
‖x− y‖22 + f(x) + h(x)

L(x, z, w, ν, µ) := 1
2‖x− y‖

2
2+f(z)+h(w)+νT (x−z)+µT (x−w).

I Let’s derive the dual from L:

g(ν, µ) := inf
x,z,w

L(x, z, ν, µ)

x− y + ν + µ = 0 =⇒ x = y − ν − µ
inf
z
f(z)− νT z = −f∗(ν), (similarly get − h∗(µ))

g(ν, µ) = −1
2‖ν + µ‖22 + (ν + µ)T y − f∗(ν)− h∗(µ)

Equivalent dual problem

min G(ν, µ) := 1
2‖ν + µ− y‖22 + f∗(ν) + h∗(µ).

8 / 25



Proximal-Dykstra – some insight

minx
1
2
‖x− y‖22 + f(x) + h(x)

L(x, z, w, ν, µ) := 1
2‖x− y‖

2
2+f(z)+h(w)+νT (x−z)+µT (x−w).

I Let’s derive the dual from L:

g(ν, µ) := inf
x,z,w

L(x, z, ν, µ)

x− y + ν + µ = 0 =⇒ x = y − ν − µ
inf
z
f(z)− νT z = −f∗(ν), (similarly get − h∗(µ))

g(ν, µ) = −1
2‖ν + µ‖22 + (ν + µ)T y − f∗(ν)− h∗(µ)

Equivalent dual problem

min G(ν, µ) := 1
2‖ν + µ− y‖22 + f∗(ν) + h∗(µ).

8 / 25



Proximal-Dykstra – some insight

minx
1
2
‖x− y‖22 + f(x) + h(x)

L(x, z, w, ν, µ) := 1
2‖x− y‖

2
2+f(z)+h(w)+νT (x−z)+µT (x−w).

I Let’s derive the dual from L:

g(ν, µ) := inf
x,z,w

L(x, z, ν, µ)

x− y + ν + µ = 0 =⇒ x = y − ν − µ

inf
z
f(z)− νT z = −f∗(ν), (similarly get − h∗(µ))

g(ν, µ) = −1
2‖ν + µ‖22 + (ν + µ)T y − f∗(ν)− h∗(µ)

Equivalent dual problem

min G(ν, µ) := 1
2‖ν + µ− y‖22 + f∗(ν) + h∗(µ).

8 / 25



Proximal-Dykstra – some insight

minx
1
2
‖x− y‖22 + f(x) + h(x)

L(x, z, w, ν, µ) := 1
2‖x− y‖

2
2+f(z)+h(w)+νT (x−z)+µT (x−w).

I Let’s derive the dual from L:

g(ν, µ) := inf
x,z,w

L(x, z, ν, µ)

x− y + ν + µ = 0 =⇒ x = y − ν − µ
inf
z
f(z)− νT z = −f∗(ν), (similarly get − h∗(µ))

g(ν, µ) = −1
2‖ν + µ‖22 + (ν + µ)T y − f∗(ν)− h∗(µ)

Equivalent dual problem

min G(ν, µ) := 1
2‖ν + µ− y‖22 + f∗(ν) + h∗(µ).

8 / 25



Proximal-Dykstra – some insight

minx
1
2
‖x− y‖22 + f(x) + h(x)

L(x, z, w, ν, µ) := 1
2‖x− y‖

2
2+f(z)+h(w)+νT (x−z)+µT (x−w).

I Let’s derive the dual from L:

g(ν, µ) := inf
x,z,w

L(x, z, ν, µ)

x− y + ν + µ = 0 =⇒ x = y − ν − µ
inf
z
f(z)− νT z = −f∗(ν), (similarly get − h∗(µ))

g(ν, µ) = −1
2‖ν + µ‖22 + (ν + µ)T y − f∗(ν)− h∗(µ)

Equivalent dual problem

min G(ν, µ) := 1
2‖ν + µ− y‖22 + f∗(ν) + h∗(µ).

8 / 25



Proximal-Dykstra – key insight

Dual problem

min G(ν, µ) := 1
2‖ν + µ− y‖22 + f∗(ν) + h∗(µ).

Solve this dual via Block-Coordinate Descent!

νk+1 = argminν G(ν, µk),

µk+1 = argminµ G(νk+1, µ).
◦
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Proximal-Dykstra – key insight

I 0 ∈ νk+1 + µk − y + ∂f∗(νk+1)

I 0 ∈ νk+1 + µk+1 − y + ∂h∗(µk+1).

νk+1 = y − µk − proxf (y − µk)
µk+1 = y − νk+1 − proxh(y − νk+1)

Now use Lagrangian stationarity condition

x = y − ν − µ =⇒ y − µ = x+ ν

to rewrite BCD using primal and dual variables.

10 / 25
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Example practical use

Anisotropic 2D-TV Proximity operator

min
X

1
2‖X − Y ‖

2
F +

∑
ij
wcij |xi,j+1−xij |+

∑
ij
wrij |xi+1,j −xij |

• Amenable to prox-Dykstra

• Used in (Barbero, Sra, ICML 2011).

• The subproblem:

min 1
2‖a− b‖

2
2 +

∑
i wi|ai − ai+1|

itself has been subject of over 15 papers!

• I still use it now and then
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Incremental first-order
methods

12 / 25



Separable objectives

min f(x) =
∑m

i fi(x) + λr(x)

Gradient / subgradient methods

xk+1 = xk − αk∇f(xk) λ = 0,

xk+1 = xk − αkg(xk), g(xk) ∈ ∂f(xk) + λ∂r(xk)

xk+1 = proxαkr
(xk − αk∇f(xk))

Product-space based methods

minF (x1, . . . , xm) + IB(x1, . . . , xm)

(x1,k+1, . . . , xm,k+1)← proxF (y1,k, . . . , ym,k)

How much computation does one iteration take?
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Incremental gradient methods

What if at iteration k, we randomly pick an integer
i(k) ∈ {1, 2, . . . ,m}?

And instead just perform the update?

xk+1 = xk − αk∇fi(k)(xk)

I The update requires only gradient for fi(k)

I One iteration now m times faster than with ∇f(x)

But does this make sense?
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Incremental gradient methods

♠ Old idea; has been used extensively as backpropagation in
neural networks, Widrow-Hoff least mean squares, gradient
methods with errors, stochastic gradient, etc.

♠ Can “stream” through data — go through components one by
one, say cyclically instead of randomly

♠ For large m many fi(x) may have similar minimizers; using the
fi individually we could take advantage, and greatly speed up.

♠ Incremental methods usually effective far from the eventual
limit (solution) — become very slow close to the solution.

♠ Several open questions related to convergence and rate of
convergence (for both convex, nonconvex)

♠ Usually randomization greatly simplifies convergence analysis

15 / 25



Incremental gradient methods

♠ Old idea; has been used extensively as backpropagation in
neural networks, Widrow-Hoff least mean squares, gradient
methods with errors, stochastic gradient, etc.

♠ Can “stream” through data — go through components one by
one, say cyclically instead of randomly

♠ For large m many fi(x) may have similar minimizers; using the
fi individually we could take advantage, and greatly speed up.

♠ Incremental methods usually effective far from the eventual
limit (solution) — become very slow close to the solution.

♠ Several open questions related to convergence and rate of
convergence (for both convex, nonconvex)

♠ Usually randomization greatly simplifies convergence analysis

15 / 25



Incremental gradient methods

♠ Old idea; has been used extensively as backpropagation in
neural networks, Widrow-Hoff least mean squares, gradient
methods with errors, stochastic gradient, etc.

♠ Can “stream” through data — go through components one by
one, say cyclically instead of randomly

♠ For large m many fi(x) may have similar minimizers;

using the
fi individually we could take advantage, and greatly speed up.

♠ Incremental methods usually effective far from the eventual
limit (solution) — become very slow close to the solution.

♠ Several open questions related to convergence and rate of
convergence (for both convex, nonconvex)

♠ Usually randomization greatly simplifies convergence analysis

15 / 25



Incremental gradient methods

♠ Old idea; has been used extensively as backpropagation in
neural networks, Widrow-Hoff least mean squares, gradient
methods with errors, stochastic gradient, etc.

♠ Can “stream” through data — go through components one by
one, say cyclically instead of randomly

♠ For large m many fi(x) may have similar minimizers; using the
fi individually we could take advantage, and greatly speed up.

♠ Incremental methods usually effective far from the eventual
limit (solution) — become very slow close to the solution.

♠ Several open questions related to convergence and rate of
convergence (for both convex, nonconvex)

♠ Usually randomization greatly simplifies convergence analysis

15 / 25



Incremental gradient methods

♠ Old idea; has been used extensively as backpropagation in
neural networks, Widrow-Hoff least mean squares, gradient
methods with errors, stochastic gradient, etc.

♠ Can “stream” through data — go through components one by
one, say cyclically instead of randomly

♠ For large m many fi(x) may have similar minimizers; using the
fi individually we could take advantage, and greatly speed up.

♠ Incremental methods usually effective far from the eventual
limit (solution) — become very slow close to the solution.

♠ Several open questions related to convergence and rate of
convergence (for both convex, nonconvex)

♠ Usually randomization greatly simplifies convergence analysis

15 / 25



Incremental gradient methods

♠ Old idea; has been used extensively as backpropagation in
neural networks, Widrow-Hoff least mean squares, gradient
methods with errors, stochastic gradient, etc.

♠ Can “stream” through data — go through components one by
one, say cyclically instead of randomly

♠ For large m many fi(x) may have similar minimizers; using the
fi individually we could take advantage, and greatly speed up.

♠ Incremental methods usually effective far from the eventual
limit (solution) — become very slow close to the solution.

♠ Several open questions related to convergence and rate of
convergence (for both convex, nonconvex)

♠ Usually randomization greatly simplifies convergence analysis

15 / 25



Incremental gradient methods

♠ Old idea; has been used extensively as backpropagation in
neural networks, Widrow-Hoff least mean squares, gradient
methods with errors, stochastic gradient, etc.

♠ Can “stream” through data — go through components one by
one, say cyclically instead of randomly

♠ For large m many fi(x) may have similar minimizers; using the
fi individually we could take advantage, and greatly speed up.

♠ Incremental methods usually effective far from the eventual
limit (solution) — become very slow close to the solution.

♠ Several open questions related to convergence and rate of
convergence (for both convex, nonconvex)

♠ Usually randomization greatly simplifies convergence analysis

15 / 25



Example (Bertsekas)

I Assume all variables involved are scalars.

min f(x) = 1
2

∑m

i=1
(aix− bi)2

I Solving f ′(x) = 0 we obtain

x∗ =

∑
i aibi∑
i a

2
i

I Minimum of a single fi(x) = 1
2(aix− bi)2 is x∗i = bi/ai

I Notice now that

x∗ ∈ [mini x
∗
i ,maxi x

∗
i ] =: R

(Use:
∑

i aibi =
∑

i a
2
i (bi/ai))
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min f(x) = 1
2

∑m

i=1
(aix− bi)2

I Notice: x∗ ∈ [mini x
∗
i ,maxi x

∗
i ] =: R

I If we have a scalar x that lies outside R?

I We see that

∇fi(x) = ai(aix− bi)

∇f(x) =
∑

i
ai(aix− bi)

I ∇fi(x) has same sign as ∇f(x). So using ∇fi(x) instead of
∇f(x) also ensures progress.

I But once inside region R, no guarantee that incremental
method will make progress towards optimum.
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Incremental proximal method

min f(x) =
∑

i fi(x)

What if the fi are nonsmooth?

xk+1 = proxαkf
(xk)

xk+1 = proxαkfi(k)
(xk)

xk+1 = argmin
(
1
2
‖x− xk‖22 + αkfi(k)(x)

)
i(k) ∈ {1, 2, . . . ,m} picked uniformly at random.

Convergence rate analysis?
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Example

Fermat-Weber problem
(historically the first facility-location problem)

minx
∑

i
wi‖x− ai‖

I Assuming ‖·‖ = ‖·‖2
I Also assume no ai is an optimum

I [Weiszfeld; ’37] Let T := x 7→
(∑

i
wiai
‖x−ai‖

)
/
(∑

i
wi

‖x−ai‖
)

I Assuming T is well-defined, T k(x0)→ argmin

I [Kuhn; 73] completed the proof

I What if ‖·‖ = ‖·‖p?

I 100s of papers discuss the Fermat-Weber problem
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Incremental proximal method

Fermat-Weber problem

minx
∑

i
wi‖x− ai‖

Now, fi(x) := wi‖x− ai‖2.

xk+1 = proxαkfi(k)
(xk)

xk+1 = argmin
(
1
2
‖x− xk‖22 + αkwi(k)‖x− ai(k)‖2

)
i(k) ∈ {1, 2, . . . ,m} picked uniformly at random.

Exercise: Obtain closed form solution to xk+1

Rate of convergence? Most likely, sublinear?
Can we somehow get linear convergence?
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Incremental proximal-gradients

min
∑

i
fi(x) + r(x).

xk+1 = proxηkr
(
xk − ηk

∑m

i=1
∇fi(zi)

)
, k = 0, 1, . . . ,

z1 = xk

zi+1 = zi − ηk∇fi(zi), i = 1, . . . ,m− 1.

We can choose ηk = 1/L, where L is Lipschitz constant of ∇f(x)
Might be easier to analyze

xk+1 = proxηkr
(
xk − ηk

∑m

i=1
∇fi(zi)

)
, k = 0, 1, . . . ,

z1 = xk

zi+1 = proxηkr(zi − ηk∇fi(zi)), i = 1, . . . ,m− 1.

Moreover, analysis easier if we go through the fi randomly
(so-called stochastic)
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Incremental methods: deterministic

min (f(x) =
∑

i fi(x)) + r(x)

Gradient with error

∇fi(k)(x) = ∇f(x) + e

xk+1 = proxαr[xk − αk(∇f(xk) + ek)]

So if in the limit error αkek disappears, we should be ok!
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Incremental gradient methods

Incremental gradient methods may be viewed as

Gradient methods with error in gradient computation

I If we can control this error, we can control convergence

I Error makes even smooth case more like nonsmooth case

I So, convergence crucially depends on stepsize αk

Some stepsize choices

♠ αk = c, a small enough constant

♠ αk → 0,
∑

k αk =∞ (diminishing scalar)

♠ Constant for some iterations, diminish, again constant, repeat

♠ αk = min(c, a/(b+ k)), where a, b, c > 0 (user chosen).

23 / 25



Incremental gradient methods

Incremental gradient methods may be viewed as

Gradient methods with error in gradient computation

I If we can control this error, we can control convergence

I Error makes even smooth case more like nonsmooth case

I So, convergence crucially depends on stepsize αk

Some stepsize choices

♠ αk = c, a small enough constant

♠ αk → 0,
∑

k αk =∞ (diminishing scalar)

♠ Constant for some iterations, diminish, again constant, repeat

♠ αk = min(c, a/(b+ k)), where a, b, c > 0 (user chosen).

23 / 25



Incremental gradient methods

Incremental gradient methods may be viewed as

Gradient methods with error in gradient computation

I If we can control this error, we can control convergence

I Error makes even smooth case more like nonsmooth case

I So, convergence crucially depends on stepsize αk

Some stepsize choices

♠ αk = c, a small enough constant

♠ αk → 0,
∑

k αk =∞ (diminishing scalar)

♠ Constant for some iterations, diminish, again constant, repeat

♠ αk = min(c, a/(b+ k)), where a, b, c > 0 (user chosen).

23 / 25



Incremental gradient methods

Incremental gradient methods may be viewed as

Gradient methods with error in gradient computation

I If we can control this error, we can control convergence

I Error makes even smooth case more like nonsmooth case

I So, convergence crucially depends on stepsize αk

Some stepsize choices

♠ αk = c, a small enough constant

♠ αk → 0,
∑

k αk =∞ (diminishing scalar)

♠ Constant for some iterations, diminish, again constant, repeat

♠ αk = min(c, a/(b+ k)), where a, b, c > 0 (user chosen).

23 / 25



Incremental gradient methods

Incremental gradient methods may be viewed as

Gradient methods with error in gradient computation

I If we can control this error, we can control convergence

I Error makes even smooth case more like nonsmooth case

I So, convergence crucially depends on stepsize αk

Some stepsize choices

♠ αk = c, a small enough constant

♠ αk → 0,
∑

k αk =∞ (diminishing scalar)

♠ Constant for some iterations, diminish, again constant, repeat

♠ αk = min(c, a/(b+ k)), where a, b, c > 0 (user chosen).

23 / 25



Incremental gradient – summary

♠ Usually much faster (large m) when far from convergence

♠ Slow progress near optimum (because αk often too small)

♠ Constant step αk = α, doesn’t always yield convergence

♠ Diminishing step αk = O(1/k) leads to convergence

♠ Usually slow, sublinear rate of convergence

♠ If fi strongly convex, linear rate available (SAG, SVRG)

♠ Idea extends to subgradient, and proximal setups

♠ Some extensions also apply to nonconvex problems

♠ Some extend to parallel and distributed computation
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