Advanced Optimization

 (10-801: CMU)Lecture 18

Proximal methods, Monotone operators

$$
24 \text { Mar, } 2014
$$

Suvrit Sra

```
min}\quadf(x)\quadx\in\mathcal{X
```


Projected gradient

$$
x \leftarrow \Pi(x-\alpha \nabla f(x))
$$

Π denotes orthogonal projection onto \mathcal{X}.

Proximal Gradient

$$
\min \quad f(x) \quad x \in \mathcal{X}
$$

Projected gradient

$$
x \leftarrow \Pi(x-\alpha \nabla f(x))
$$

Π denotes orthogonal projection onto \mathcal{X}. $\min \quad f(x)+h(x)$

Proximal gradient

$$
x \leftarrow \operatorname{prox}_{\alpha h}(x-\alpha \nabla f(x))
$$

$\operatorname{prox}_{\alpha h}$ denotes Euclidean proximity operator for h

Proximal Gradient

$$
\min \quad f(x) \quad x \in \mathcal{X}
$$

Projected gradient

$$
x \leftarrow \Pi(x-\alpha \nabla f(x))
$$

Π denotes orthogonal projection onto \mathcal{X}.
$\min \quad f(x)+h(x)$

Proximal gradient

$$
x \leftarrow \operatorname{prox}_{\alpha h}(x-\alpha \nabla f(x))
$$

$\operatorname{prox}_{\alpha h}$ denotes Euclidean proximity operator for h
NOTE: non-orthogonal, non-Euclidean versions also exist

Shorthand: $P \equiv$ prox.
Lemma If x^{*} is optimal, then $x^{*}=P_{\alpha h}\left(x^{*}-\alpha \nabla f\left(x^{*}\right)\right), \forall \alpha>0$

Shorthand: $P \equiv$ prox.
Lemma If x^{*} is optimal, then $x^{*}=P_{\alpha h}\left(x^{*}-\alpha \nabla f\left(x^{*}\right)\right), \forall \alpha>0$

$$
0 \in \nabla f\left(x^{*}\right)+\partial h\left(x^{*}\right)
$$

Shorthand: $P \equiv$ prox.
Lemma If x^{*} is optimal, then $x^{*}=P_{\alpha h}\left(x^{*}-\alpha \nabla f\left(x^{*}\right)\right), \forall \alpha>0$

$$
\begin{aligned}
& 0 \in \nabla f\left(x^{*}\right)+\partial h\left(x^{*}\right) \\
& 0 \in \alpha \nabla f\left(x^{*}\right)+\alpha \partial h\left(x^{*}\right)
\end{aligned}
$$

Shorthand: $P \equiv$ prox.
Lemma If x^{*} is optimal, then $x^{*}=P_{\alpha h}\left(x^{*}-\alpha \nabla f\left(x^{*}\right)\right), \forall \alpha>0$

$$
\begin{aligned}
0 & \in \nabla f\left(x^{*}\right)+\partial h\left(x^{*}\right) \\
0 & \in \alpha \nabla f\left(x^{*}\right)+\alpha \partial h\left(x^{*}\right) \\
x^{*} & \in \alpha \nabla f\left(x^{*}\right)+(I+\alpha \partial h)\left(x^{*}\right)
\end{aligned}
$$

Shorthand: $P \equiv$ prox.
Lemma If x^{*} is optimal, then $x^{*}=P_{\alpha h}\left(x^{*}-\alpha \nabla f\left(x^{*}\right)\right), \forall \alpha>0$

$$
\begin{aligned}
0 & \in \nabla f\left(x^{*}\right)+\partial h\left(x^{*}\right) \\
0 & \in \alpha \nabla f\left(x^{*}\right)+\alpha \partial h\left(x^{*}\right) \\
x^{*} & \in \alpha \nabla f\left(x^{*}\right)+(I+\alpha \partial h)\left(x^{*}\right) \\
x^{*}-\alpha \nabla f\left(x^{*}\right) & \in(I+\alpha \partial h)\left(x^{*}\right)
\end{aligned}
$$

Shorthand: $P \equiv$ prox.
Lemma If x^{*} is optimal, then $x^{*}=P_{\alpha h}\left(x^{*}-\alpha \nabla f\left(x^{*}\right)\right), \forall \alpha>0$

$$
\begin{aligned}
0 & \in \nabla f\left(x^{*}\right)+\partial h\left(x^{*}\right) \\
0 & \in \alpha \nabla f\left(x^{*}\right)+\alpha \partial h\left(x^{*}\right) \\
x^{*} & \in \alpha \nabla f\left(x^{*}\right)+(I+\alpha \partial h)\left(x^{*}\right) \\
x^{*}-\alpha \nabla f\left(x^{*}\right) & \in(I+\alpha \partial h)\left(x^{*}\right) \\
x^{*} & =(I+\alpha \partial h)^{-1}\left(x^{*}-\alpha \nabla f\left(x^{*}\right)\right)
\end{aligned}
$$

Shorthand: $P \equiv$ prox.
Lemma If x^{*} is optimal, then $x^{*}=P_{\alpha h}\left(x^{*}-\alpha \nabla f\left(x^{*}\right)\right), \forall \alpha>0$

$$
\begin{aligned}
0 & \in \nabla f\left(x^{*}\right)+\partial h\left(x^{*}\right) \\
0 & \in \alpha \nabla f\left(x^{*}\right)+\alpha \partial h\left(x^{*}\right) \\
x^{*} & \in \alpha \nabla f\left(x^{*}\right)+(I+\alpha \partial h)\left(x^{*}\right) \\
x^{*}-\alpha \nabla f\left(x^{*}\right) & \in(I+\alpha \partial h)\left(x^{*}\right) \\
x^{*} & =(I+\alpha \partial h)^{-1}\left(x^{*}-\alpha \nabla f\left(x^{*}\right)\right) \\
x^{*} & =\operatorname{prox}_{\alpha h}\left(x^{*}-\alpha \nabla f\left(x^{*}\right)\right)
\end{aligned}
$$

Shorthand: $P \equiv$ prox.
Lemma If x^{*} is optimal, then $x^{*}=P_{\alpha h}\left(x^{*}-\alpha \nabla f\left(x^{*}\right)\right), \forall \alpha>0$

$$
\begin{aligned}
0 & \in \nabla f\left(x^{*}\right)+\partial h\left(x^{*}\right) \\
0 & \in \alpha \nabla f\left(x^{*}\right)+\alpha \partial h\left(x^{*}\right) \\
x^{*} & \in \alpha \nabla f\left(x^{*}\right)+(I+\alpha \partial h)\left(x^{*}\right) \\
x^{*}-\alpha \nabla f\left(x^{*}\right) & \in(I+\alpha \partial h)\left(x^{*}\right) \\
x^{*} & =(I+\alpha \partial h)^{-1}\left(x^{*}-\alpha \nabla f\left(x^{*}\right)\right) \\
x^{*} & =\operatorname{prox}_{\alpha h}\left(x^{*}-\alpha \nabla f\left(x^{*}\right)\right)
\end{aligned}
$$

Above fixed-point eqn suggests iteration

$$
x_{k+1}=\operatorname{prox}_{\alpha_{k} h}\left(x_{k}-\alpha_{k} \nabla f\left(x_{k}\right)\right)
$$

$$
\begin{aligned}
x_{k+1} & =\operatorname{prox}_{\alpha_{k} h}\left(x_{k}-\alpha_{k} \nabla f\left(x_{k}\right)\right) \\
x_{k+1} & =x_{k}-\alpha_{k} G_{\alpha_{k}}\left(x_{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
x_{k+1} & =\operatorname{prox}_{\alpha_{k} h}\left(x_{k}-\alpha_{k} \nabla f\left(x_{k}\right)\right) \\
x_{k+1} & =x_{k}-\alpha_{k} G_{\alpha_{k}}\left(x_{k}\right)
\end{aligned}
$$

Gradient mapping: the "gradient-like object"

$$
G_{\alpha}(x)=\frac{1}{\alpha}\left(x-P_{\alpha h}(x-\alpha \nabla f(x))\right)
$$

$$
\begin{aligned}
x_{k+1} & =\operatorname{prox}_{\alpha_{k} h}\left(x_{k}-\alpha_{k} \nabla f\left(x_{k}\right)\right) \\
x_{k+1} & =x_{k}-\alpha_{k} G_{\alpha_{k}}\left(x_{k}\right)
\end{aligned}
$$

Gradient mapping: the "gradient-like object"

$$
G_{\alpha}(x)=\frac{1}{\alpha}\left(x-P_{\alpha h}(x-\alpha \nabla f(x))\right)
$$

- Our lemma shows: $G_{\alpha}(x)=0$ if and only if x is optimal
- So G_{α} analogous to ∇f
- If x locally optimal, then $G_{\alpha}(x)=0$ (nonconvex f)

Convergence analysis

Assumption: Lipschitz continuous gradient; denoted $f \in C_{L}^{1}$

$$
\|\nabla f(x)-\nabla f(y)\|_{2} \leq L\|x-y\|_{2}
$$

Convergence analysis

Assumption: Lipschitz continuous gradient; denoted $f \in C_{L}^{1}$

$$
\|\nabla f(x)-\nabla f(y)\|_{2} \leq L\|x-y\|_{2}
$$

\& Gradient vectors of closeby points are close to each other
\& Objective function has "bounded curvature"
\& Speed at which gradient varies is bounded

Convergence analysis

Assumption: Lipschitz continuous gradient; denoted $f \in C_{L}^{1}$

$$
\|\nabla f(x)-\nabla f(y)\|_{2} \leq L\|x-y\|_{2}
$$

\& Gradient vectors of closeby points are close to each other
$\%$ Objective function has "bounded curvature"
\& Speed at which gradient varies is bounded
Lemma (Descent). Let $f \in C_{L}^{1}$. Then,

$$
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{L}{2}\|y-x\|_{2}^{2}
$$

Convergence analysis

Assumption: Lipschitz continuous gradient; denoted $f \in C_{L}^{1}$

$$
\|\nabla f(x)-\nabla f(y)\|_{2} \leq L\|x-y\|_{2}
$$

\& Gradient vectors of closeby points are close to each other
\& Objective function has "bounded curvature"
\& Speed at which gradient varies is bounded
Lemma (Descent). Let $f \in C_{L}^{1}$. Then,

$$
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{L}{2}\|y-x\|_{2}^{2}
$$

For convex f, compare with

$$
f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle
$$

Proof. Since $f \in C_{L}^{1}$, by Taylor's theorem, for the vector $z_{t}=x+t(y-x)$ we have

$$
f(y)=f(x)+\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right), y-x\right\rangle d t
$$

Descent lemma

Proof. Since $f \in C_{L}^{1}$, by Taylor's theorem, for the vector $z_{t}=x+t(y-x)$ we have

$$
f(y)=f(x)+\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right), y-x\right\rangle d t
$$

Add and subtract $\langle\nabla f(x), y-x\rangle$ on rhs we have

$$
f(y)-f(x)-\langle\nabla f(x), y-x\rangle=\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right)-\nabla f(x), y-x\right\rangle d t
$$

Descent lemma

Proof. Since $f \in C_{L}^{1}$, by Taylor's theorem, for the vector $z_{t}=x+t(y-x)$ we have

$$
f(y)=f(x)+\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right), y-x\right\rangle d t
$$

Add and subtract $\langle\nabla f(x), y-x\rangle$ on rhs we have

$$
\begin{aligned}
f(y)-f(x)-\langle\nabla f(x), y-x\rangle & =\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right)-\nabla f(x), y-x\right\rangle d t \\
|f(y)-f(x)-\langle\nabla f(x), y-x\rangle| & =\left|\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right)-\nabla f(x), y-x\right\rangle d t\right|
\end{aligned}
$$

Descent lemma

Proof. Since $f \in C_{L}^{1}$, by Taylor's theorem, for the vector $z_{t}=x+t(y-x)$ we have

$$
f(y)=f(x)+\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right), y-x\right\rangle d t
$$

Add and subtract $\langle\nabla f(x), y-x\rangle$ on rhs we have

$$
\begin{aligned}
f(y)-f(x)-\langle\nabla f(x), y-x\rangle & =\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right)-\nabla f(x), y-x\right\rangle d t \\
|f(y)-f(x)-\langle\nabla f(x), y-x\rangle| & =\left|\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right)-\nabla f(x), y-x\right\rangle d t\right| \\
& \leq \int_{0}^{1}\left|\left\langle\nabla f\left(z_{t}\right)-\nabla f(x), y-x\right\rangle\right| d t
\end{aligned}
$$

Descent lemma

Proof. Since $f \in C_{L}^{1}$, by Taylor's theorem, for the vector $z_{t}=x+t(y-x)$ we have

$$
f(y)=f(x)+\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right), y-x\right\rangle d t
$$

Add and subtract $\langle\nabla f(x), y-x\rangle$ on rhs we have

$$
\begin{aligned}
f(y)-f(x)-\langle\nabla f(x), y-x\rangle & =\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right)-\nabla f(x), y-x\right\rangle d t \\
|f(y)-f(x)-\langle\nabla f(x), y-x\rangle| & =\left|\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right)-\nabla f(x), y-x\right\rangle d t\right| \\
& \leq \int_{0}^{1}\left|\left\langle\nabla f\left(z_{t}\right)-\nabla f(x), y-x\right\rangle\right| d t \\
& \leq \int_{0}^{1}\left\|\nabla f\left(z_{t}\right)-\nabla f(x)\right\|_{2} \cdot\|y-x\|_{2} d t
\end{aligned}
$$

Proof. Since $f \in C_{L}^{1}$, by Taylor's theorem, for the vector $z_{t}=x+t(y-x)$ we have

$$
f(y)=f(x)+\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right), y-x\right\rangle d t
$$

Add and subtract $\langle\nabla f(x), y-x\rangle$ on rhs we have

$$
\begin{aligned}
f(y)-f(x)-\langle\nabla f(x), y-x\rangle & =\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right)-\nabla f(x), y-x\right\rangle d t \\
|f(y)-f(x)-\langle\nabla f(x), y-x\rangle| & =\left|\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right)-\nabla f(x), y-x\right\rangle d t\right| \\
& \leq \int_{0}^{1}\left|\left\langle\nabla f\left(z_{t}\right)-\nabla f(x), y-x\right\rangle\right| d t \\
& \leq \int_{0}^{1}\left\|\nabla f\left(z_{t}\right)-\nabla f(x)\right\|_{2} \cdot\|y-x\|_{2} d t \\
& \leq L \int_{0}^{1} t\|x-y\|_{2}^{2} d t
\end{aligned}
$$

Descent lemma

Proof. Since $f \in C_{L}^{1}$, by Taylor's theorem, for the vector $z_{t}=x+t(y-x)$ we have

$$
f(y)=f(x)+\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right), y-x\right\rangle d t
$$

Add and subtract $\langle\nabla f(x), y-x\rangle$ on rhs we have

$$
\begin{aligned}
f(y)-f(x)-\langle\nabla f(x), y-x\rangle & =\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right)-\nabla f(x), y-x\right\rangle d t \\
|f(y)-f(x)-\langle\nabla f(x), y-x\rangle| & =\left|\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right)-\nabla f(x), y-x\right\rangle d t\right| \\
& \leq \int_{0}^{1}\left|\left\langle\nabla f\left(z_{t}\right)-\nabla f(x), y-x\right\rangle\right| d t \\
& \leq \int_{0}^{1}\left\|\nabla f\left(z_{t}\right)-\nabla f(x)\right\|_{2} \cdot\|y-x\|_{2} d t \\
& \leq L \int_{0}^{1} t\|x-y\|_{2}^{2} d t \\
& =\frac{L}{2}\|x-y\|_{2}^{2} .
\end{aligned}
$$

Bounds $f(y)$ around x with quadratic functions

Descent lemma - corollary

$$
\begin{aligned}
& \qquad f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{L}{2}\|y-x\|_{2}^{2} \\
& \text { Let } y=x-\alpha G_{\alpha}(x) \text {, then }
\end{aligned}
$$

Descent lemma - corollary

$$
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{L}{2}\|y-x\|_{2}^{2}
$$

Let $y=x-\alpha G_{\alpha}(x)$, then

$$
f(y) \leq f(x)-\alpha\left\langle\nabla f(x), G_{\alpha}(x)\right\rangle+\frac{\alpha^{2} L}{2}\left\|G_{\alpha}(x)\right\|_{2}^{2}
$$

Descent lemma - corollary

$$
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{L}{2}\|y-x\|_{2}^{2}
$$

Let $y=x-\alpha G_{\alpha}(x)$, then

$$
f(y) \leq f(x)-\alpha\left\langle\nabla f(x), G_{\alpha}(x)\right\rangle+\frac{\alpha^{2} L}{2}\left\|G_{\alpha}(x)\right\|_{2}^{2}
$$

Corollary. So if $0 \leq \alpha \leq 1 / L$, we have

$$
f(y) \leq f(x)-\alpha\left\langle\nabla f(x), G_{\alpha}(x)\right\rangle+\frac{\alpha}{2}\left\|G_{\alpha}(x)\right\|_{2}^{2}
$$

Descent lemma - corollary

$$
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{L}{2}\|y-x\|_{2}^{2}
$$

Let $y=x-\alpha G_{\alpha}(x)$, then

$$
f(y) \leq f(x)-\alpha\left\langle\nabla f(x), G_{\alpha}(x)\right\rangle+\frac{\alpha^{2} L}{2}\left\|G_{\alpha}(x)\right\|_{2}^{2}
$$

Corollary. So if $0 \leq \alpha \leq 1 / L$, we have

$$
f(y) \leq f(x)-\alpha\left\langle\nabla f(x), G_{\alpha}(x)\right\rangle+\frac{\alpha}{2}\left\|G_{\alpha}(x)\right\|_{2}^{2}
$$

Lemma Let $y=x-\alpha G_{\alpha}(x)$. Then, for any z we have

$$
f(y)+h(y) \leq f(z)+h(z)+\left\langle G_{\alpha}(x), x-z\right\rangle-\frac{\alpha}{2}\left\|G_{\alpha}(x)\right\|_{2}^{2} .
$$

Exer: Prove! (use convexity of f, h, and $G_{\alpha}(x)-\nabla f(x) \in \partial h(y)$)

Convergence analysis

We've actually shown that $x^{\prime}=x-\alpha G_{\alpha}(x)$ is a descent method. Write $\phi=f+h$; plug in $z=x$ to obtain

$$
\phi\left(x^{\prime}\right) \leq \phi(x)-\frac{\alpha}{2}\left\|G_{\alpha}(x)\right\|_{2}^{2} .
$$

Exercise: Argue why this inequality suffices to show convergence.

We've actually shown that $x^{\prime}=x-\alpha G_{\alpha}(x)$ is a descent method. Write $\phi=f+h$; plug in $z=x$ to obtain

$$
\phi\left(x^{\prime}\right) \leq \phi(x)-\frac{\alpha}{2}\left\|G_{\alpha}(x)\right\|_{2}^{2} .
$$

Exercise: Argue why this inequality suffices to show convergence. Plug in $z=x^{*}$ in corollary to obtain progress in terms of iterates:

$$
\phi\left(x^{\prime}\right)-\phi^{*} \leq\left\langle G_{\alpha}(x), x-x^{*}\right\rangle-\frac{\alpha}{2}\left\|G_{\alpha}(x)\right\|_{2}^{2}
$$

Convergence analysis

We've actually shown that $x^{\prime}=x-\alpha G_{\alpha}(x)$ is a descent method. Write $\phi=f+h$; plug in $z=x$ to obtain

$$
\phi\left(x^{\prime}\right) \leq \phi(x)-\frac{\alpha}{2}\left\|G_{\alpha}(x)\right\|_{2}^{2} .
$$

Exercise: Argue why this inequality suffices to show convergence. Plug in $z=x^{*}$ in corollary to obtain progress in terms of iterates:

$$
\begin{aligned}
\phi\left(x^{\prime}\right)-\phi^{*} & \leq\left\langle G_{\alpha}(x), x-x^{*}\right\rangle-\frac{\alpha}{2}\left\|G_{\alpha}(x)\right\|_{2}^{2} \\
& =\frac{1}{2 \alpha}\left[2\left\langle\alpha G_{\alpha}(x), x-x^{*}\right\rangle-\left\|\alpha G_{\alpha}(x)\right\|_{2}^{2}\right] \\
& =\frac{1}{2 \alpha}\left[\left\|x-x^{*}\right\|_{2}^{2}-\left\|x-x^{*}-\alpha G_{\alpha}(x)\right\|_{2}^{2}\right]
\end{aligned}
$$

Convergence analysis

We've actually shown that $x^{\prime}=x-\alpha G_{\alpha}(x)$ is a descent method. Write $\phi=f+h$; plug in $z=x$ to obtain

$$
\phi\left(x^{\prime}\right) \leq \phi(x)-\frac{\alpha}{2}\left\|G_{\alpha}(x)\right\|_{2}^{2} .
$$

Exercise: Argue why this inequality suffices to show convergence. Plug in $z=x^{*}$ in corollary to obtain progress in terms of iterates:

$$
\begin{aligned}
\phi\left(x^{\prime}\right)-\phi^{*} & \leq\left\langle G_{\alpha}(x), x-x^{*}\right\rangle-\frac{\alpha}{2}\left\|G_{\alpha}(x)\right\|_{2}^{2} \\
& =\frac{1}{2 \alpha}\left[2\left\langle\alpha G_{\alpha}(x), x-x^{*}\right\rangle-\left\|\alpha G_{\alpha}(x)\right\|_{2}^{2}\right] \\
& =\frac{1}{2 \alpha}\left[\left\|x-x^{*}\right\|_{2}^{2}-\left\|x-x^{*}-\alpha G_{\alpha}(x)\right\|_{2}^{2}\right] \\
& =\frac{1}{2 \alpha}\left[\left\|x-x^{*}\right\|_{2}^{2}-\left\|x^{\prime}-x^{*}\right\|_{2}^{2}\right] .
\end{aligned}
$$

Convergence rate

Set $x \leftarrow x_{k}, x^{\prime} \leftarrow x_{k+1}$, and $\alpha=1 / L$. Then add

Convergence rate

Set $x \leftarrow x_{k}, x^{\prime} \leftarrow x_{k+1}$, and $\alpha=1 / L$. Then add
$\sum_{i=1}^{k+1}\left(\phi\left(x_{i}\right)-\phi^{*}\right) \leq \frac{L}{2} \sum_{i=1}^{k+1}\left[\left\|x_{k}-x *\right\|_{2}^{2}-\left\|x_{i+1}-x *\right\|_{2}^{2}\right]$

Convergence rate

Set $x \leftarrow x_{k}, x^{\prime} \leftarrow x_{k+1}$, and $\alpha=1 / L$. Then add

$$
\begin{aligned}
\sum_{i=1}^{k+1}\left(\phi\left(x_{i}\right)-\phi^{*}\right) & \leq \frac{L}{2} \sum_{i=1}^{k+1}\left[\left\|x_{k}-x *\right\|_{2}^{2}-\left\|x_{i+1}-x *\right\|_{2}^{2}\right] \\
& =\frac{L}{2}\left[\left\|x_{1}-x^{*}\right\|_{2}^{2}-\left\|x_{k+1}-x^{*}\right\|_{2}^{2}\right]
\end{aligned}
$$

Convergence rate

Set $x \leftarrow x_{k}, x^{\prime} \leftarrow x_{k+1}$, and $\alpha=1 / L$. Then add

$$
\begin{aligned}
\sum_{i=1}^{k+1}\left(\phi\left(x_{i}\right)-\phi^{*}\right) & \leq \frac{L}{2} \sum_{i=1}^{k+1}\left[\left\|x_{k}-x *\right\|_{2}^{2}-\left\|x_{i+1}-x *\right\|_{2}^{2}\right] \\
& =\frac{L}{2}\left[\left\|x_{1}-x^{*}\right\|_{2}^{2}-\left\|x_{k+1}-x^{*}\right\|_{2}^{2}\right] \\
& \leq \frac{L}{2}\left\|x_{1}-x^{*}\right\|_{2}^{2}
\end{aligned}
$$

Convergence rate

Set $x \leftarrow x_{k}, x^{\prime} \leftarrow x_{k+1}$, and $\alpha=1 / L$. Then add

$$
\begin{aligned}
\sum_{i=1}^{k+1}\left(\phi\left(x_{i}\right)-\phi^{*}\right) & \leq \frac{L}{2} \sum_{i=1}^{k+1}\left[\left\|x_{k}-x *\right\|_{2}^{2}-\left\|x_{i+1}-x *\right\|_{2}^{2}\right] \\
& =\frac{L}{2}\left[\left\|x_{1}-x^{*}\right\|_{2}^{2}-\left\|x_{k+1}-x^{*}\right\|_{2}^{2}\right] \\
& \leq \frac{L}{2}\left\|x_{1}-x^{*}\right\|_{2}^{2}
\end{aligned}
$$

Since $\phi\left(x_{k}\right)$ is a decreasing sequence, it follows that

$$
\phi\left(x_{k+1}\right)-\phi^{*} \leq \frac{1}{k+1} \sum_{i=1}^{k+1}\left(\phi\left(x_{i}\right)-\phi^{*}\right) \leq \frac{L}{2(k+1)}\left\|x_{1}-x^{*}\right\|_{2}^{2}
$$

This is the well-known $O(1 / k)$ rate.

Convergence rate

Set $x \leftarrow x_{k}, x^{\prime} \leftarrow x_{k+1}$, and $\alpha=1 / L$. Then add

$$
\begin{aligned}
\sum_{i=1}^{k+1}\left(\phi\left(x_{i}\right)-\phi^{*}\right) & \leq \frac{L}{2} \sum_{i=1}^{k+1}\left[\left\|x_{k}-x *\right\|_{2}^{2}-\left\|x_{i+1}-x *\right\|_{2}^{2}\right] \\
& =\frac{L}{2}\left[\left\|x_{1}-x^{*}\right\|_{2}^{2}-\left\|x_{k+1}-x^{*}\right\|_{2}^{2}\right] \\
& \leq \frac{L}{2}\left\|x_{1}-x^{*}\right\|_{2}^{2} .
\end{aligned}
$$

Since $\phi\left(x_{k}\right)$ is a decreasing sequence, it follows that

$$
\phi\left(x_{k+1}\right)-\phi^{*} \leq \frac{1}{k+1} \sum_{i=1}^{k+1}\left(\phi\left(x_{i}\right)-\phi^{*}\right) \leq \frac{L}{2(k+1)}\left\|x_{1}-x^{*}\right\|_{2}^{2}
$$

This is the well-known $O(1 / k)$ rate.
But for C_{L}^{1} convex functions, optimal rate is $O\left(1 / k^{2}\right)$

Accelerated Proximal Gradient

Let $x_{0}=y_{0} \in \operatorname{dom} h$. For $k \geq 1$:

$$
\begin{aligned}
x_{k} & =\operatorname{prox}_{\alpha_{k} h}\left(y_{k-1}-\alpha_{k} \nabla f\left(y_{k-1}\right)\right) \\
y_{k} & =x_{k}+\frac{k-1}{k+2}\left(x_{k}-x_{k-1}\right) .
\end{aligned}
$$

Framework due to: Nesterov (1983, 2004); also Beck, Teboulle (2009). Simplified analysis: Tseng (2008).

Accelerated Proximal Gradient

Let $x_{0}=y_{0} \in \operatorname{dom} h$. For $k \geq 1$:

$$
\begin{aligned}
x_{k} & =\operatorname{prox}_{\alpha_{k} h}\left(y_{k-1}-\alpha_{k} \nabla f\left(y_{k-1}\right)\right) \\
y_{k} & =x_{k}+\frac{k-1}{k+2}\left(x_{k}-x_{k-1}\right) .
\end{aligned}
$$

Framework due to: Nesterov (1983, 2004); also Beck, Teboulle (2009).
Simplified analysis: Tseng (2008).

- Uses extra "memory" for interpolation
- Same computational cost as ordinary prox-grad
- Convergence rate theoretically optimal

Accelerated Proximal Gradient

Let $x_{0}=y_{0} \in \operatorname{dom} h$. For $k \geq 1$:

$$
\begin{aligned}
x_{k} & =\operatorname{prox}_{\alpha_{k} h}\left(y_{k-1}-\alpha_{k} \nabla f\left(y_{k-1}\right)\right) \\
y_{k} & =x_{k}+\frac{k-1}{k+2}\left(x_{k}-x_{k-1}\right) .
\end{aligned}
$$

Framework due to: Nesterov (1983, 2004); also Beck, Teboulle (2009).
Simplified analysis: Tseng (2008).

- Uses extra "memory" for interpolation
- Same computational cost as ordinary prox-grad
- Convergence rate theoretically optimal

$$
\phi\left(x_{k}\right)-\phi^{*} \leq \frac{2 L}{(k+1)^{2}}\left\|x_{0}-x^{*}\right\|_{2}^{2}
$$

Simplified proof in lecture notes.

Monotone operators

Why is proximity called an "operator"?

Theorem Let h be a closed convex function, and $\lambda>0$, then

$$
(I+\lambda \partial h)^{-1}(y)=\operatorname{prox}_{\lambda h}(y)
$$

Why is proximity called an "operator"?

Theorem Let h be a closed convex function, and $\lambda>0$, then

$$
(I+\lambda \partial h)^{-1}(y)=\operatorname{prox}_{\lambda h}(y)
$$

- Suppose $(I+\lambda \partial h)^{-1}$ is single valued

Why is proximity called an "operator"?

Theorem Let h be a closed convex function, and $\lambda>0$, then

$$
(I+\lambda \partial h)^{-1}(y)=\operatorname{prox}_{\lambda h}(y)
$$

- Suppose $(I+\lambda \partial h)^{-1}$ is single valued
- Then, $x=(I+\lambda \partial h)^{-1}(y) \Longrightarrow y \in(I+\lambda \partial h)(x)$

Why is proximity called an "operator"?

Theorem Let h be a closed convex function, and $\lambda>0$, then

$$
(I+\lambda \partial h)^{-1}(y)=\operatorname{prox}_{\lambda h}(y)
$$

- Suppose $(I+\lambda \partial h)^{-1}$ is single valued
- Then, $x=(I+\lambda \partial h)^{-1}(y) \Longrightarrow y \in(I+\lambda \partial h)(x)$
- That is, $y \in x+\lambda \partial h(x)$

Why is proximity called an "operator"?

Theorem Let h be a closed convex function, and $\lambda>0$, then

$$
(I+\lambda \partial h)^{-1}(y)=\operatorname{prox}_{\lambda h}(y)
$$

- Suppose $(I+\lambda \partial h)^{-1}$ is single valued
- Then, $x=(I+\lambda \partial h)^{-1}(y) \Longrightarrow y \in(I+\lambda \partial h)(x)$
- That is, $y \in x+\lambda \partial h(x)$
- Equivalently, $x-y+\lambda \partial h(x) \ni 0$

Why is proximity called an "operator"?

Theorem Let h be a closed convex function, and $\lambda>0$, then

$$
(I+\lambda \partial h)^{-1}(y)=\operatorname{prox}_{\lambda h}(y)
$$

- Suppose $(I+\lambda \partial h)^{-1}$ is single valued
- Then, $x=(I+\lambda \partial h)^{-1}(y) \Longrightarrow y \in(I+\lambda \partial h)(x)$
- That is, $y \in x+\lambda \partial h(x)$
- Equivalently, $x-y+\lambda \partial h(x) \ni 0$
- Nothing other than optimality condition for prox-operator

$$
\operatorname{prox}_{\lambda h}(y) \equiv y \mapsto \underset{x}{\operatorname{argmin}} \frac{1}{2}\|x-y\|_{2}^{2}+\lambda h(x)
$$

Set-valued mappings

Think of ∂f as a set-valued map

$$
\partial f=x \rightrightarrows \partial f(x)
$$

Set-valued mappings

Think of ∂f as a set-valued map

$$
\partial f=x \rightrightarrows \partial f(x)
$$

Relation R is a subset of $\mathbb{R}^{n} \times \mathbb{R}^{n}$

Set-valued mappings

Think of ∂f as a set-valued map

$$
\partial f=x \rightrightarrows \partial f(x)
$$

Relation R is a subset of $\mathbb{R}^{n} \times \mathbb{R}^{n}$

- Empty relation: \emptyset
- Identity: $I:=\left\{(x, x) \mid x \in \mathbb{R}^{n}\right\}$
- Zero: $0:=\left\{(x, 0) \mid x \in \mathbb{R}^{n}\right\}$
- Subdifferential: $\partial f:=\left\{(x, g) \mid x \in \mathbb{R}^{n}, g \in \partial f(x)\right\}$

Set-valued mappings

Think of ∂f as a set-valued map

$$
\partial f=x \rightrightarrows \partial f(x)
$$

Relation R is a subset of $\mathbb{R}^{n} \times \mathbb{R}^{n}$

- Empty relation: \emptyset
- Identity: $I:=\left\{(x, x) \mid x \in \mathbb{R}^{n}\right\}$
- Zero: $0:=\left\{(x, 0) \mid x \in \mathbb{R}^{n}\right\}$
- Subdifferential: $\partial f:=\left\{(x, g) \mid x \in \mathbb{R}^{n}, g \in \partial f(x)\right\}$
- We will write $R(x)$ to mean $\{y \mid(x, y) \in R\}$.
- Example: $\partial f(x)=\{g \mid(x, g) \in \partial f\}$
- Goal: solve generalized equation $0 \in R(x)$
- That is, find $x \in \mathbb{R}^{n}$ such that $(x, 0) \in R$
- Goal: solve generalized equation $0 \in R(x)$
- That is, find $x \in \mathbb{R}^{n}$ such that $(x, 0) \in R$
- Example: Say $R \equiv \partial f$, then goal

$$
0 \in R(x) \Leftrightarrow 0 \in \partial f(x)
$$

means we want to find an x that minimizes f.

- Helps succinctly write / analyze problems and algorithms

Working with operators

- Inverse: $R^{-1}:=\{(y, x) \mid(x, y) \in R\}$
- Inverse: $R^{-1}:=\{(y, x) \mid(x, y) \in R\}$
- Addition: $R+S:=\{(x, y+z) \mid(x, y) \in R,(x, z) \in S\}$
- Example: $I+R:=\{(x, x+y) \mid(x, y) \in R\}$
- Inverse: $R^{-1}:=\{(y, x) \mid(x, y) \in R\}$
- Addition: $R+S:=\{(x, y+z) \mid(x, y) \in R,(x, z) \in S\}$
- Example: $I+R:=\{(x, x+y) \mid(x, y) \in R\}$
- Scaling: $\lambda R=\{(x, \lambda y) \mid(x, y) \in R\}$
- Inverse: $R^{-1}:=\{(y, x) \mid(x, y) \in R\}$
- Addition: $R+S:=\{(x, y+z) \mid(x, y) \in R,(x, z) \in S\}$
- Example: $I+R:=\{(x, x+y) \mid(x, y) \in R\}$
- Scaling: $\lambda R=\{(x, \lambda y) \mid(x, y) \in R\}$
- Resolvent: For relation R with parameter $\lambda \in \mathbb{R}$

$$
S:=(I+\lambda R)^{-1}
$$

- Inverse: $R^{-1}:=\{(y, x) \mid(x, y) \in R\}$
- Addition: $R+S:=\{(x, y+z) \mid(x, y) \in R,(x, z) \in S\}$
- Example: $I+R:=\{(x, x+y) \mid(x, y) \in R\}$
- Scaling: $\lambda R=\{(x, \lambda y) \mid(x, y) \in R\}$
- Resolvent: For relation R with parameter $\lambda \in \mathbb{R}$

$$
S:=(I+\lambda R)^{-1}
$$

- $I+\lambda R=\{(x, x+\lambda y) \mid(x, y) \in R\}$
- Inverse: $R^{-1}:=\{(y, x) \mid(x, y) \in R\}$
- Addition: $R+S:=\{(x, y+z) \mid(x, y) \in R,(x, z) \in S\}$
- Example: $I+R:=\{(x, x+y) \mid(x, y) \in R\}$
- Scaling: $\lambda R=\{(x, \lambda y) \mid(x, y) \in R\}$
- Resolvent: For relation R with parameter $\lambda \in \mathbb{R}$

$$
S:=(I+\lambda R)^{-1}
$$

- $I+\lambda R=\{(x, x+\lambda y) \mid(x, y) \in R\}$
- $S=\{(x+\lambda y, x) \mid(x, y) \in R\}$

Which operators are "easier"?

Def. The set valued operator $R \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ is called monotone if

$$
\langle R(x)-R(y), x-y\rangle \geq 0, \quad x, y \in \mathbb{R}^{n} .
$$

Which operators are "easier"?

Def. The set valued operator $R \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ is called monotone if

$$
\langle R(x)-R(y), x-y\rangle \geq 0, \quad x, y \in \mathbb{R}^{n}
$$

Examples:

- Any positive semidefinite matrix $\langle A x-A y, x-y\rangle \geq 0$

Which operators are "easier"?

Def. The set valued operator $R \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ is called monotone if

$$
\langle R(x)-R(y), x-y\rangle \geq 0, \quad x, y \in \mathbb{R}^{n}
$$

Examples:

- Any positive semidefinite matrix $\langle A x-A y, x-y\rangle \geq 0$
- The subdifferential ∂f of a convex function (verify!)

Which operators are "easier"?

Def. The set valued operator $R \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ is called monotone if

$$
\langle R(x)-R(y), x-y\rangle \geq 0, \quad x, y \in \mathbb{R}^{n}
$$

Examples:

- Any positive semidefinite matrix $\langle A x-A y, x-y\rangle \geq 0$
- The subdifferential ∂f of a convex function (verify!)
- Any monotonically nondecreasing function $T: \mathbb{R} \rightarrow \mathbb{R}$

Which operators are "easier"?

Def. The set valued operator $R \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ is called monotone if

$$
\langle R(x)-R(y), x-y\rangle \geq 0, \quad x, y \in \mathbb{R}^{n}
$$

Examples:

- Any positive semidefinite matrix $\langle A x-A y, x-y\rangle \geq 0$
- The subdifferential ∂f of a convex function (verify!)
- Any monotonically nondecreasing function $T: \mathbb{R} \rightarrow \mathbb{R}$
- Projection and proximity operators (recall firm nonexpansivity)

Which operators are "easier"?

Def. The set valued operator $R \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ is called monotone if

$$
\langle R(x)-R(y), x-y\rangle \geq 0, \quad x, y \in \mathbb{R}^{n}
$$

Examples:

- Any positive semidefinite matrix $\langle A x-A y, x-y\rangle \geq 0$
- The subdifferential ∂f of a convex function (verify!)
- Any monotonically nondecreasing function $T: \mathbb{R} \rightarrow \mathbb{R}$
- Projection and proximity operators (recall firm nonexpansivity)

Generalize notion of monotonicity to vectors
A Abstraction helps take our linear-algebra intuition to optimization

Exercise: Prove λR monotone if R monotone and $\lambda \geq 0$
Exercise: Prove R^{-1} monotone, if R is monotone
Exercise: For monotone R, S and $\lambda \geq 0, R+\lambda S$ is monotone.

Monotone operators - simple facts

Exercise: Prove λR monotone if R monotone and $\lambda \geq 0$
Exercise: Prove R^{-1} monotone, if R is monotone
Exercise: For monotone R, S and $\lambda \geq 0, R+\lambda S$ is monotone.
Corollary: Resolvent operator of monotone operator is monotone.

$$
R \text { monotone } \quad \Longrightarrow(I+\lambda R)^{-1} \text { is monotone. }
$$

Importance of resolvent operators

Aim: solve generalized equation

$$
0 \in R(x)
$$

Aim: solve generalized equation

$$
0 \in R(x)
$$

Theorem The solutions to the generalized equation coincide with points that satisfy the resolvent equation $x=(I+\alpha R)^{-1}(x)$

Aim: solve generalized equation

$$
0 \in R(x)
$$

Theorem The solutions to the generalized equation coincide with points that satisfy the resolvent equation $x=(I+\alpha R)^{-1}(x)$

Proof:
$0 \in R(x)$

Aim: solve generalized equation

$$
0 \in R(x)
$$

Theorem The solutions to the generalized equation coincide with points that satisfy the resolvent equation $x=(I+\alpha R)^{-1}(x)$

Proof:

$0 \in R(x) \leftrightarrow 0 \in \alpha R(x)$

Aim: solve generalized equation

$$
0 \in R(x)
$$

Theorem The solutions to the generalized equation coincide with points that satisfy the resolvent equation $x=(I+\alpha R)^{-1}(x)$

Proof:

$0 \in R(x) \leftrightarrow 0 \in \alpha R(x) \leftrightarrow x \in(I+\alpha R)(x)$

Aim: solve generalized equation

$$
0 \in R(x)
$$

Theorem The solutions to the generalized equation coincide with points that satisfy the resolvent equation $x=(I+\alpha R)^{-1}(x)$

Proof:

$0 \in R(x) \leftrightarrow 0 \in \alpha R(x) \leftrightarrow x \in(I+\alpha R)(x) \leftrightarrow x=(I+\alpha R)^{-1}(x)$

Rederiving proximal-gradient

$$
\begin{aligned}
& \min \quad f(x)+h(x) \\
& 0 \in \nabla f(x)+\partial h(x)
\end{aligned}
$$

Rederiving proximal-gradient

$$
\begin{aligned}
& \min \quad f(x)+h(x) \\
& 0 \in \nabla f(x)+\partial h(x) \\
& 0 \in \lambda \nabla f(x)+\lambda \partial h(x)
\end{aligned}
$$

Rederiving proximal-gradient

$$
\begin{aligned}
& \min \quad f(x)+h(x) \\
& 0 \in \nabla f(x)+\partial h(x) \\
& 0 \in \lambda \nabla f(x)+\lambda \partial h(x) \\
& x \in \lambda \nabla f(x)+(I+\lambda \partial h)(x)
\end{aligned}
$$

Rederiving proximal-gradient

$$
\begin{aligned}
\min & f(x)+h(x) \\
0 & \in \nabla f(x)+\partial h(x) \\
0 & \in \lambda \nabla f(x)+\lambda \partial h(x) \\
x & \in \lambda \nabla f(x)+(I+\lambda \partial h)(x) \\
x-\lambda \nabla f(x) & \in(I+\lambda \partial h)(x)
\end{aligned}
$$

Rederiving proximal-gradient

$$
\begin{aligned}
\min & f(x)+h(x) \\
0 & \in \nabla f(x)+\partial h(x) \\
0 & \in \lambda \nabla f(x)+\lambda \partial h(x) \\
x & \in \lambda \nabla f(x)+(I+\lambda \partial h)(x) \\
x-\lambda \nabla f(x) & \in(I+\lambda \partial h)(x) \\
x & =(I+\lambda \partial h)^{-1}(x-\lambda \nabla f(x))
\end{aligned}
$$

$$
\begin{aligned}
\min & f(x)+h(x) \\
0 & \in \nabla f(x)+\partial h(x) \\
0 & \in \lambda \nabla f(x)+\lambda \partial h(x) \\
x & \in \lambda \nabla f(x)+(I+\lambda \partial h)(x) \\
x-\lambda \nabla f(x) & \in(I+\lambda \partial h)(x) \\
x & =(I+\lambda \partial h)^{-1}(x-\lambda \nabla f(x)) \\
x & =\operatorname{prox}_{\alpha h}(x-\lambda \nabla f(x))
\end{aligned}
$$

Resolvent of subdifferential is prox operator

Proximal splitting methods

$$
\ell(x)+f(x)+h(x)
$$

- Direct use of prox-grad not easy
- Requires computation of: $\operatorname{prox}_{\lambda(f+h)}$ (i.e., $\left.(I+\lambda(\partial f+\partial h))^{-1}\right)$

Proximal splitting methods

$$
\ell(x)+f(x)+h(x)
$$

- Direct use of prox-grad not easy
- Requires computation of: $\operatorname{prox}_{\lambda(f+h)}$ (i.e., $\left.(I+\lambda(\partial f+\partial h))^{-1}\right)$ Example:

$$
\min \frac{1}{2}\|x-y\|_{2}^{2}+\underbrace{\lambda\|x\|_{2}}_{f(x)}+\underbrace{\mu \sum_{i=1}^{n-1}\left|x_{i+1}-x_{i}\right|}_{h(x)}
$$

Proximal splitting methods

$$
\ell(x)+f(x)+h(x)
$$

- Direct use of prox-grad not easy
- Requires computation of: $\operatorname{prox}_{\lambda(f+h)}$ (i.e., $\left.(I+\lambda(\partial f+\partial h))^{-1}\right)$

Example:

$$
\min \frac{1}{2}\|x-y\|_{2}^{2}+\underbrace{\lambda\|x\|_{2}}_{f(x)}+\underbrace{\mu \sum_{i=1}^{n-1}\left|x_{i+1}-x_{i}\right|}_{h(x)}
$$

- But good feature: prox_{f} and prox_{h} separately easier
- Can we exploit that?

Proximal splitting - operator notation

- If $(I+\partial f+\partial h)^{-1}$ hard, but $(I+\partial f)^{-1}$ and $(I+\partial h)^{-1}$ "easy"

Proximal splitting - operator notation

- If $(I+\partial f+\partial h)^{-1}$ hard, but $(I+\partial f)^{-1}$ and $(I+\partial h)^{-1}$ "easy"
- Let us derive a fixed-point equation that "splits" the operators

Proximal splitting - operator notation

- If $(I+\partial f+\partial h)^{-1}$ hard, but $(I+\partial f)^{-1}$ and $(I+\partial h)^{-1}$ "easy"
- Let us derive a fixed-point equation that "splits" the operators

Assume we are solving

$$
\min \quad f(x)+h(x)
$$

where both f and h are convex but potentially nondifferentiable.
Notice: We implicitly assumed: $\partial(f+h)=\partial f+\partial h$.

$$
0 \in \partial f(x)+\partial h(x)
$$

Proximal splitting

$$
\begin{aligned}
0 & \in \partial f(x)+\partial h(x) \\
2 x & \in(I+\partial f)(x)+(I+\partial h)(x)
\end{aligned}
$$

Proximal splitting

$$
\begin{aligned}
0 & \in \partial f(x)+\partial h(x) \\
2 x & \in(I+\partial f)(x)+(I+\partial h)(x)
\end{aligned}
$$

Key idea of splitting: new variable!

$$
z \in(I+\partial h)(x) \Longrightarrow x=\operatorname{prox}_{h}(z)
$$

Proximal splitting

$$
\begin{aligned}
0 & \in \partial f(x)+\partial h(x) \\
2 x & \in(I+\partial f)(x)+(I+\partial h)(x)
\end{aligned}
$$

Key idea of splitting: new variable!

$$
z \in(I+\partial h)(x) \Longrightarrow x=\operatorname{prox}_{h}(z)
$$

$$
2 x-z \in(I+\partial f)(x)
$$

Proximal splitting

$$
\begin{aligned}
0 & \in \partial f(x)+\partial h(x) \\
2 x & \in(I+\partial f)(x)+(I+\partial h)(x)
\end{aligned}
$$

Key idea of splitting: new variable!

$$
z \in(I+\partial h)(x) \Longrightarrow x=\operatorname{prox}_{h}(z)
$$

$$
2 x-z \in(I+\partial f)(x) \Longrightarrow x \in(I+\partial f)^{-1}(2 x-z)
$$

Proximal splitting

$$
\begin{aligned}
0 & \in \partial f(x)+\partial h(x) \\
2 x & \in(I+\partial f)(x)+(I+\partial h)(x)
\end{aligned}
$$

Key idea of splitting: new variable!

$$
z \in(I+\partial h)(x) \Longrightarrow x=\operatorname{prox}_{h}(z)
$$

$$
2 x-z \in(I+\partial f)(x) \Longrightarrow x \in(I+\partial f)^{-1}(2 x-z)
$$

- Not a fixed-point equation yet

Proximal splitting

$$
\begin{aligned}
0 & \in \partial f(x)+\partial h(x) \\
2 x & \in(I+\partial f)(x)+(I+\partial h)(x)
\end{aligned}
$$

Key idea of splitting: new variable!

$$
z \in(I+\partial h)(x) \Longrightarrow x=\operatorname{prox}_{h}(z)
$$

$$
2 x-z \in(I+\partial f)(x) \Longrightarrow x \in(I+\partial f)^{-1}(2 x-z)
$$

- Not a fixed-point equation yet
- We need one more idea

Douglas-Rachford splitting

Reflection operator

$$
R_{h}(z):=2 \operatorname{prox}_{h}(z)-z
$$

Douglas-Rachford splitting

Reflection operator

$$
\begin{gathered}
R_{h}(z):=2 \operatorname{prox}_{h}(z)-z \\
\text { Douglas-Rachford method } \\
z \in(I+\partial h)(x), \quad x=\operatorname{prox}_{h}(z)
\end{gathered}
$$

Douglas-Rachford splitting

Reflection operator

$$
R_{h}(z):=2 \operatorname{prox}_{h}(z)-z
$$

Douglas-Rachford method
$z \in(I+\partial h)(x), \quad x=\operatorname{prox}_{h}(z) \Longrightarrow R_{h}(z)=2 x-z$

Douglas-Rachford splitting

Reflection operator

$$
R_{h}(z):=2 \operatorname{prox}_{h}(z)-z
$$

Douglas-Rachford method

$z \in(I+\partial h)(x), \quad x=\operatorname{prox}_{h}(z) \Longrightarrow R_{h}(z)=2 x-z$

$$
\begin{aligned}
0 & \in \partial f(x)+\partial g(x) \\
2 x & \in(I+\partial f)(x)+(I+\partial g)(x) \\
2 x-z & \in(I+\partial f)(x)
\end{aligned}
$$

Reflection operator

$$
R_{h}(z):=2 \operatorname{prox}_{h}(z)-z
$$

Douglas-Rachford method

$z \in(I+\partial h)(x), \quad x=\operatorname{prox}_{h}(z) \Longrightarrow R_{h}(z)=2 x-z$

$$
\begin{aligned}
0 & \in \partial f(x)+\partial g(x) \\
2 x & \in(I+\partial f)(x)+(I+\partial g)(x) \\
2 x-z & \in(I+\partial f)(x) \\
x & =\operatorname{prox}_{f}\left(R_{h}(z)\right)
\end{aligned}
$$

Douglas-Rachford splitting

Reflection operator

$$
R_{h}(z):=2 \operatorname{prox}_{h}(z)-z
$$

Douglas-Rachford method

$$
\begin{aligned}
z \in(I+\partial h) & (x), \quad x=\operatorname{prox}_{h}(z) \Longrightarrow R_{h}(z)=2 x-z \\
0 & \in \partial f(x)+\partial g(x) \\
2 x & \in(I+\partial f)(x)+(I+\partial g)(x) \\
2 x-z & \in(I+\partial f)(x) \\
x & =\operatorname{prox}_{f}\left(R_{h}(z)\right) \\
\text { but } R_{h}(z) & =2 x-z \Longrightarrow \\
z & =2 x-R_{h}(z)
\end{aligned}
$$

Reflection operator

$$
R_{h}(z):=2 \operatorname{prox}_{h}(z)-z
$$

Douglas-Rachford method

$$
\begin{aligned}
z \in(I+\partial h) & (x), \quad x=\operatorname{prox}_{h}(z) \Longrightarrow R_{h}(z)=2 x-z \\
0 & \in \partial f(x)+\partial g(x) \\
2 x & \in(I+\partial f)(x)+(I+\partial g)(x) \\
2 x-z & \in(I+\partial f)(x) \\
x & =\operatorname{prox}_{f}\left(R_{h}(z)\right) \\
\text { but } R_{h}(z) & =2 x-z \Longrightarrow \\
z & =2 x-R_{h}(z) \\
z & =2 \operatorname{prox}_{f}\left(R_{h}(z)\right)-R_{h}(z)=
\end{aligned}
$$

Douglas-Rachford splitting

Reflection operator

$$
R_{h}(z):=2 \operatorname{prox}_{h}(z)-z
$$

Douglas-Rachford method

$$
z \in(I+\partial h)(x), \quad x=\operatorname{prox}_{h}(z) \Longrightarrow R_{h}(z)=2 x-z
$$

$$
\begin{aligned}
0 & \in \partial f(x)+\partial g(x) \\
2 x & \in(I+\partial f)(x)+(I+\partial g)(x) \\
2 x-z & \in(I+\partial f)(x) \\
x & =\operatorname{prox}_{f}\left(R_{h}(z)\right)
\end{aligned}
$$

$$
\text { but } R_{h}(z)=2 x-z \Longrightarrow
$$

$$
z=2 x-R_{h}(z)
$$

$$
z=2 \operatorname{prox}_{f}\left(R_{h}(z)\right)-R_{h}(z)=R_{f}\left(R_{h}(z)\right)
$$

Finally, z is on both sides of the eqn

$$
0 \in \partial f(x)+\partial h(x) \Leftrightarrow\left\{\begin{array}{l}
x=\operatorname{prox}_{h}(z) \\
z=R_{f}\left(R_{h}(z)\right)
\end{array}\right.
$$

DR method: given z_{0}, iterate for $k \geq 0$

$$
\begin{aligned}
x_{k} & =\operatorname{prox}_{h}\left(z_{k}\right) \\
v_{k} & =\operatorname{prox}_{f}\left(2 x_{k}-z_{k}\right) \\
z_{k+1} & =z_{k}+\gamma_{k}\left(v_{k}-x_{k}\right)
\end{aligned}
$$

$$
0 \in \partial f(x)+\partial h(x) \Leftrightarrow\left\{\begin{array}{l}
x=\operatorname{prox}_{h}(z) \\
z=R_{f}\left(R_{h}(z)\right)
\end{array}\right.
$$

DR method: given z_{0}, iterate for $k \geq 0$

$$
\begin{aligned}
x_{k} & =\operatorname{prox}_{h}\left(z_{k}\right) \\
v_{k} & =\operatorname{prox}_{f}\left(2 x_{k}-z_{k}\right) \\
z_{k+1} & =z_{k}+\gamma_{k}\left(v_{k}-x_{k}\right)
\end{aligned}
$$

Theorem If $f+h$ admits minimizers, and $\left(\gamma_{k}\right)$ satisfy

$$
\gamma_{k} \in[0,2], \quad \sum_{k} \gamma_{k}\left(2-\gamma_{k}\right)=\infty
$$

then the DR-iterates v_{k} and x_{k} converge to a minimizer.

For $\gamma_{k}=1$, we have

$$
\begin{aligned}
& z_{k+1}=z_{k}+v_{k}-x_{k} \\
& z_{k+1}=z_{k}+\operatorname{prox}_{f}\left(2 \operatorname{prox}_{h}\left(z_{k}\right)-z_{k}\right)-\operatorname{prox}_{h}\left(z_{k}\right)
\end{aligned}
$$

For $\gamma_{k}=1$, we have

$$
\begin{aligned}
& z_{k+1}=z_{k}+v_{k}-x_{k} \\
& z_{k+1}=z_{k}+\operatorname{prox}_{f}\left(2 \operatorname{prox}_{h}\left(z_{k}\right)-z_{k}\right)-\operatorname{prox}_{h}\left(z_{k}\right)
\end{aligned}
$$

Dropping superscripts, writing $P \equiv$ prox, we have

$$
\begin{gathered}
z \leftarrow T z \\
T=I+P_{f}\left(2 P_{h}-I\right)-P_{h}
\end{gathered}
$$

Douglas-Rachford method

For $\gamma_{k}=1$, we have

$$
\begin{aligned}
& z_{k+1}=z_{k}+v_{k}-x_{k} \\
& z_{k+1}=z_{k}+\operatorname{prox}_{f}\left(2 \operatorname{prox}_{h}\left(z_{k}\right)-z_{k}\right)-\operatorname{prox}_{h}\left(z_{k}\right)
\end{aligned}
$$

Dropping superscripts, writing $P \equiv$ prox, we have

$$
\begin{gathered}
z \leftarrow T z \\
T=I+P_{f}\left(2 P_{h}-I\right)-P_{h}
\end{gathered}
$$

Lemma DR can be written as: $z \leftarrow \frac{1}{2}\left(R_{f} R_{h}+I\right) z$, where R_{f} denotes the reflection operator $2 P_{f}-I$ (similarly R_{h}).

Exercise: Prove this claim.

Best approximation problem

$\min \quad \delta_{A}(x)+\delta_{B}(x) \quad$ where $A \cap B=\emptyset$.

Best approximation problem

$\min \quad \delta_{A}(x)+\delta_{B}(x) \quad$ where $A \cap B=\emptyset$.

Can we use DR?

Best approximation problem

$$
\min \quad \delta_{A}(x)+\delta_{B}(x) \quad \text { where } A \cap B=\emptyset .
$$

Can we use DR?

Using a clever analysis of Bauschke \& Combettes (2004), DR can still be applied! However, it generates diverging iterates which can be "projected back" to obtain a solution to

$$
\min \quad\|a-b\|_{2} \quad a \in A, b \in B
$$

See: Jegelka, Bach, Sra (NIPS 2013) for an example.

Example

Best approximation problem

$$
\min _{x} \quad d_{A}^{2}(x)+d_{B}^{2}(x)
$$

where $d_{A}(x):=\inf \left\{\|z-x\|_{2} \mid z \in A\right\}$ is the distance function.

Example

Best approximation problem

$$
\min _{x} \quad d_{A}^{2}(x)+d_{B}^{2}(x)
$$

where $d_{A}(x):=\inf \left\{\|z-x\|_{2} \mid z \in A\right\}$ is the distance function. Exercise: Show that $R_{d_{A}}=\Pi_{A}$ (quite interesting!)

Example

Best approximation problem

$$
\min _{x} \quad d_{A}^{2}(x)+d_{B}^{2}(x)
$$

where $d_{A}(x):=\inf \left\{\|z-x\|_{2} \mid z \in A\right\}$ is the distance function. Exercise: Show that $R_{d_{A}}=\Pi_{A}$ (quite interesting!) Thus, DR for solving above problem becomes

$$
z_{k+1}=\frac{1}{2}\left(\Pi_{A} \Pi_{B}+I\right) z_{k}, \quad k \geq 0
$$

Example

Best approximation problem

$$
\min _{x} \quad d_{A}^{2}(x)+d_{B}^{2}(x)
$$

where $d_{A}(x):=\inf \left\{\|z-x\|_{2} \mid z \in A\right\}$ is the distance function. Exercise: Show that $R_{d_{A}}=\Pi_{A}$ (quite interesting!) Thus, DR for solving above problem becomes

$$
z_{k+1}=\frac{1}{2}\left(\Pi_{A} \Pi_{B}+I\right) z_{k}, \quad k \geq 0 .
$$

Exercise:* Convergence rate of above method?

References

- DTU 2010 slides, Laurent EI Ghaoui
- EE227A slides, S. Sra
- Introductory Lectures on Convex Optimization, Yu. Nesterov

A EE364B notes, Stephen Boyd

