10-801: Advanced Optimization and Randomized Methods

Homework 3: KKT conditions, optimality, concentration of measure

(Feb 12, 2014)

Instructor: Suvrit Sra, Alex Smola

Due: Feb 24, 2014

1. For two scalars γ , d, with d > 0, we define

$$B(\gamma, d) := \min_{\lambda \ge 0} \ \lambda + \frac{\gamma^2}{\lambda + d}.$$

(a) Show that

$$B(\gamma, d) = \begin{cases} \frac{\gamma^2}{d} & \text{if } |\gamma| \le d, \\ 2|\gamma| - d & \text{if } |\gamma| \ge d. \end{cases}$$

with minimizer $\lambda^* = \max(0, |\gamma| - d)$.

- (b) Is B convex? Justify your answer rigorously.
- (c) Find a sub-gradient of B at a given point (γ, d) , with d > 0.
- (d) The function *B*, often referred to as the Huber function, is sometimes used as a penalty in classification or regression, in problems of the form

$$\min_{x} L(x) + B(x,d),$$

where L is a loss function, and d > 0 is a (now fixed) parameter. Explain intuitively what effect the penalty B has on the solution, depending on the parameter d.

2. Consider the optimization problem

$$\min_{x} \sum_{i=1}^{n} \left(\frac{1}{2} d_{i} x_{i}^{2} + r_{i} x_{i} \right) : a^{T} x = 1, \ x_{i} \in [-1, 1], \ i = 1, \dots, n,$$

where $a, d \in \mathbb{R}^n$, with , and d > 0.

(a) Show that the problem is strictly feasible if and only if $||a||_1 > 1$, which we will henceforth assume. *Hint:* consider the problem

$$\min_{x} \|x\|_{\infty} : a^T x = 1,$$

and its dual.

- (b) Write a dual for the problem, expressing the last n constraints as $x_i^2 \le 1$, $i = 1, \dots, n$.
- (c) Does strong duality hold? Justify your answer.
- (d) Write down the KKT optimality conditions for the problem. Do these conditions characterize optimal points?
- (e) Show how to reduce the dual problem to a one-dimensional convex problem, of the form

$$\min_{\mu} \mu + \frac{1}{2} \sum_{i=1}^{n} B(r_i + \mu a_i, d_i),$$

where *B* is the Huber function defined in part 1.

- (f) Suggest an algorithm to solve the dual problem. Analyze its running time complexity.
- (g) How can you recover an optimal primal point x, after solving the dual?

3. We examine the problem of fitting a polynomial of degree d through data points $(u_i, y_i) \in \mathbb{R}^2$, i = 1, ..., m. Without loss of generality, we assume that the input satisfies $|u_i| \le 1$, i = 1, ..., m. We parametrize a polynomial of degree d via its coefficients:

$$p_w(u) = w_0 + w_1 u + \ldots + w_d u^d,$$

where $w \in \mathbb{R}^{d+1}$. Our problem is to minimize, over the vector w, the error norm

$$\sum_{i=1}^{m} (p_w(u_i) - y_i)^2.$$

(a) Show that the problem can be written as

$$\min_{w} \|\Phi^T w - y\|_2^2,$$

where the matrix Φ has columns $\phi_i = (1, u_i, \dots, u_i^d)$, $i = 1, \dots, m$.

(b) In practice it is desirable to encourage polynomials that are not too rapidly varying over the interval of interest. To that end, we modify the above problem as follows:

$$\min_{w} \|\Phi^T w - y\|_2^2 + \lambda b(w), \tag{3.1}$$

where $\lambda > 0$ is a regularization parameter, and b(w) is a bound on the size of the derivative of the polynomial over [-1,1]:

$$b(w) = \max_{u : |u| \le 1} \left| \frac{d}{du} p_w(u) \right|.$$

Is the penalty function b convex? Is it a norm?

- (c) Explain how to compute a subgradient of b at a point w.
- (d) Write KKT optimality conditions for (3.1).
- 4. [Self-bounding concentration of measure inequalities for random partitioning]

Denote by b the number of bins and by n the number of elements. Now assume that we use a uniformly random assignment of elements to bins. Denote by n_i the number of elements per bin. Prove concentration of measure inequalities for the following quantities:

- (a) Largest bin size, $\max_i n_i$.
- (b) Variance of bin sizes, $\frac{1}{h} \sum_{i} (n_i \bar{n_i})^2$.

Hint: Use the McDiarmid and Reed self-bounding inequality.

5. [Expected quantile rank of sample minimum]

Assume that we draw k random variables x_i iid from a distribution p. We pick the smallest value

$$z_k := \min(x_1, ... x_k).$$

Given the cumulative distribution function F, what is $\mathbb{E}[F(z_k)]$ – the expected quantile rank of z_k ?

- 6. [Bonus] Let \mathcal{D}_n be the set of matrices with entries in [0,1].
 - (a) For odd n, prove that for every nonsingular A in \mathcal{D}_n , it holds that $||A^{-1}||_F \ge \frac{2n}{n+1}$, where $||\cdot||_F$ is the Frobenius norm.
 - (b) Determine the class of matrices for which equality holds. Partial credit will be given for examples of matrices for which equality holds.
 - (c) Prove the claim for all n.