10-801: Advanced Optimization and Randomized Methods Homework 1: Convex sets and functions

(Jan 22, 2014)
Instructor: Suvrit Sra
Visit: http:/ /www.cs.cmu.edu/~suvrit/teach/ for academic rules for homeworks.

1. Prove that the functions in (a)-(b) below are convex, without resorting to second derivatives.
(a) $f(x, y)=x^{2} / y$ for $y>0$ on $\mathbb{R} \times \mathbb{R}_{++}$
(b) $f(x)=\log \left(1+e^{\sum_{i} a_{i} x_{i}}\right)$ on $\mathbb{R}^{n}\left(a_{i} \in \mathbb{R}\right.$ for $\left.1 \leq i \leq n\right)$.
(c) Using (b) show that $\operatorname{det}(X+Y)^{1 / n} \geq \operatorname{det}(X)^{1 / n}+\operatorname{det}(Y)^{1 / n}$ for $X, Y \in \mathbf{S}_{++}^{n}$.
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}_{++}$. Prove that f is log-convex if and only if $e^{c x} f(x)$ is convex for every $c \in \mathbb{R}$ (we assume f is continuous but not that it is differentiable).
3. Fenchel conjugates:
(a) Derive the Fenchel conjugate for $x^{T} A x+b^{T} x$ where $A \succeq 0$ may be rank-deficient
(b) Consider the quasi-norm $f(x):=\|x\|_{1 / 2}:=\left[\sum_{i=1}^{n}\left|x_{i}\right|^{1 / 2}\right]^{2}$. What is its bi-conjugate $f^{* *}$?
4. Let a vector x be split into nonoverlapping subvectors x_{1}, \ldots, x_{G}, then we define its $\ell_{p, q}$-mixed norm as

$$
\|x\|_{p, q}:=\left(\sum_{i}^{G}\left\|x_{i}\right\|_{q}^{p}\right)^{1 / p}, \quad p, q \geq 1
$$

Derive the dual norm to this norm (Hint: it is another mixed-norm).
(Remark: The norms $\ell_{1,2}, \ell_{1, \infty}$ and $\ell_{2,1}$ are perhaps the most interesting examples; they come up in multitask lasso and group lasso problems.)
5. Consider the normed metric space: \mathbb{R}^{n}. Define the function

$$
d(x, y):=\frac{2\|x-y\|}{\|x\|+\|y\|+\|x-y\|}, \quad \forall x, y \in \mathbb{R}^{n}
$$

Prove that d is a metric on $\mathbb{R}^{n} \backslash\{0\}$.
6. Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a symmetric function, (i.e., if $x=\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $x_{\sigma}=\left[x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right]$ for any permutation $\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$, then $\left.f\left(x_{\sigma}\right)=f(x)\right)$. Let $S^{n \times n}$ be the set of $n \times n$ symmetric matrices, and $\lambda: S^{n \times n} \rightarrow \mathbb{R}^{n}$ the eigenvalue map, that maps a symmetric matrix to the sorted (\downarrow) vector of its eigenvalues. Show that the Fenchel conjugate of the composite function

$$
(f \circ \lambda)^{*}=f^{*} \circ \lambda .
$$

[Hint: This question is simpler than it appears. Use the fact that for any two matrices $X, Y \in S^{n \times n}$ we have the inequality

$$
\operatorname{tr}(X Y) \leq \lambda(X)^{T} \lambda(Y)
$$

Also useful is to remember that $\lambda(\cdot)$ and tr enjoy the following invariance: $\lambda\left(Q A Q^{T}\right)=\lambda(A)$ for orthogonal Q, and $\operatorname{tr}\left(Q A Q^{T}\right)=\operatorname{tr}(A)$. To prove the claim, try showing $(f \circ \lambda)^{*} \leq f^{*} \circ \lambda$ and $(f \circ \lambda)^{*} \geq f^{*} \circ \lambda$. It'll be helpful to consider $\left.Y=U \operatorname{Diag} \lambda(Y) U^{T}.\right]$
7. [Bonus] Let x and y be vectors whose coordinates are in sorted order, so that

$$
x_{1} \geq x_{2} \geq \ldots \geq x_{n}, \quad y_{1} \geq y_{2} \geq \ldots \geq y_{n}
$$

Suppose now that x and y satisfy the following

$$
\begin{aligned}
& \sum_{i=1}^{k} x_{i} \leq \sum_{i=1}^{k} y_{i} \text { for } 1 \leq k<n \\
& \sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} y_{i}
\end{aligned}
$$

Prove that for convex function $f: \mathbb{R} \rightarrow \mathbb{R}$, it must hold that

$$
\sum_{i=1}^{n} f\left(x_{i}\right) \leq \sum_{i=1}^{n} f\left(y_{i}\right)
$$

