10-801: Advanced Optimization and Randomized Methods

Homework 1: Convex sets and functions

(Jan 22, 2014)

Instructor: Suvrit Sra

Due: Feb 03, 2014

Visit: http://www.cs.cmu.edu/~suvrit/teach/ for academic rules for homeworks.

- 1. Prove that the functions in (a)–(b) below are convex, without resorting to second derivatives.
 - (a) $f(x,y) = x^2/y$ for y > 0 on $\mathbb{R} \times \mathbb{R}_{++}$
 - (b) $f(x) = \log(1 + e^{\sum_i a_i x_i})$ on \mathbb{R}^n $(a_i \in \mathbb{R} \text{ for } 1 \le i \le n)$.
 - (c) Using (b) show that $\det(X+Y)^{1/n} \ge \det(X)^{1/n} + \det(Y)^{1/n}$ for $X, Y \in \mathbf{S}_{++}^n$.
- 2. Let $f : \mathbb{R} \to \mathbb{R}_{++}$. Prove that f is log-convex *if and only if* $e^{cx} f(x)$ is convex for every $c \in \mathbb{R}$ (we assume f is continuous but not that it is differentiable).
- 3. Fenchel conjugates:
 - (a) Derive the Fenchel conjugate for $x^T A x + b^T x$ where $A \succeq 0$ may be rank-deficient
 - (b) Consider the quasi-norm $f(x) := ||x||_{1/2} := \left[\sum_{i=1}^n |x_i|^{1/2}\right]^2$. What is its bi-conjugate f^{**} ?
- 4. Let a vector x be split into nonoverlapping subvectors $x_1,...,x_G$, then we define its $\ell_{p,q}$ -mixed norm as

$$||x||_{p,q} := \left(\sum_{i=1}^{G} ||x_i||_q^p\right)^{1/p}, \quad p, q \ge 1.$$

Derive the dual norm to this norm (Hint: it is another mixed-norm).

(*Remark:* The norms $\ell_{1,2}, \ell_{1,\infty}$ and $\ell_{2,1}$ are perhaps the most interesting examples; they come up in multitask lasso and group lasso problems.)

5. Consider the normed metric space: \mathbb{R}^n . Define the function

$$d(x,y) := \frac{2\|x - y\|}{\|x\| + \|y\| + \|x - y\|}, \qquad \forall x, y \in \mathbb{R}^n.$$

Prove that d is a metric on $\mathbb{R}^n \setminus \{0\}$.

6. Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is a symmetric function, (i.e., if $x = [x_1, x_2, \dots, x_n]$ and $x_\sigma = [x_{\sigma(1)}, \dots, x_{\sigma(n)}]$ for any permutation $\sigma: \{1, \dots, n\} \to \{1, \dots, n\}$, then $f(x_\sigma) = f(x)$). Let $S^{n \times n}$ be the set of $n \times n$ symmetric matrices, and $\lambda: S^{n \times n} \to \mathbb{R}^n$ the eigenvalue map, that maps a symmetric matrix to the sorted (\downarrow) vector of its eigenvalues. Show that the Fenchel conjugate of the composite function

$$(f \circ \lambda)^* = f^* \circ \lambda.$$

[Hint : This question is simpler than it appears. Use the fact that for any two matrices $X,Y\in S^{n\times n}$ we have the inequality

$$\operatorname{tr}(XY) < \lambda(X)^T \lambda(Y).$$

Also useful is to remember that $\lambda(\cdot)$ and tr enjoy the following invariance: $\lambda(QAQ^T) = \lambda(A)$ for orthogonal Q, and $\operatorname{tr}(QAQ^T) = \operatorname{tr}(A)$. To prove the claim, try showing $(f \circ \lambda)^* \leq f^* \circ \lambda$ and $(f \circ \lambda)^* \geq f^* \circ \lambda$. It'll be helpful to consider $Y = U\operatorname{Diag}\lambda(Y)U^T$.]

7. [Bonus] Let x and y be vectors whose coordinates are in sorted order, so that

$$x_1 \ge x_2 \ge \dots \ge x_n, \quad y_1 \ge y_2 \ge \dots \ge y_n.$$

Suppose now that *x* and *y* satisfy the following

$$\sum_{i=1}^{k} x_i \le \sum_{i=1}^{k} y_i \text{ for } 1 \le k < n$$
$$\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i.$$

Prove that for convex function $f : \mathbb{R} \to \mathbb{R}$, it must hold that

$$\sum_{i=1}^{n} f(x_i) \le \sum_{i=1}^{n} f(y_i).$$