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2.1 Review

The lecture began with a review of convexity in metric spaces, a topic that we could not cover fully in Lecture 1.

Definition 2.1. A metric space (X , d) is called complete if any Cauchy sequence within the space converges to a point
in the space.

Definition 2.2. A metric space is called locally compact if every point in the space has a compact neighborhood.

Note: Sets that have empty interiors do not have this property (since having empty interiors, they cannot be
neighborhoods).

Definition 2.3. A geodesic is a continuous path between two points in (X , d) denoted by:

γ(t) = [x, y]t, t ∈ [0, 1],

s.t. γ(1) = y, γ(0) = x satisfying:

d(γ(t1), γ(t2)) = |t1 − t2|d(x, y) ∀t1, t2 ∈ [0, 1]

The latter condition implies that a geodesic is a shortest path.

Theorem 2.4. Suppose (X , d) is a complete, locally compact metric space. Then, the following are equivalent:

(i) (X , d) is Menger-convex

(ii) (X , d) has “midpoints”, i.e.,

∀x, y ∈ X ,∃m ∈ X s.t. d(x,m) = d(y,m) = 1
2d(x, y),

(iii) (X , d) is a geodesic space, i.e.,
∀x, y ∈ X , there exists a geodesic [x, y]t.

2.2 Convex Functions

2.2.1 Notations and Conventions: Extended Reals
Before we start the topic of convex functions, we need to introduce notation that will be useful when we discuss
functions whose values are infinite. We define the set of extended reals as R̄ := R ∪ {∞,−∞}. By convention, the
value of infinity has the following properties:

x+∞ =∞, −∞ < x ≤ ∞
0 · ∞ =∞ · 0 = 0

− (−∞) = +∞
inf φ = +∞, supφ = −∞
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This convention allows us to talk about convex functions on R without always having to worry about their domains.
For example,

f(x) =

{
1
x for x > 0
∞ for x ≤ 0.

The domain of f , denoted dom f is defined to be the (convex) set on which f assumes values smaller than +∞.

2.2.2 Convexity and Midpoint Convexity
Definition 2.5. A function f is midpoint convex if

f

(
x+ y

2

)
≤ f(x) + f(y)

2
∀x, y ∈ dom(f)

Definition 2.6. A function f is convex if

f((1− α)x+ αy) ≤ (1− α)f(x) + αf(y) ∀x, y ∈ dom(f), α ∈ (0, 1)

This condition is called Jensen’s inequality.

Definition 2.7. A function f defined on a metric space is convex if

f((1− α)x⊕ αy) ≤ (1− α)f(x) + αf(y) ∀x, y ∈ dom(f), α ∈ (0, 1),

where (1− α)x⊕ αy := γ(α), γ represents the geodesic as defined in 2.3.

Theorem 2.8. (Jensen, 1905) If f is a continuous midpoint convex function then f is convex.

Proof. By contradiction: Suppose f is a continuous midpoint convex function that does not satisfy Jensen’s inequality
at some choice of x, y. Define:

g(α) := f((1− α)x+ αy)− (1− α)f(x)− αf(y)

Then, by our assumption

∃ α ∈ (0, 1) s.t. g(α) > 0.

Then

max
α∈(0,1)

g(α) = M > 0.

Let α0 be the smallest value of α ∈ (0, 1) satisfying g(α0) = M . Also, let δ > 0 be small enough such that
(α0 − δ, α0 + δ) ⊂ (0, 1). Define:

x̄ := (1− α0 − δ)x+ (α0 + δ)y

ȳ := (1− α0 + δ)x+ (α0 − δ)y

Then the midpoint convexity assumption implies that

f

(
x̄+ ȳ

2

)
≤ f(x̄) + f(ȳ)

2

Note that

g(α0 + δ) + g(α0 − δ) = f(x̄) + f(ȳ)− 2[(1− α0)f(x) + α0f(y)]

= f(x̄) + f(ȳ) + 2[g(α0)− f((1− α0)x+ α0y)]

= 2g(α0) + f(x̄) + f(ȳ)− 2f

(
x̄+ ȳ

2

)
≥ 2g(α0)

Therefore,

g(α0) ≤ g(α0 + δ) + g(α0 − δ)
2

<
M +M

2
< M

which contradicts our premise that g(α0) = M .
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Theorem 2.8 shows that, in oder to prove the convexity of a continuous function, it is sufficient to prove midpoint
convexity. This simplification can be helpful, as can be seen in the following example.

Example 2.9. The function f(x) := log det(X) (X ∈ Pn+) is concave.
Note: Pn+ is the set of symmetric positive definite matrices.

Proof. Since the function is continuous, it is sufficient to prove midpoint concavity, that is we need to show that∣∣∣∣X + Y

2

∣∣∣∣ ≥ |X| 12 |Y | 12
By dividing each side by |X|, we obtain∣∣∣∣I +X−1Y

2

∣∣∣∣ ≥ |X−1Y | 12
⇔
∏
i

(
1 + λi(X

−1Y )

2

)
≥
∏
i

√
λi(X−1Y ),

where λi(X) is the ith eigenvalue of X .
Note: the ith factor in the LHS is the arithmetic mean of λi and 1, while the ith factor in the RHS is their geometric

mean. Therefore it suffices to prove that λi ≥ 0. X is symmetric positive definite, therefore so are its inverse and
square root. Hence

λi(X
−1Y ) = λi(X

1/2X−1Y X−1/2) = λi(X
−1/2Y X−1/2) ≥ 0,

since X−1/2 is symmetric and Y � 0, whereby

zTX−1/2Y X−1/2z = z̃TY z̃ ≥ 0 ∀z̃ 6= 0.

Exercise 2.1. [CHALLENGE] Let x1, x2, . . . , xn > 0 be a sequence of real variables. Define

h1(x1) :=
1

x1

h2(x1, x2) :=
1

x1
+

1

x2
− 1

x1 + x2

h3(x1, x2, x3) :=
1

x1
+

1

x2
+

1

x3
− 1

x1 + x2
− 1

x2 + x3
− 1

x1 + x3
+

1

x1 + x2 + x3
...

Prove that hn is convex.

Definition 2.10. The epigraph of a function f is defined as

epi(f) := {(x, t) ∈ Rn × R|f(x) ≤ t}

A convex function f is called closed if its epigraph epi(f) is closed and convex.

An example of an epigraph is shown in figure 2.1.

2.2.3 Important Convex Functions
Example 2.11. Let C ⊂ Rn be a non-empty set. Define

δC(x) :=

{
0 if x ∈ C
∞ if x /∈ C

If C is closed and convex then δ is closed and convex.
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Figure 2.1: A function of a single variable with the epigraph indicated by the shaded region.

Example 2.12. Let C ⊂ Rn be a non-empty closed set. The support function of C, defined as

σC(z) := sup〈z, x〉,

is a convex function.

Example 2.13. Let h(x, y) be a family of functions indexed by y ∈ Y . If h(x, y) is convex in x for each y then

f(x) := sup
y∈Y

h(x, y)

is also convex.

Definition 2.14. Let f : Rn → R̄. The Fenchel conjugate of function f is defined as

f∗(z) := sup
x∈Rn

〈z, x〉 − f(x)

Note that f∗ is a special case of example 2.13 and hence is convex regardless of the convexity of f .

2.3 Norms

Definition 2.15. A function f : Rn → R is a norm on Rn if it satisfies the following conditions:

1. f(x) ≥ 0, f(x) = 0 iff x = 0

2. f(λx) = |λ|f(x), ∀λ ∈ R

3. f(x+ y) ≤ f(x) + f(y)

If f is a norm then f is convex.

Example 2.16. The `p norm on Rn for 1 ≤ p <∞ is defined as:

‖x‖p :=

(∑
i

|xi|p
) 1

p

For p =∞ the norm is defined as

‖x‖∞ := max
1≤i≤n

|xi|

Example 2.17. Let x = (
⇀
x1,

⇀
x2, . . . ,

⇀
xk) ∈ Rn1+n2+···+nk . The `p,q norm is defined as

‖x‖p,q :=

(∑
i

‖⇀x i‖pq

)1/p
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2.3.1 Matrix Norms
There are different ways to define matrix norms depending on how we look at a matrix. We can view a matrix as a
linear operator, which leads to the operator norm.

Definition 2.18. The operator norm of a matrix A is defined as

‖A‖u := sup
x 6=0

‖Ax‖u
‖x‖u

Exercise 2.2. Show that the following matrix functions are norms:

• ‖A‖2 = σ1(A), the largest singular value of A (also known as the spectral norm)

• ‖A‖1, the largest absolute column sum

• ‖A‖∞, the largest absolute row sum

It is worth noting that, for a generic p, ‖A‖p is NP-hard to compute.

Alternatively, we can treat the elements of an m× n matrix as a vector and use any vector norm. Using the `2
norm on the matrix viewed as a vector results in the so-called Frobenius norm.

Definition 2.19. The Frobenius norm of a matrix A ∈ Cm×n is defined as

‖A‖F :=
√

tr(A∗A) =

√∑
ij

|aij |2

Definition 2.20. The Schatten p-norm of a matrix A ∈ Cm×n is defined as

‖A‖p = ‖σ(A)‖p,

where σ(A) is a vector of singular values. Setting p to 1 yields the trace norm ‖A‖∗, also know as the nuclear norm.

Note: While the largest singular value is a valid matrix norm, the largest eigenvalue is not. The largest eigenvalue
is, however, a valid norm over positive definite matrices.

2.3.2 Dual Norm and Hölder’s Inequality
Definition 2.21. For a norm ‖ · ‖ over Rn, the dual norm is defined as:

‖u‖∗ := sup
x
{uTx | ‖x‖ ≤ 1}

Theorem 2.22 (Hölders’s inequality). For any x, y ∈ Rn,

xT y ≤ ‖x‖‖y‖∗

Exercise 2.3. Let ‖x‖ be a norm. Show that f∗(z) = δ‖.‖∗≤1(z). [Hint: Consider separately the cases where ‖z‖∗ > 1 and
‖z‖∗ ≤ 1. You might also need to use Hölder’s inequality].
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