
1

15-744: Computer Networking

L-22: P2P

L -22; 4 -15-02© Srinivasan Seshan, 2002 2

P2P

• Peer-to-peer networks
• Assigned reading

• [Cla00] Freenet: A Distributed Anonymous
Information Storage and Retrieval System

• [S+01] Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications

L -22; 4 -15-02© Srinivasan Seshan, 2002 3

Overview

• P2P Lookup Overview

• Routed/Flooded Lookups

• Distributed Hash Table Lookups
• Chord
• CAN

L -22; 4 -15-02© Srinivasan Seshan, 2002 4

Peer-to-Peer Networks

• Typically each member stores content that
it desires

• Basically a replication system for files
• Always a tradeoff between possible location of

files and searching difficulty
• Peer-to-peer allow files to be anywhere à

searching is the challenge
• Dynamic member list makes it more difficult

L -22; 4 -15-02© Srinivasan Seshan, 2002 5

The Lookup Problem

Internet

N1
N2 N3

N6N5
N4

Publisher

Key=“title”
Value=MP3 data… Client

Lookup(“title”)

?

L -22; 4 -15-02© Srinivasan Seshan, 2002 6

Centralized Lookup (Napster)

Publisher@

Client

Lookup(“title”)

N6

N9 N7

DB

N8

N3

N2N1SetLoc(“title”, N4)

Simple, but O(N) state and a single point of failure

Key=“title”
Value=MP3 data…

N4

2

L -22; 4 -15-02© Srinivasan Seshan, 2002 7

Flooded Queries (Gnutella)

N4Publisher@
Client

N6

N9

N7
N8

N3

N2N1

Robust, but worst case O(N) messages per lookup

Key=“title”
Value=MP3 data…

Lookup(“title”)

L -22; 4 -15-02© Srinivasan Seshan, 2002 8

Routed Queries (Freenet, Chord, etc.)

N4Publisher

Client

N6

N9

N7
N8

N3

N2N1

Lookup(“title”)

Key=“title”
Value=MP3 data…

L -22; 4 -15-02© Srinivasan Seshan, 2002 9

Overview

• P2P Lookup Overview

• Routed/Flooded Lookups

• Distributed Hash Table Lookups
• Chord
• CAN

L -22; 4 -15-02© Srinivasan Seshan, 2002 10

Napster

• Simple centralized scheme à motivated by ability
to sell/control

• How to find a file:
• On startup, client contacts central server and reports

list of files
• Query the index system à return a machine that stores

the required file
• Ideally this is the closest/least -loaded machine

• Fetch the file directly from peer
• Advantages:

• Simplicity, easy to implement sophisticated search
engines on top of the index system

• Disadvantages:
• Robustness, scalability

L -22; 4 -15-02© Srinivasan Seshan, 2002 11

Gnutella

• Distribute file location
• Idea: multicast the request
• Hot to find a file:

• Send request to all neighbors
• Neighbors recursively multicast the request
• Eventually a machine that has the file receives

the request, and it sends back the answer
• Advantages:

• Totally decentralized, highly robust
• Disadvantages:

• Not scalable; the entire network can be swamped
with request (to alleviate this problem, each
request has a TTL)

L -22; 4 -15-02© Srinivasan Seshan, 2002 12

Gnutella

• On startup client contacts any servent (server + client) in
network
• Servent interconnection used to forward control (queries, hits, etc)

• Idea: multicast the request
• How to find a file:

• Send request to all neighbors
• Neighbors recursively multicast the request
• Eventually a machine that has the file receives the request, and it

sends back the answer
• Transfers are done with HTTP between peers

• Advantages:
• Totally decentralized, highly robust

• Disadvantages:
• Not scalable; the entire network can be swamped with request (to

alleviate this problem, each request has a TTL)

3

L -22; 4 -15-02© Srinivasan Seshan, 2002 13

Gnutella Details

• Basic message header
• Unique ID, TTL, Hops

• Message types
• Ping – probes network for other servents
• Pong – response to ping, contains IP addr, # of files, # of Kbytes

shared
• Query – search criteria + speed requirement of servent
• QueryHit – successful response to Query, contains addr + port to

transfer from, speed of servent, number of hits, hit results, servent
ID

• Push – request to servent ID to initiate connection, used to
traverse firewalls

• Ping, Queries are flooded
• QueryHit, Pong, Push reverse path of previous message

L -22; 4 -15-02© Srinivasan Seshan, 2002 14

Gnutella: Example

Assume: m1’s neighbors are m2 and m3;
m3’s neighbors are m4 and m5;…

A
B

C

D

E

F

m1
m2

m3

m4

m5

m6

E?

E?

E?
E?

E

L -22; 4 -15-02© Srinivasan Seshan, 2002 15

Freenet

• Addition goals to file location:
• Provide publisher anonymity, security
• Resistant to attacks – a third party shouldn’t be able to

deny the access to a particular file (data item, object),
even if it compromises a large fraction of machines

• Files are stored according to associated key
• Core idea: try to cluster information about similar keys

• Messages
• Random 64bit ID used for loop detection
• TTL

• TTL 1 are forwarded with finite probablity
• Helps anonymity

• Depth counter
• Opposite of TTL – incremented with each hop
• Depth counter initialized to small random value

L -22; 4 -15-02© Srinivasan Seshan, 2002 16

Data Structure

• Each node maintains a common stack
• id – file identifier
• next_hop – another node that store the file id
• file – file identified by id being stored on the local

node

• Forwarding:
• Each message contains the file id it is referring to
• If file id stored locally, then stop

• Forwards data back to upstream requestor
• Requestor adds file to cache, adds entry in routing

table
• If not, search for the “closest” id in the stack, and

forward the message to the corresponding
next_hop

id next_hop file

…
…

L -22; 4 -15-02© Srinivasan Seshan, 2002 17

Query Example

Note: doesn’t show file caching on the
reverse path

4 n1 f4
12 n2 f12

5 n3

9 n3 f9

3 n1 f3
14 n4 f14

5 n3

14 n5 f14
13 n2 f13

3 n6

n1 n2

n3

n4

4 n1 f4
10 n5 f10

8 n6

n5

query(10)

1

2

3

4

4’

5

L -22; 4 -15-02© Srinivasan Seshan, 2002 18

Freenet Requests

• Any node forwarding reply may change the source of the
reply (to itself or any other node)
• Helps anonymity

• Each query is associated a TTL that is decremented each
time the query message is forwarded; to obscure distance
to originator:
• TTL can be initiated to a random value within some bounds
• When TTL=1, the query is forwarded with a finite probability

• Each node maintains the state for all outstanding queries
that have traversed it à help to avoid cycles

• If data is not found, failure is reported back
• Requestor then tries next closest match in routing table

4

L -22; 4 -15-02© Srinivasan Seshan, 2002 19

Freenet Request

1

A B

C

D

E
F

Data Request

Data Reply
Request Failed

2
3

12

6

7
4

11 10

9

5

8

L -22; 4 -15-02© Srinivasan Seshan, 2002 20

Freenet Search Features

• Nodes tend to specialize in searching for
similar keys over time
• Gets queries from other nodes for similar keys

• Nodes store similar keys over time
• Caching of files as a result of successful

queries

• Similarity of keys does not reflect similarity
of files

• Routing does not reflect network topology

L -22; 4 -15-02© Srinivasan Seshan, 2002 21

Freenet File Creation

• Key for file generated and searched à helps
identify collision
• Not found (“All clear”) result indicates success
• Source of insert message can be change by any

forwarding node

• Creation mechanism adds files/info to locations
with similar keys

• New nodes are discovered through file creation
• Erroneous/malicious inserts propagate original file

further

L -22; 4 -15-02© Srinivasan Seshan, 2002 22

Cache Management

• LRU Cache of files
• Files are not guaranteed to live forever

• Files “fade away” as fewer requests are made
for them

• File contents can be encrypted with original
text names as key
• Cache owners do not know either original name

or contents à cannot be held responsible

L -22; 4 -15-02© Srinivasan Seshan, 2002 23

Freenet Naming

• Freenet deals with keys
• But humans need names
• Keys are flat à would like structure as well

• Could have files that store keys for other
files
• File /text/philiosophy could store keys for files in

that directory à how to update this file though?

• Search engine à undesirable centralized
solution

L -22; 4 -15-02© Srinivasan Seshan, 2002 24

Freenet Naming - Indirect files

• Normal files stored using content-hash key
• Prevents tampering, enables versioning, etc.

• Indirect files stored using name-based key
• Indirect files store keys for normal files
• Inserted at same time as normal file

• Has same update problems as directory files
• Updates handled by signing indirect file with

public/private key
• Collisions for insert of new indirect file handled specially
à check to ensure same key used for signing

• Allows for files to be split into multiple smaller
parts

5

L -22; 4 -15-02© Srinivasan Seshan, 2002 25

Overview

• P2P Lookup Overview

• Routed/Flooded Lookups

• Distributed Hash Table Lookups
• Chord
• CAN

L -22; 4 -15-02© Srinivasan Seshan, 2002 26

Other Solutions to Location Problem

• Goal: make sure that an item (file) identified is
always found

• Abstraction: a distributed hash-table data
structure
• insert(id, item);
• item = query(id);
• Note: item can be anything: a data object,

document, file, pointer to a file…
• Proposals

• CAN (ACIRI/Berkeley)
• Chord (MIT/Berkeley)
• Pastry (Rice)
• Tapestry (Berkeley)

L -22; 4 -15-02© Srinivasan Seshan, 2002 27

Chord

• Associate to each node and item a unique id
in an uni-dimensional space

• Properties
• Routing table size O(log(N)) , where N is the

total number of nodes
• Guarantees that a file is found in O(log(N))

steps

L -22; 4 -15-02© Srinivasan Seshan, 2002 28

Data Structure

• Assume identifier space is 0…2m

• Each node maintains
• Finger table

• Entry i in the finger table of n is the first node that
succeeds or equals n + 2i

• Predecessor node

• An item identified by id is stored on the
succesor node of id

L -22; 4 -15-02© Srinivasan Seshan, 2002 29

Consistent Hashing [Karger 97]

N32

N90

N105

K80

K20

K5

Circular 7-bit
ID space

Key 5
Node 105

A key is stored at its successor: node with next higher ID

L -22; 4 -15-02© Srinivasan Seshan, 2002 30

Basic Lookup

N32

N90

N105

N60

N10
N120

K80

“Where is key 80?”

“N90 has K80”

6

L -22; 4 -15-02© Srinivasan Seshan, 2002 31

Simple Lookup Algorithm

Lookup(my-id, key-id)
n = my successor
if my-id < n < key-id

call Lookup(id) on node n // next hop
else

return my successor // done

• Correctness depends only on successors

L -22; 4 -15-02© Srinivasan Seshan, 2002 32

“Finger table” - log(N)-time lookups

N80

½¼

1/8

1/16
1/32
1/64
1/128

L -22; 4 -15-02© Srinivasan Seshan, 2002 33

Finger i Points to Successor of n+2i

N80

½¼

1/8

1/16
1/32
1/64
1/128

112

N120

L -22; 4 -15-02© Srinivasan Seshan, 2002 34

Lookup with Fingers

Lookup(my-id, key-id)
look in local finger table for

highest node n s.t. my-id < n < key-id
if n exists

call Lookup(id) on node n // next hop
else

return my successor // done

L -22; 4 -15-02© Srinivasan Seshan, 2002 35

Chord Example

• Assume an
identifier space
0..8

• Node n1:(1)
joinsàall entries
in its finger table
are initialized to
itself

0
1

2

3
4

5

6

7

i id+2i succ
0 2 1
1 3 1
2 5 1

Succ. Table

L -22; 4 -15-02© Srinivasan Seshan, 2002 36

Chord Example

• Node n2:(3) joins
0

1

2

3
4

5

6

7

i id+2i succ
0 2 2
1 3 1
2 5 1

Succ. Table

i id+2i succ
0 3 1
1 4 1
2 6 1

Succ. Table

7

L -22; 4 -15-02© Srinivasan Seshan, 2002 37

Chord Example

• Nodes n3:(0), n4:(6)
join 0

1

2

3
4

5

6

7

i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 0

Succ. Table

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

L -22; 4 -15-02© Srinivasan Seshan, 2002 38

Chord Examples

• Nodes: n1:(1), n2(3),
n3(0), n4(6)

• Items: f1:(7), f2:(2)
0

1

2

3
4

5

6

7 i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 0

Succ. Table

7

Items
1

Items

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

L -22; 4 -15-02© Srinivasan Seshan, 2002 39

Query

• Upon receiving a query
for item id, a node

• Check whether stores
the item locally

• If not, forwards the query
to the largest node in its
successor table that
does not exceed id

0
1

2

3
4

5

6

7 i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 0

Succ. Table

7

Items
1

Items

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

query(7)

L -22; 4 -15-02© Srinivasan Seshan, 2002 40

Overview

• P2P Lookup Overview

• Routed/Flooded Lookups

• Distributed Hash Table Lookups
• Chord
• CAN

L -22; 4 -15-02© Srinivasan Seshan, 2002 41

CAN

• Associate to each node and item a unique id in an d-
dimensional space
• Virtual Cartesian coordinate space

• Entire space is partitioned amongst all the nodes
• Every node “owns” a zone in the overall space

• Abstraction
• Can store data at “points” in the space
• Can route from one “point” to another

• Point = node that owns the enclosing zone
• Properties

• Routing table size O(d)
• Guarantees that a file is found in at most d*n1/d steps, where n

is the total number of nodes

L -22; 4 -15-02© Srinivasan Seshan, 2002 42

CAN E.g.: Two Dimensional Space

• Space divided between
nodes

• All nodes cover the entire
space

• Each node covers either a
square or a rectangular
area of ratios 1:2 or 2:1

• Example:
• Assume space size (8 x 8)
• Node n1:(1, 2) first node that

joins à cover the entire
space 1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1

8

L -22; 4 -15-02© Srinivasan Seshan, 2002 43

CAN E.g.: Two Dimensional Space

• Node n2:(4, 2) joins à
space is divided between
n1 and n2

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

L -22; 4 -15-02© Srinivasan Seshan, 2002 44

CAN E.g.: Two Dimensional Space

• Node n2:(4, 2) joins à
space is divided between
n1 and n2

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3

L -22; 4 -15-02© Srinivasan Seshan, 2002 45

CAN E.g.: Two Dimensional Space

• Nodes n4:(5, 5) and
n5:(6,6) join

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

L -22; 4 -15-02© Srinivasan Seshan, 2002 46

CAN E.g.: Two Dimensional Space

• Nodes: n1:(1, 2); n2:(4,2);
n3:(3, 5); n4:(5,5);n5:(6,6)

• Items: f1:(2,3); f2:(5,1);
f3:(2,1); f4:(7,5);

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

f1

f2

f3

f4

L -22; 4 -15-02© Srinivasan Seshan, 2002 47

CAN E.g.: Two Dimensional Space

• Each item is stored by
the node who owns its
mapping in the space

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

f1

f2

f3

f4

L -22; 4 -15-02© Srinivasan Seshan, 2002 48

CAN: Query Example

• Each node knows its
neighbors in the d-space

• Forward query to the
neighbor that is closest to
the query id

• Example: assume n1
queries f4

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

f1

f2

f3

f4

9

L -22; 4 -15-02© Srinivasan Seshan, 2002 49

DHT Concerns

• Performance: routing in the overlay network can
be more expensive than in the underlying
network
• Because usually there is no correlation between node

ids and their locality; a query can repeatedly jump from
Europe to North America, though both the initiator and
the node that store the item are in Europe!

• Solutions: Tapestry takes care of this implicitly; CAN
and Chord maintain multiple copies for each entry in
their routing tables and choose the closest in terms of
network distance

L -22; 4 -15-02© Srinivasan Seshan, 2002 50

Summary

• The key challenge of building wide area P2P systems is a
scalable and robust location service

• Solutions covered in this lecture
• Naptser: centralized location service
• Gnutella: broadcast -based decentralized location service
• Freenet: intelligent-routing decentralized solution (but correctness

not guaranteed; queries for existing items may fail)
• CAN, Chord, Tapestry, Pastry: intelligent-routing decentralized

solution
• Guarantee correctness
• Tapestry (Pastry ?) provide efficient routing, but more complex

L -22; 4 -15-02© Srinivasan Seshan, 2002 51

Next Lecture: Security

• Denial of service
• IPSec
• Firewalls
• Assigned reading

• [SWKA00] Practical Network Support for IP
Traceback

• [B89] Security Problems in the TCP/IP Protocol
Suite

L -22; 4 -15-02© Srinivasan Seshan, 2002 52

Important Deadlines

• 4/29 – project writeups due
• Maximum: 10 pages double column/15 pages

single column, reasonable font size, etc.

• 4/24 – final exam (not cumulative)

• 4/29,4/31 – project presentations (15
minutes each)

