
1

15-441 Computer Networking

Lecture 9 – More TCP & Congestion
Control

Lecture 9: 09-25-2002 2

Overview

• TCP congestion control

• TCP modern loss recovery

• TCP modeling

Lecture 9: 09-25-2002 3

TCP Congestion Control

• Changes to TCP motivated by ARPANET
congestion collapse

• Basic principles
• AIMD
• Packet conservation
• Reaching steady state quickly
• ACK clocking

Lecture 9: 09-25-2002 4

AIMD

• Distributed, fair and efficient
• Packet loss is seen as sign of congestion and results in a

multiplicative rate decrease
• Factor of 2

• TCP periodically probes for available bandwidth by
increasing its rate

Time

Rate

2

Lecture 9: 09-25-2002 5

Implementation Issue

• Operating system timers are very coarse – how to pace
packets out smoothly?

• Implemented using a congestion window that limits how
much data can be in the network.
• TCP also keeps track of how much data is in transit

• Data can only be sent when the amount of outstanding
data is less than the congestion window.
• The amount of outstanding data is increased on a “send” and

decreased on “ack”
• (last sent – last acked) < congestion window

• Window limited by both congestion and buffering
• Sender’s maximum window = Min (advertised window, cwnd)

Lecture 9: 09-25-2002 6

Congestion Avoidance

• If loss occurs when cwnd = W
• Network can handle 0.5W ~ W segments
• Set cwnd to 0.5W (multiplicative decrease)

• Upon receiving ACK
• Increase cwnd by 1/cwnd

• Implements AIMD

Lecture 9: 09-25-2002 7

Congestion Avoidance Sequence Plot

Time

Sequence No

Packets

Acks

Lecture 9: 09-25-2002 8

Congestion Avoidance Behavior

Time

Congestion
Window

Packet loss
+ Timeout

Grabbing
back

Bandwidth

Cut
Congestion

Window
and Rate

3

Lecture 9: 09-25-2002 9

Packet Conservation

• Packet conservation == at equilibrium, inject
packet into network only when one is removed
• Sliding window and not rate controlled
• But still need to avoid sending burst of packets à

would overflow links
• Need to carefully pace out packets

• Helps provide stability
• Need to eliminate spurious retransmissions

• Accurate RTO estimation
• Better loss recovery techniques (e.g. fast retransmit)

Lecture 9: 09-25-2002 10

TCP Packet Pacing

• Congestion window helps to “pace” the transmission of
data packets

• In steady state, a packet is sent when an ack is received
• Data transmission remains smooth, once it is smooth
• Self-clocking behavior

Pr

Pb

Ar
Ab

ReceiverSender

As

Lecture 9: 09-25-2002 11

Reaching Steady State

• Doing AIMD is fine in steady state but slow…
• How does TCP know what is a good initial rate to

start with?
• Should work both for a CDPD (10s of Kbps or less) and

for supercomputer links (2.4 Gbps and growing)

• Quick initial phase to help get up to speed (slow
start)

Lecture 9: 09-25-2002 12

Slow Start Packet Pacing

• How do we get this
clocking behavior to start?
• Initialize cwnd = 1
• Upon receipt of every ack,

cwnd = cwnd + 1

• Implications
• Window actually increases to

W in RTT * log2(W)
• Can overshoot window and

cause packet loss

4

Lecture 9: 09-25-2002 13

Slow Start Example

1

One RTT

One pkt time

0R

2
1R

3

4
2R

5
6
7

8
3R

9
10
11

12
13

14
15

1

2 3

4 5 6 7

Lecture 9: 09-25-2002 14

Slow Start Sequence Plot

Time

Sequence No

.

.

.

Packets

Acks

Lecture 9: 09-25-2002 15

Return to Slow Start

• If packet is lost we lose our self clocking as well
• Need to implement slow-start and congestion

avoidance together

• When timeout occurs set ssthresh to 0.5w
• If cwnd < ssthresh, use slow start
• Else use congestion avoidance

Lecture 9: 09-25-2002 16

TCP Saw Tooth Behavior

Time

Congestion
Window

Initial
Slowstart

Fast
Retransmit

and Recovery

Slowstart
to pace
packets

Timeouts
may still

occur

5

Lecture 9: 09-25-2002 17

Overview

• TCP congestion control

• TCP modern loss recovery

• TCP modeling

Lecture 9: 09-25-2002 18

TCP Flavors

• Tahoe, Reno, Vegas
• TCP Tahoe (distributed with 4.3BSD Unix)

• Original implementation of Van Jacobson’s
mechanisms (VJ paper)

• Includes:
• Slow start
• Congestion avoidance
• Fast retransmit

Lecture 9: 09-25-2002 19

Fast Retransmit

• What are duplicate acks (dupacks)?
• Repeated acks for the same sequence

• When can duplicate acks occur?
• Loss
• Packet re-ordering
• Window update – advertisement of new flow control window

• Assume re-ordering is infrequent and not of large
magnitude
• Use receipt of 3 or more duplicate acks as indication of loss
• Don’t wait for timeout to retransmit packet

Lecture 9: 09-25-2002 20

Fast Retransmit

Time

Sequence No Duplicate Acks

RetransmissionX

Packets

Acks

6

Lecture 9: 09-25-2002 21

Multiple Losses

Time

Sequence No
Duplicate Acks

Retransmission
X

X

X
X

Now what?

Packets

Acks

Lecture 9: 09-25-2002 22

Time

Sequence No
X

X

X
X

Tahoe

Packets

Acks

Lecture 9: 09-25-2002 23

TCP Reno (1990)

• All mechanisms in Tahoe
• Addition of fast-recovery

• Opening up congestion window after fast retransmit

• Delayed acks
• Header prediction

• Implementation designed to improve performance
• Has common case code inlined

• With multiple losses, Reno typically timeouts because it
does not see duplicate acknowledgements

Lecture 9: 09-25-2002 24

Reno

Time

Sequence No
X

X

X
X

Now what? - timeout

Packets

Acks

7

Lecture 9: 09-25-2002 25

NewReno

• The ack that arrives after retransmission (partial
ack) could indicate that a second loss occurred

• When does NewReno timeout?
• When there are fewer than three dupacks for first loss
• When partial ack is lost

• How fast does it recover losses?
• One per RTT

Lecture 9: 09-25-2002 26

NewReno

Time

Sequence No
X

X

X
X

Now what? – partial ack
recovery

Packets

Acks

Lecture 9: 09-25-2002 27

SACK

• Basic problem is that cumulative acks provide little
information
• Ack for just the packet received

• What if acks are lost? à carry cumulative also
• Not used

• Bitmask of packets received
• Selective acknowledgement (SACK)

• How to deal with reordering

Lecture 9: 09-25-2002 28

SACK

Time

Sequence No
X

X

X
X

Now what? – send
retransmissions as soon
as detected

Packets

Acks

8

Lecture 9: 09-25-2002 29

Performance Issues

• Timeout >> fast rexmit
• Need 3 dupacks/sacks
• Not great for small transfers

• Don’t have 3 packets outstanding

• What are real loss patterns like?

• How to deal with reordering?

Lecture 9: 09-25-2002 30

How to Change Window

• When a loss occurs have W packets outstanding
• New cwnd = 0.5 * cwnd

• How to get to new state?

Lecture 9: 09-25-2002 31

Fast Recovery

• Each duplicate ack notifies sender that single
packet has cleared network

• When < cwnd packets are outstanding
• Allow new packets out with each new duplicate

acknowledgement
• Behavior

• Sender is idle for some time – waiting for ½ cwnd worth
of dupacks

• Transmits at original rate after wait
• Ack clocking rate is same as before loss

Lecture 9: 09-25-2002 32

Fast Recovery

Time

Sequence No
Sent for each dupack after

W/2 dupacks arrive
X

Packets

Acks

9

Lecture 9: 09-25-2002 33

Overview

• TCP congestion control

• TCP modern loss recovery

• TCP modeling

Lecture 9: 09-25-2002 34

TCP Modeling

• Given the congestion behavior of TCP can we predict what
type of performance we should get?

• What are the important factors
• Loss rate

• Affects how often window is reduced

• RTT
• Affects increase rate and relates BW to window

• RTO
• Affects performance during loss recovery

• MSS
• Affects increase rate

Lecture 9: 09-25-2002 35

Overall TCP Behavior

Time

Window

• Let’s concentrate on steady state behavior
with no timeouts and perfect loss recovery

• Packets transferred = area under curve

Lecture 9: 09-25-2002 36

Transmission Rate

• What is area under curve?
• A = avg window * time = ¾

W * T

• What was bandwidth?
• BW = A / T = ¾ W

• In packets per RTT

• Need to convert to bytes per
second

• BW = ¾ W * MSS / RTT

• What is W?
• Depends on loss rate

Time

W

W/2

10

Lecture 9: 09-25-2002 37

Simple TCP Model

• Some additional assumptions
• Fixed RTT
• No delayed ACKs

• In steady state, TCP losses packet each time
window reaches W packets
• Window drops to W/2 packets
• Each RTT window increases by 1 packetàW/2 * RTT

before next loss

Lecture 9: 09-25-2002 38

Simple Loss Model

• What was the loss rate?
• Packets transferred = (¾ W/RTT) * (W/2 * RTT) = 3W2/8
• 1 packet lost à loss rate = p = 8/3W2

•

• BW = ¾ * W * MSS / RTT

•

3
2 pRTT

MSS
BW

×
=

p
W

3
8

=

Lecture 9: 09-25-2002 39

TCP Friendliness

• What does it mean to be TCP friendly?
• TCP is not going away
• Any new congestion control must compete with TCP flows

• Should not clobber TCP flows and grab bulk of link
• Should also be able to hold its own, i.e. grab its fair share, or it will

never become popular

• How is this quantified/shown?
• Has evolved into evaluating loss/throughput behavior
• If it shows 1/sqrt(p) behavior it is ok
• But is this really true?

Lecture 9: 09-25-2002 40

Next Lecture

• Workload changes

• TCP & routers

• TCP options

