“ 15-441 Computer Networking

Lecture 7 — Transport Protocols

Outline “.

o Akamai

» Transport introduction

* Error recovery

* TCP flow control

Lecture 7: 09-18-2002 2

Simple Hashing “.

» Given document XYZ, we need to choose a
server to use

* Suppose we use modulo

* Number servers from 1...n
 Place document XYZ on server (XYZ mod n)
* What happens when a servers fails? n 2> n-1

« Same if different people have different measures of n

* Why might this be bad?

Lecture 7: 09-18-2002 3

Consistent Hash “

» “view” = subset of all hash buckets that are visible
» Desired features

» Balanced - in any one view, load is equal across
buckets

» Smoothness - little impact on hash bucket contents
when buckets are added/removed

» Spread — small set of hash buckets that may hold an
object regardless of views

» Load — across all views # of objects assigned to hash
bucket is small

Lecture 7: 09-18-2002 4

Consistent Hash — Example “.

¢ Construction

» Assign each of C hash buckets to 14
random points on mod 2" circle,
where, hash key size = n.

« Map object to random position on
circle

« Hash of object = closest

clockwise bucket

¢ Smoothness = addition of bucket does not cause
movement between existing buckets

e Spread & Load - small set of buckets that lie near object

» Balance - no bucket is responsible for large number of
objects

How Akamai Works “.

cnn.com (content provider) DNS root server Akamai server
Get foo.jpg
"
Get
index.
htmd

1 . Akamai high-level
! DNS server

Akamai low-level DNS
W server

Nearby matching
Akamai server

End-user 11
Get /cnn.com/foo.jpg i -

Lecture 7: 09-18-2002 6

Lecture 7: 09-18-2002 5

Akamai — Subsequent Requests “.

cnn.com (content provider) DNS root server Akamai server
II_I | L ll_l

Get
index.

htmg 1l |2 ‘ Akamai high-level
! DNS server

7 Akamai low-level DNS
i server
n 8 ’ Nearby matching
Akamai server
= 9

End-user Get 10

Jenn.com/foo.jpg Ll

Lecture 7: 09-18-2002 7

HTTP (Summary) “.

« Simple text-based file exchange protocol

« Support for status/error responses, authentication, client-side state
maintenance, cache maintenance

* Workloads

« Typical documents structure, popularity
* Server workload

« Interactions with TCP

« Connection setup, reliability, state maintenance
« Persistent connections

e How to improve performance

« Persistent connections
¢ Caching
* Replication

Lecture 7: 09-18-2002 8

Outline

«

o Akamai

e Transport introduction

* Error recovery

TCP flow control

Lecture 7: 09-18-2002

Functionality Split

«

» Network provides best-effort delivery
» End-systems implement many functions

* Reliability
In-order delivery
Demultiplexing

» Message boundaries
» Connection abstraction

» Congestion control

Lecture 7: 09-18-2002 10

Transport Protocols

N

» UDP provides just integrity and demux
e TCP adds...

» Connection-oriented

* Reliable

» Ordered

* Point-to-point

* Byte-stream

* Full duplex

» Flow and congestion controlled

Lecture 7: 09-18-2002

11

UDP: User Datagram Protocol [RFC 768] “.

* “No frills,” “bare bones”

Internet transport
protocol

» “Best effort” service,

UDP segments may be:
e Lost

« Delivered out of order to
app

¢ Connectionless:

* No handshaking between
UDP sender, receiver

« Each UDP segment
handled independently of
others

Why is there a UDP?

No connection establishment
(which can add delay)
Simple: no connection state
at sender, receiver

Small header

No congestion control: UDP
can blast away as fast as
desired

Lecture 7: 09-18-2002 12

UDP, cont. “

¢ Often used for

UDP Checksum “

Goal: detect “errors” (e.g., flipped bits) in transmitted
segment — optional use!

Sender: Receiver:
« Treat segment contents as « Compute checksum of
sequence of 16-bit integers received segment

¢ Checksum: addition (1's

Check if computed checksum
complement sum) of segment

equals checksum field value:

contents
+ Sender puts checksum value * NO - error detected
into UDP checksum field * YES - no error detected.
But maybe errors
nonethless?
Lecture 7: 09-18-2002 14

streaming LI
multimedia apps Length,in_ | Source port# | Destport#
¢ Loss tolerant bytes of UDP T——Length Checksum
« Rate sensitive eltimg
* Other UDP uses header
(why?):
* DNS, SNMP Ap;;lication
. ata
. 5\%'?8'8 I;ransfer (message)
* Must be at
appll_catl_on |ayer_) UDP segment format
 Application-specific
error recovery
Lecture 7: 09-18-2002 13
High-Level TCP Characteristics “.

» Protocol implemented entirely at the ends
* Fate sharing
* Protocol has evolved over time and will continue
to do so
» Nearly impossible to change the header
» Uses options to add information to the header
» Change processing at endpoints
» Backward compatibility is what makes it TCP

Lecture 7: 09-18-2002 15

TCP Header “.

Source port | Destination port
Sequence number
Flags: ;\’(\IN Acknowledgement
RESET Heren| 0 | Flags | Advertised window
PUSH -
URG Checksum Urgent pointer
ACK

Options (variable)

Data

Lecture 7: 09-18-2002 16

Evolution of TCP

Three-way handshake
Raymond Tomlinson

«

1984
Nagel’s algorithm
to reduce overhead

of small packets;

1975

1987
Karn's algorithm 1990

In SIGCOMM 75 predicts congestion to better estimate 4.3BSD Reno
collapse round-trip time fast retransmit
delayed ACK's
1983
BSD Unix 4.2 1986 1988
1974 supports TCP/IP Congestion Van Jac_obson's
TCP described by collapse algorithms
Vint Cerfand Bob Kahn observed congestion avoidance
In IEEE Trans Comm 1982 and congestion control
TCP& IP (mostimplemented in
RFC 793 & 791 4.3BSD Tahoe)
>
| kbl 1 T T
1975 1980 1985 1990

Lecture 7: 09-18-2002

17

TCP Through the 1990s

«

1994 1996
TITCce SACK TCP
(Braden) (Floyd et al)
Transaction Selective
TCcP Acknowledgement
1993 1904 1996 1996
TCP Vegas ECN Hoe FACK TCP
(Brakmoet al) (Floyd) Improving TCP (Mathis et al)
real congestion Explicit startup extension to SACK
avoidance Congestion
Notification
L] L L] >
1993 1994 1996

Lecture 7: 09-18-2002

18

Outline

N

Akamai

Transport introduction

Error recovery

TCP flow control

Lecture 7: 09-18-2002

19

Stop and Wait

N

« ARQ

* Receiver sends
acknowledgement (ACK)
when it receives packet

» Sender waits for ACK and
timeouts if it does not
arrive within some time
period

» Simplest ARQ protocol
* Send a packet, stop and

_ Jimeout

Time

Sender

Receiver

Packe;

ACK

wait until ACK arrives

Lecture 7: 09-18-2002

20

Recovering from Error

Problems with Stop and Wait “.

» How to recognize a duplicate

* Performance
» Can only send one packet per round trip

Lecture 7: 09-18-2002 22

=P acket 1P acket P acket
e - /4 - E
2! ACK £! £! o>
Time | B =4 =4
:“* P, acket ;‘* P, acket i- Sket
= I E B T AW
£ ack £ ack g
B | FL.
ACK lost Packet lost Early timeout
Lecture 7: 09-18-2002 21
How to Recognize Resends? “,
» Use sequence numbers
* both packets and acks %
e Sequence # in packet is finite
-- how big should it be? VO\LQ
* For stop and wait? Pkt o
* One bit — won't send seq #1 K,
until received ACK for seq #0 d
| ACKL —

Lecture 7: 09-18-2002

23

How to Keep the Pipe Full? “.

¢ Send multiple packets without

waiting for first to be acked
« Number of pkts in flight = window
« Reliable, unordered delivery
« Several parallel stop & waits
* Send new packet after each ack

« Sender keeps list of unack’ed packets;
resends after timeout

* Receiver same as stop & wait
¢ How large a window is needed?

e Suppose 10Mbps link, 4ms delay,
500byte pkts

N

« 1?107? 20?
« Round trip delay * bandwidth =
capacity of pipe

Lecture 7: 09-18-2002 24

Sliding Window N

» Reliable, ordered delivery
* Receiver has to hold onto a packet until all prior
packets have arrived
» Why might this be difficult for just parallel stop & wait?
» Sender must prevent buffer overflow at receiver
 Circular buffer at sender and receiver
» Packets in transit £ buffer size

» Advance when sender and receiver agree packets at
beginning have been received

Lecture 7: 09-18-2002 25

Sender/Receiver State “

Sender Receiver
Max ACK r‘eceived Nex‘\ seqnum Next STPGC‘E" Max acv‘:eptable
Sender window Receiver window
I Sent & Acked I Sent Not Acked I Received & Acked |:|Acceptable Packet
|:| OK to Send |:| Not Usable |:| Not Usable

Lecture 7: 09-18-2002 26

Window Sliding — Common Case “.

» On reception of new ACK (i.e. ACK for something that was
not acked earlier)
* Increase sequence of max ACK received
* Send next packet
» On reception of new in-order data packet (next expected)
« Hand packet to application

» Send cumulative ACK — acknowledges reception of all packets up
to sequence number

* Increase sequence of max acceptable packet

Lecture 7: 09-18-2002 27

Loss Recovery “.

» On reception of out-of-order packet

» Send nothing (wait for source to timeout)

» Cumulative ACK (helps source identify loss)
» Timeout (Go-Back-N recovery)

 Set timer upon transmission of packet

» Retransmit all unacknowledged packets
» Performance during loss recovery

* No longer have an entire window in transit

» Can have much more clever loss recovery

Lecture 7: 09-18-2002 28

Go-Back-N in Action

«

sender receiver
send pkiO \
rev pkt0
send pkt1 sendp ACKO
sendpki2 —_(19ss) e Ak
send pki3
(waif) rev pkt3, discard
¥ send ACK]
rcv ACKO
send pkt4
rev pktd, discard
srecszéa% \ Sond ACKT
k5, di d
okt2 timeout Sona ACKT "

send pkt2 \‘i

send pkf3 \ rev pkt2, deliver

send pki4 send ACK2

send pkts rcv pkid, deliver
\ send ACK3

Lecture 7: 09-18-2002

29

Selective Repeat “

« Receiver individually acknowledges all correctly
received pkts

« Buffers packets, as needed, for eventual in-order delivery
to upper layer

« Sender only resends packets for which ACK not
received
« Sender timer for each unACKed packet
« Sender window
« N consecutive seq #'s
« Again limits seq #s of sent, unACKed packets

Lecture 7: 09-18-2002 30

Selective Repeat: Sender, Receiver
Windows

N

A | e

g - wfndow size —4
i N

(a) sender view of sequence numbers

out of order
i (buffered) but
* already ack’ed

JO0I0ONRERUFTENIVENIRIND oepecmenen
| yet received
t_ window size—4
N
rev_base

(b) receiver view of sequence numbers

usable, not
yet sent

[I not usable

acceptable
(within window)

[I not usable

Lecture 7: 09-18-2002

31

Sequence Numbers “.

« How large do sequence numbers need to be?
* Must be able to detect wrap-around
« Depends on sender/receiver window size
« E.g.
* Max seq = 7, send win=recvwin=7
« If pkts 0..6 are sent succesfully and all acks lost
« Receiver expects 7,0..5, sender retransmits old 0..6!!!

* Max sequence must be 3 send window + recv window

Lecture 7: 09-18-2002 32

Outline l‘.

o Akamai

» Transport introduction

* Error recovery

TCP flow control

Lecture 7: 09-18-2002 33

Sequence Number Space “.

* Each byte in byte stream is numbered.

« 32 bit value

* Wraps around

« Initial values selected at start up time
e TCP breaks up the byte stream in packets.

« Packet size is limited to the Maximum Segment Size
e Each packet has a sequence number.

< Indicates where it fits in the byte stream

13450 14950 16050 17550

packet 8 packet 9 packet 10

Lecture 7: 09-18-2002 34

TCP Flow Control “.

e TCP is a sliding window protocol

» For window size n, can send up to n bytes without
receiving an acknowledgement

* When the data is acknowledged then the window
slides forward

» Each packet advertises a window size

« Indicates number of bytes the receiver has space for
* Original TCP always sent entire window

» Congestion control now limits this

Lecture 7: 09-18-2002 35

Window Flow Control: Send Side “

window

Sent and acked |Sent but not acked

Next to be sent

Lecture 7: 09-18-2002 36

Window Flow Control: Send Side “.
Packet Sent Packet Received

HL/Flags w HL/Flags_—
D. Checksum M W Urgent Pointer

acknowledged sent to be sentoutside window

Lecture 7: 09-18-2002 37

Window Flow Control: Receive Side “.

\ Receive buffer

Acked but not
delivered to user

h
' window ;

Lecture 7: 09-18-2002 38

TCP Persist “.

* What happens if window is 0?
» Receiver updates window when application reads data
» What if this update is lost?

* TCP Persist state
» Sender periodically sends 1 byte packets

» Receiver responds with ACK even if it can't store the
packet

Lecture 7: 09-18-2002 39

Performance Considerations “.

» The window size can be controlled by receiving
application
» Can change the socket buffer size from a default (e.g.
8Kbytes) to a maximum value (e.g. 64 Kbytes)
* The window size field in the TCP header limits the
window that the receiver can advertise
* 16 bits > 64 KBytes
* 10 msec RTT - 51 Mbit/second
* 100 msec RTT - 5 Mbit/second

Lecture 7: 09-18-2002 40

10

Next Lecture

«

» TCP connection setup
e TCP reliability

» Congestion control

Lecture 7: 09-18-2002

41

11

