

- Akamai
- Transport introduction
- Error recovery
- TCP flow control

Lecture 7: 09-18-2002

Simple Hashing

- Given document XYZ, we need to choose a server to use
- Suppose we use modulo
- Number servers from 1...n
 - Place document XYZ on server (XYZ mod n)
 - What happens when a servers fails? n \rightarrow n-1
 - Same if different people have different measures of n
 - Why might this be bad?

Lecture 7: 09-18-2002

Consistent Hash

- "view" = subset of all hash buckets that are visible
- Desired features
 - Balanced in any one view, load is equal across buckets
 - Smoothness little impact on hash bucket contents when buckets are added/removed
 - Spread small set of hash buckets that may hold an object regardless of views
 - Load across all views # of objects assigned to hash bucket is small

Lecture 7: 09-18-2002

Functionality Split Network provides best-effort delivery End-systems implement many functions Reliability In-order delivery Demultiplexing · Message boundaries Connection abstraction · Congestion control

Sliding Window

- · Reliable, ordered delivery
- Receiver has to hold onto a packet until all prior packets have arrived
 - Why might this be difficult for just parallel stop & wait?
 - Sender must prevent buffer overflow at receiver
- Circular buffer at sender and receiver
 - Packets in transit ≤ buffer size
 - Advance when sender and receiver agree packets at beginning have been received

Lecture 7: 09-18-2002

-18-2002

Sender/Receiver State Sender Max ACK received Next segnum Next expected Max acceptable Next expected Max acceptable Receiver window Receiver Window

Window Sliding - Common Case

- On reception of new ACK (i.e. ACK for something that was not acked earlier)
 - · Increase sequence of max ACK received
 - · Send next packet
- On reception of new in-order data packet (next expected)
 - · Hand packet to application
 - Send cumulative ACK acknowledges reception of all packets up to sequence number
 - · Increase sequence of max acceptable packet

Lecture 7: 09-18-2002

Loss Recovery

- · On reception of out-of-order packet
 - Send nothing (wait for source to timeout)
 - Cumulative ACK (helps source identify loss)
- Timeout (Go-Back-N recovery)
 - Set timer upon transmission of packet
 - Retransmit all unacknowledged packets
- Performance during loss recovery
 - No longer have an entire window in transit
 - Can have much more clever loss recovery

Lecture 7: 09-18-2002

-

Proceive Repeat Receiver individually acknowledges all correctly received pkts Buffers packets, as needed, for eventual in-order delivery to upper layer Sender only resends packets for which ACK not received Sender timer for each unACKed packet Sender window N consecutive seq #'s Again limits seq #s of sent, unACKed packets

