
1

15-441 Computer Networking

Lecture 7 – Transport Protocols

Lecture 7: 09-18-2002 2

Outline

• Akamai

• Transport introduction

• Error recovery

• TCP flow control

Lecture 7: 09-18-2002 3

Simple Hashing

• Given document XYZ, we need to choose a 
server to use

• Suppose we use modulo
• Number servers from 1…n

• Place document XYZ on server (XYZ mod n)
• What happens when a servers fails? n à n-1

• Same if different people have different measures of n

• Why might this be bad?

Lecture 7: 09-18-2002 4

Consistent Hash

• “view” = subset of all hash buckets that are visible
• Desired features

• Balanced – in any one view, load is equal across 
buckets

• Smoothness – little impact on hash bucket contents 
when buckets are added/removed

• Spread – small set of hash buckets that may hold an 
object regardless of views 

• Load – across all views # of objects assigned to hash 
bucket is small



2

Lecture 7: 09-18-2002 5

Consistent Hash – Example

• Smoothness à addition of bucket does not cause 
movement between existing buckets

• Spread & Load à small set of buckets that lie near object
• Balance à no bucket is responsible for large number of 

objects

• Construction
• Assign each of C hash buckets to 

random points on mod 2n circle, 
where, hash key size = n.

• Map object to random position on 
circle

• Hash of object = closest 
clockwise bucket

0

4

8

12
Bucket

14

Lecture 7: 09-18-2002 6

How Akamai Works

End-user

cnn.com (content provider) DNS root server Akamai server

1 2 3

4

Akamai high-level 
DNS server

Akamai low-level DNS 
server

Nearby matching
Akamai server

11

6
7

8

9

10

Get 
index.
html

Get /cnn.com/foo.jpg

12

Get foo.jpg

5

Lecture 7: 09-18-2002 7

Akamai – Subsequent Requests

End-user

cnn.com (content provider) DNS root server Akamai server

1 2 Akamai high-level 
DNS server

Akamai low-level DNS 
server

7

8

9

10

Get 
index.
html

Get 
/cnn.com/foo.jpg

Nearby matching
Akamai server

Lecture 7: 09-18-2002 8

HTTP (Summary)

• Simple text-based file exchange protocol 
• Support for status/error responses, authentication, client-side state 

maintenance, cache maintenance

• Workloads
• Typical documents structure, popularity
• Server workload

• Interactions with TCP
• Connection setup, reliability, state maintenance
• Persistent connections

• How to improve performance
• Persistent connections
• Caching
• Replication



3

Lecture 7: 09-18-2002 9

Outline

• Akamai

• Transport introduction

• Error recovery

• TCP flow control

Lecture 7: 09-18-2002 10

Functionality Split

• Network provides best-effort delivery
• End-systems implement many functions

• Reliability
• In-order delivery
• Demultiplexing
• Message boundaries
• Connection abstraction
• Congestion control
• …

Lecture 7: 09-18-2002 11

Transport Protocols

• UDP provides just integrity and demux
• TCP adds…

• Connection-oriented
• Reliable
• Ordered
• Point-to-point
• Byte-stream
• Full duplex
• Flow and congestion controlled

Lecture 7: 09-18-2002 12

UDP: User Datagram Protocol [RFC 768]

• “No frills,” “bare bones” 
Internet transport 
protocol

• “Best effort” service, 
UDP segments may be:
• Lost
• Delivered out of order to 

app

• Connectionless:
• No handshaking between 

UDP sender, receiver
• Each UDP segment 

handled independently of 
others

Why is there a UDP?
• No connection establishment 

(which can add delay)
• Simple: no connection state 

at sender, receiver
• Small header
• No congestion control: UDP 

can blast away as fast as 
desired



4

Lecture 7: 09-18-2002 13

UDP, cont.

• Often used for 
streaming 
multimedia apps
• Loss tolerant
• Rate sensitive

• Other UDP uses 
(why?):
• DNS, SNMP

• Reliable transfer 
over UDP
• Must be at 

application layer
• Application-specific 

error recovery

Source port # Dest port #

32 bits

Application
data 

(message)

UDP segment format

Length Checksum
Length, in

bytes of UDP
segment,
including
header

Lecture 7: 09-18-2002 14

UDP Checksum

Sender:
• Treat segment contents as 

sequence of 16-bit integers
• Checksum: addition (1’s 

complement sum) of segment 
contents

• Sender puts checksum value 
into UDP checksum field

Receiver:
• Compute checksum of 

received segment
• Check if computed checksum 

equals checksum field value:
• NO - error detected
• YES - no error detected. 

But maybe errors 
nonethless?

Goal: detect “errors” (e.g., flipped bits) in transmitted 
segment – optional use!

Lecture 7: 09-18-2002 15

High-Level TCP Characteristics

• Protocol implemented entirely at the ends
• Fate sharing

• Protocol has evolved over time and will continue 
to do so

• Nearly impossible to change the header
• Uses options to add information to the header
• Change processing at endpoints
• Backward compatibility is what makes it TCP 

Lecture 7: 09-18-2002 16

TCP Header

Source port Destination port

Sequence number

Acknowledgement

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Flags: SYN
FIN
RESET
PUSH
URG
ACK



5

Lecture 7: 09-18-2002 17

Evolution of TCP

1975 1980 1985 1990

1982
TCP & IP

RFC 793 & 791

1974
TCP described by

Vint Cerf and Bob Kahn
In IEEE Trans Comm

1983
BSD Unix 4.2

supports TCP/IP

1984
Nagel’s algorithm
to reduce overhead

of small packets;
predicts congestion 

collapse

1987
Karn’s algorithm
to better estimate 

round-trip time

1986
Congestion 

collapse
observed

1988
Van Jacobson’s 

algorithms
congestion avoidance 
and congestion control
(most implemented in 

4.3BSD Tahoe)

1990
4.3BSD Reno
fast retransmit
delayed ACK’s

1975
Three-way handshake

Raymond Tomlinson
In SIGCOMM 75

Lecture 7: 09-18-2002 18

TCP Through the 1990s

1993 1994 1996

1994
ECN

(Floyd)
Explicit 

Congestion
Notification

1993
TCP Vegas 

(Brakmoet al)
real congestion 

avoidance

1994
T/TCP

(Braden)
Transaction

TCP

1996
SACK TCP
(Floyd et al)

Selective 
Acknowledgement

1996
Hoe

Improving TCP 
startup

1996
FACK TCP

(Mathis et al)
extension to SACK

Lecture 7: 09-18-2002 19

Outline

• Akamai

• Transport introduction

• Error recovery

• TCP flow control

Lecture 7: 09-18-2002 20

Stop and Wait

Time

Packet

ACKTi
m

eo
ut

• ARQ
• Receiver sends 

acknowledgement (ACK) 
when it receives packet

• Sender waits for ACK and 
timeouts if it does not 
arrive within some time 
period

• Simplest ARQ protocol
• Send a packet, stop and 

wait until ACK arrives 

Sender Receiver



6

Lecture 7: 09-18-2002 21

Recovering from Error

Packet

ACK

Ti
m

eo
ut

Packet

ACK

Ti
m

eo
ut

Packet

Ti
m

eo
ut

Packet

ACK
Ti

m
eo

ut

Time

Packet

ACK

Ti
m

eo
ut

Packet

ACK

Ti
m

eo
ut

ACK lost Packet lost Early timeout

Lecture 7: 09-18-2002 22

• How to recognize a duplicate
• Performance

• Can only send one packet per round trip

Problems with Stop and Wait

Lecture 7: 09-18-2002 23

How to Recognize Resends?

• Use sequence numbers
• both packets and acks

• Sequence # in packet is finite 
-- how big should it be? 
• For stop and wait?

• One bit – won’t send seq #1 
until received ACK for seq #0

Pkt 0

ACK 0

Pkt 0

ACK 1

Pkt 1ACK 0

Lecture 7: 09-18-2002 24

How to Keep the Pipe Full?

• Send multiple packets without 
waiting for first to be acked
• Number of pkts in flight = window

• Reliable, unordered delivery
• Several parallel stop & waits
• Send new packet after each ack
• Sender keeps list of unack’ed packets; 

resends after timeout
• Receiver same as stop & wait

• How large a window is needed?
• Suppose 10Mbps link, 4ms delay, 

500byte pkts
• 1? 10? 20?

• Round trip delay * bandwidth = 
capacity of pipe



7

Lecture 7: 09-18-2002 25

Sliding Window

• Reliable, ordered delivery
• Receiver has to hold onto a packet until all prior 

packets have arrived
• Why might this be difficult for just parallel stop & wait?
• Sender must prevent buffer overflow at receiver

• Circular buffer at sender and receiver
• Packets in transit ≤ buffer size 
• Advance when sender and receiver agree packets at 

beginning have been received

Lecture 7: 09-18-2002 26

ReceiverReceiverSenderSender

Sender/Receiver State

… …

Sent & Acked Sent Not Acked

OK to Send Not Usable

… …

Max acceptable

Receiver window 

Max ACK received Next seqnum

Received & Acked Acceptable Packet

Not Usable

Sender window

Next expected

Lecture 7: 09-18-2002 27

Window Sliding – Common Case

• On reception of new ACK (i.e. ACK for something that was 
not acked earlier)
• Increase sequence of max ACK received
• Send next packet

• On reception of new in-order data packet (next expected)
• Hand packet to application
• Send cumulative ACK – acknowledges reception of all packets up 

to sequence number
• Increase sequence of max acceptable packet

Lecture 7: 09-18-2002 28

Loss Recovery

• On reception of out-of-order packet
• Send nothing (wait for source to timeout)
• Cumulative ACK (helps source identify loss)

• Timeout (Go-Back-N recovery)
• Set timer upon transmission of packet
• Retransmit all unacknowledged packets

• Performance during loss recovery
• No longer have an entire window in transit
• Can have much more clever loss recovery



8

Lecture 7: 09-18-2002 29

Go-Back-N in Action

Lecture 7: 09-18-2002 30

Selective Repeat

• Receiver individually acknowledges all correctly 
received pkts
• Buffers packets, as needed, for eventual in-order delivery 

to upper layer

• Sender only resends packets for which ACK not 
received
• Sender timer for each unACKed packet

• Sender window
• N consecutive seq #’s
• Again limits seq #s of sent, unACKed packets

Lecture 7: 09-18-2002 31

Selective Repeat: Sender, Receiver 
Windows

Lecture 7: 09-18-2002 32

Sequence Numbers

• How large do sequence numbers need to be?
• Must be able to detect wrap-around
• Depends on sender/receiver window size

• E.g.
• Max seq = 7, send win=recv win=7
• If pkts 0..6 are sent succesfully and all acks lost

• Receiver expects 7,0..5, sender retransmits old 0..6!!!

• Max sequence must be ≥ send window + recv window



9

Lecture 7: 09-18-2002 33

Outline

• Akamai

• Transport introduction

• Error recovery

• TCP flow control

Lecture 7: 09-18-2002 34

Sequence Number Space

• Each byte in byte stream is numbered.
• 32 bit value
• Wraps around
• Initial values selected at start up time

• TCP breaks up the byte stream in packets.
• Packet size is limited to the Maximum Segment Size

• Each packet has a sequence number.
• Indicates where it fits in the byte stream

packet 8 packet 9 packet 10

13450 14950 16050 17550

Lecture 7: 09-18-2002 35

TCP Flow Control

• TCP is a sliding window protocol
• For window size n, can send up to n bytes without 

receiving an acknowledgement 
• When the data is acknowledged then the window 

slides forward
• Each packet advertises a window size

• Indicates number of bytes the receiver has space for
• Original TCP always sent entire window

• Congestion control now limits this

Lecture 7: 09-18-2002 36

Window Flow Control: Send Side

Sent but not acked Not yet sent

window

Next to be sent

Sent and acked



10

Lecture 7: 09-18-2002 37

acknowledged sent to be sentoutside window

Source PortSource Port Dest. PortDest. Port

Sequence NumberSequence Number

AcknowledgmentAcknowledgment

HL/FlagsHL/Flags WindowWindow

D. ChecksumD. Checksum Urgent PointerUrgent Pointer

Options..Options..

Source PortSource Port Dest. PortDest. Port

Sequence NumberSequence Number

AcknowledgmentAcknowledgment

HL/FlagsHL/Flags WindowWindow

D. ChecksumD. Checksum Urgent PointerUrgent Pointer

Options..Options..

Packet Sent Packet Received

App write

Window Flow Control: Send Side

Lecture 7: 09-18-2002 38

Acked but not
delivered to user

Not yet
acked

Receive buffer

window

Window Flow Control: Receive Side

Lecture 7: 09-18-2002 39

TCP Persist

• What happens if window is 0?
• Receiver updates window when application reads data
• What if this update is lost?

• TCP Persist state
• Sender periodically sends 1 byte packets
• Receiver responds with ACK even if it can’t store the 

packet

Lecture 7: 09-18-2002 40

Performance Considerations

• The window size can be controlled by receiving 
application

• Can change the socket buffer size from a default (e.g. 
8Kbytes) to a maximum value (e.g. 64 Kbytes)

• The window size field in the TCP header limits the 
window that the receiver can advertise

• 16 bits à 64 KBytes
• 10 msec RTT à 51 Mbit/second
• 100 msec RTT à 5 Mbit/second



11

Lecture 7: 09-18-2002 41

Next Lecture

• TCP connection setup

• TCP reliability

• Congestion control


