“ 15-441 Computer Networking

Lecture 6 — Web Optimizations

Outline “.

* Persistent HTTP

 HTTP Caching

e Server Selection & Content Distribution Networks

Lecture 6: 09-16-2002 2

Typical Workload (Web Pages) “

» Multiple (typically small) objects per page
* File sizes
* Heavy-tailed
 Pareto distribution for tail
« Lognormal for body of distribution
e Embedded references
* Number of embedded objects =
pareto — p(x) = akax @)

Lecture 6: 09-16-2002 3

HTTP 0.9/1.0 “.

* One request/response per TCP connection
» Simple to implement
» Uses connection close to delimit objects

» Disadvantages

» Multiple connection setups > three-way
handshake each time

* Several extra round trips added to transfer
» Multiple slow starts

Lecture 6: 09-16-2002 4

Single Transfer Example “

ORTF—————— svy|
Client opens TCP SYN
f S
connection 1RT <;
Client sends HTTP request hm\
for HTML DAT

Client parses HTML

Client opens TCP
connection

iServer reads from
disk

3 RT]

Client sends HTTP request
for image Server reads from

ACK disk

4 RT

Image begins to arrive

Lecture 6: 09-16-2002 5

More Problems “

e Short transfers are hard on TCP
 Stuck in slow start
* Loss recovery is poor when windows are small
 Lots of extra connections
* Increases server state/processing
» Server also forced to keep TIME_WAIT
connection state
» Why must server keep these?

» Tends to be an order of magnitude greater than # of
active connections, why?

Lecture 6: 09-16-2002 6

Netscape Solution “,

Mosaic (original popular Web browser) fetched

one object at a time!

Netscape uses multiple concurrent connections to

improve response time

« Different parts of Web page arrive independently

» Can grab more of the network bandwidth than other
users

Doesn't necessarily improve response time

» TCP loss recovery ends up being timeout dominated
because windows are small

Lecture 6: 09-16-2002 7

Persistent Connection Solution “.

« Multiplex multiple transfers onto one TCP connection

* How to identify requests/responses

« Delimiter > Server must examine response for delimiter string

« Content-length and delimiter - Must know size of transfer in
advance

« Block-based transmission = send in multiple length delimited
blocks

< Store-and-forward - wait for entire response and then use
content-length

« Solution - use existing methods and close connection otherwise

Lecture 6: 09-16-2002 8

Persistent Connection Example “

Client Server

0 RTF————1

Client sends HTTP request ACK i Server reads from
for HTML pat | disk
1 RT‘F—*——T ACK
Client parses HTML DAT i s ds f
) erver reads from
Client sends HTTP request ACK oar | disk

for image

Image begins to arrive

Lecture 6: 09-16-2002 9

Persistent HTTP i‘.

Nonpersistent HTTP issues:
* Requires 2 RTTs per object + Client issues new request

» OS must work and allocate only when previous
host resources for each TCP response has been received
connection * One RTT for each
» But browsers often open referenced object
parallel TCP connections to Persistent with pipelining:
fetch referenced objects . Default in HTTP/1.1
Persistent HTTP. + Client sends requests as
» Server leaves connection soon as it encounters a
open after sending response referenced object
* Subsequent HTTP messages . As little as one RTT for all
between same client/server the referenced objects

are sent over connection

Lecture 6: 09-16-2002 10

Persistent Connection Performance “.

» Benefits greatest for small objects
» Up to 2x improvement in response time

» Server resource utilization reduced due to fewer
connection establishments and fewer active
connections

» TCP behavior improved

» Longer connections help adaptation to available
bandwidth

* Larger congestion window improves loss recovery

Lecture 6: 09-16-2002 11

Remaining Problems “.

» Serialized transmission
« Stall in transfer of one object prevents delivery of others
* Much of the useful information in first few bytes

» Can “packetize” transfer over TCP
¢ Could use range requests

» Application specific solution to transport protocol
problems
* Solve the problem at the transport layer

+ Could fix TCP so it works well with multiple
simultaneous connections
« More difficult to deploy

Lecture 6: 09-16-2002 12

Outline “.

* Persistent HTTP

 HTTP Caching

e Server Selection & Content Distribution Networks

Lecture 6: 09-16-2002 13

Typical Workload (Server) “.

« Popularity
« Zipfdistribution (P = kr?) - surprisingly common
« Obvious optimization - caching
¢ Request sizes
« In one measurement paper > median 1946 bytes, mean 13767
bytes
« Why such a difference? Heavy -tailed distribution
« Pareto— p(x) = akax(@+1)
e Temporal locality
* Modeled as distance into push-down stack
« Lognormal distribution of stack distances
¢ Request interarrival
« Bursty request patterns

Lecture 6: 09-16-2002 14

HTTP Caching “.

 Clients often cache documents
» Challenge: update of documents
« I-Modified-Since requests to check
e HTTP 0.9/1.0 used just date
« HTTP 1.1 has file signature as well
» When/how often should the original be checked
for changes?
» Check every time?
» Check each session? Day? Etc?
» Use Expires header
« If no Expires, often use Last-Modified as estimate

Lecture 6: 09-16-2002 15

Example Cache Check Request “

GET /HTTP/1.1

Accept: */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

If-Modified-Since: Mon, 29 Jan 2001 17:54:18 GMT
If-None-Match: "7al11f-10ed-3a75ae4a"

User-Agent: Mozilla/4.0 (compatible; MSIE 5.5;
Windows NT 5.0)

Host: www.intel-iris.net
Connection: Keep-Alive

Lecture 6: 09-16-2002 16

Example Cache Check Response “.

HTTP/1.1 304 Not Modified
Date: Tue, 27 Mar 2001 03:50:51 GMT

Server: Apache/1.3.14 (Unix) (Red-Hat/Linux)
mod_ssl/2.7.1 OpenSSL/0.9.5a DAV/1.0.2
PHP/4.0.1pl2 mod_perl/1.24

Connection: Keep-Alive
Keep-Alive: timeout=15, max=100
ETag: "7allf-10ed-3a75ae4a"

Lecture 6: 09-16-2002 17

Web Proxy Caches

« User configures browser:
Web accesses via cache
* Browser sends all HTTP
requests to cache
« Object in cache: cache
returns object
« Else cache requests object
from origin server, then
returns object to client

Lecture 6: 09-16-2002 18

Proxy Caching “.

* Goal: Satisfy client request without involving origin server
» Reduce client response time
» Reduce network bandwidth usage
* Wide area vs. local area use
» These two objectives are often in conflict

« May do exhaustive local search to avoid using wide area
bandwidth

« Prefetching uses extra bandwidth to reduce client response
time

Lecture 6: 09-16-2002 19

Caching Example (1)

N

Assumptions.

* Average object size = 100,000
bits

* Avg. request rate from
institution’s browser to origin
servers = 15/sec

« Delay from institutional router to
any origin server and back to
router = 2 sec

Consequences

¢ Utilization on LAN = 15%

< Utilization on access link = 100%

* Totaldelay = Internetdelay +
access delay + LAN delay

= 2 sec + minutes + milliseconds

@ origin
@\ @ servers
public

Internet @

1.5 Mbps
access link

institutional
network

2

10 Mbps LAN

Lecture 6: 09-16-2002 20

Caching Example (2)

«

Possible solution

« Increase bandwidth of access
link to, say, 10 Mbps

« Often a costly upgrade

Consequences
» Utilization on LAN = 15%
« Utilization on access link = 15%
* Totaldelay = Internetdelay +
access delay + LAN delay
= 2 sec +msecs +msecs

@ origin

@\ servers
public

Internet _@

10 Mbps
access link

institutional

gevors 10 Mbps LAN

Lecture 6: 09-16-2002 21

Caching Example (3)

«

Install cache
* Suppose hitrate is .4
Consequence

e 40% requests will be satisfied almost
immediately (say 10 msec)

* 60% requests satisfied by origin
server
< Utilization of access link reduced to
60%, resulting in negligible delays
* Weighted average of delays
= .6*2 sec + .4*10msecs < 1.3secs

ﬂ origin

ﬂ @ servers
public
Internet -@

1.5 Mbps
access link

institutional

network 10 Mbps LAN

institutional
cache

Lecture 6: 09-16-2002 22

Problems

N

« Not easily solvable

Over 50% of all HTTP objects are uncacheable — why?

« Dynamic data - stock prices, scores, web cams
« CGlI scripts - results based on passed parameters

¢ Obvious fixes

¢ SSL - encrypted data is not cacheable
* Most web clients don't handle mixed pages well >many generic

objects transferred with SSL

« Cookies - results may be based on passed data
« Hit metering - owner wants to measure # of hits for revenue, etc.

What will be the end result?

Lecture 6: 09-16-2002 23

Caching Proxies — Sources for Misses “.

e Capacity

« How large a cache is necessary or equivalent to infinite
¢ On disk vs. in memory - typically on disk

e Compulsory

< First time access to document

« Non-cacheable documents
* CGl-scripts

« Personalized documents (cookies, etc)

« Encrypted data (SSL)
« Consistency

« Document has been updated/expired before reuse

Conflict
* No such misses

Lecture 6: 09-16-2002 24

Proxy Implementation Problems “

¢ Aborted transfers

* Many proxies transfer entire document even though client has
stopped > eliminates saving of bandwidth

e Making objects cacheable

< Proxy’s apply heuristics > cookies don’t apply to some objects,

guesswork on expiration

« May not match client behavior/desires

¢ Client misconfiguration

« Many clients have either absurdly small caches or no cache
* How much would hit rate drop if clients did the same

things as proxies

Lecture 6: 09-16-2002 25

Outline “

* Persistent HTTP

 HTTP Caching

e Server Selection & Content Distribution Networks

Lecture 6: 09-16-2002 26

Content Distribution Networks (CDNs) “.

« The content providers are the
CDN customers.

Content replication

« CDN company installs hundreds
of CDN servers throughout
Internet
¢ Close to users

* CDN replicates its customers’
content in CDN servers. When
provider updates content, CDN
updates servers

origin server
in North America

CDN distribution node

g
ey

X . CDN server
in S. America CDN server . h

X in Asia

in Europe

Lecture 6: 09-16-2002 27

Content Distribution Networks & \
Server Selection ‘

» Replicate content on many servers

» Challenges
» How to replicate content
» Where to replicate content
» How to find replicated content
» How to choose among know replicas
» How to direct clients towards replica

Lecture 6: 09-16-2002 28

Server Selection “,

e Which server?
» Lowest load - to balance load on servers

» Best performance - to improve client performance
« Based on Geography? RTT? Throughput? Load?

 Any alive node - to provide fault tolerance

» How to direct clients to a particular server?

* As part of routing = anycast, cluster load balancing
* Not covered ®

 As part of application > HTTP redirect
* As part of naming > DNS

Lecture 6: 09-16-2002 29

Application Based “.

e HTTP supports simple way to indicate that Web page has
moved (30X responses)
e Server receives Get request from client
< Decides which server is best suited for particular client and object
* Returns HTTP redirect to that server
« Can make informed application specific decision
¢ May introduce additional overhead - multiple connection
setup, name lookups, etc.
* While good solution in general, but...

« HTTP Redirect has some design flaws — especially with current
browsers

Lecture 6: 09-16-2002 30

Naming Based “.

» Client does name lookup for service

» Name server chooses appropriate server address
» A-record returned is “best” one for the client

* What information can name server base decision
on?
» Server load/location - must be collected

* Information in the name lookup request
« Name service client - typically the local name server for client

Lecture 6: 09-16-2002 31

Naming Based “.

* Round-robin
» Randomly choose replica
 Avoid hot-spots
» [Semi-]static metrics
» Geography
* Route metrics
» How well would these work?
» Predicted application performance
* How to predict?
* Only have limited info at name resolution

Lecture 6: 09-16-2002 32

How Akamai Works “.

 Clients fetch html document from primary server
» E.g. fetch index.html from cnn.com

» URLs for replicated content are replaced in html

» E.g. replaced with

» Client is forced to resolve axXYZ.g.akamaitech.net
hostname

Lecture 6: 09-16-2002 33

How Akamai Works “.

* How is content replicated?
» Akamai only replicates static content
* Modified name contains original file name

» Akamai server is asked for content
« First checks local cache
* If not in cache, requests file from primary server and
caches file

Lecture 6: 09-16-2002 34

How Akamai Works “.

* Root server gives NS record for akamai.net

» Akamai.net name server returns NS record for
g.akamaitech.net

» Name server chosen to be in region of client’'s name
server

e TTLis large
* G.akamaitech.net nameserver chooses server in
region
» Should try to chose server that has file in cache - How
to choose?
¢ Uses aXYZ name and hash
e TTL is small > why?

Lecture 6: 09-16-2002 35

Simple Hashing “.

e Given document XYZ, we need to choose a
server to use
* Suppose we use modulo
* Number servers from 1...n
 Place document XYZ on server (XYZ mod n)
* What happens when a servers fails? n 2> n-1

« Same if different people have different measures of n

* Why might this be bad?

Lecture 6: 09-16-2002 36

Consistent Hash “.

* “view” = subset of all hash buckets that are visible

» Desired features

» Balanced —in any one view, load is equal across
buckets

» Smoothness - little impact on hash bucket contents
when buckets are added/removed

» Spread — small set of hash buckets that may hold an
object regardless of views

» Load — across all views # of objects assigned to hash
bucket is small

Lecture 6: 09-16-2002 37

Consistent Hash — Example “.

¢ Construction

» Assign each of C hash buckets to 14
random points on mod 2" circle,
where, hash key size = n.

« Map object to random position on
circle

« Hash of object = closest

clockwise bucket
¢ Smoothness - addition of bucket does not cause
movement between existing buckets
« Spread & Load - small set of buckets that lie near object
» Balance - no bucket is responsible for large number of
objects

How Akamai Works “.

cnn.com (content provider) DNS root server Akamai server

Get foo.jpg

"

. Akamai high-level
! DNS server

Akamai low-level DNS
i server

Nearby matching
Akamai server

10
Get /cnn.com/foo.jpg

End-user

Lecture 6: 09-16-2002 39

Lecture 6: 09-16-2002 38
Akamai — Subsequent Requests “.
cnn.com (content provider) DNS root server Akamai server
10 1L i
Get)
index.
ho 1| (2 ‘ Akamai high-level
! DNS server

7 . Akamai low-level DNS

Il.' server
n 8 Nearby matching
Akamai server

— 9
End-user Get 10 -
/enn.com/foo.jpg -
Lecture 6: 09-16-2002 40

10

Impact on DNS Usage “.

* DNS is used for server selection more and more
» What are reasonable DNS TTLs for this type of use
* Typically want to adapt to load changes
e Low TTL for A-records = what about NS records?

* How does this affect caching?
» What do the first and subsequent lookup do?

Lecture 6: 09-16-2002 41

HTTP (Summary)

«

« Simple text-based file exchange protocol
« Support for status/error responses, authentication, client-side state
maintenance, cache maintenance

Workloads

« Typical documents structure, popularity

« Server workload
¢ Interactions with TCP

« Connection setup, reliability, state maintenance

< Persistent connections

¢ How to improve performance

« Persistent connections
« Caching
* Replication

Lecture 6: 09-16-2002 42

Next Lecture “.

e Transport introduction

Error recovery

TCP flow control

TCP connection setup/data transfer

Lecture 6: 09-16-2002 43

11

