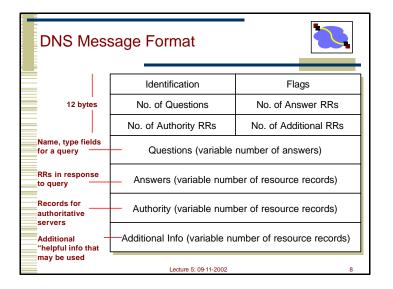


DNS Design: Cont.

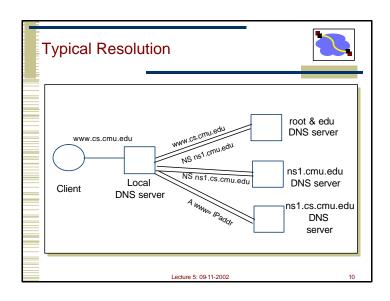
- Zones are created by convincing owner node to create/delegate a subzone
 - Records within zone stored multiple redundant name servers
 - Primary/master name server updated manually
 - Secondary/redundant servers updated by zone transfer of name space
 - Zone transfer is a bulk transfer of the "configuration" of a DNS server – uses TCP to ensure reliability
- Example:
 - CS.CMU.EDU created by CMU.EDU administrators
 - Who creates CMU.EDU?


Lecture 5: 09-11-2002

DNS: Root Name Servers · Responsible for "root" zone **DNS Root Servers** Approx. dozen root E-NASA Moffet Field CA name servers worldwide Currently {a-M-WIDE Kein m}.root-servers.net Local name servers contact root servers when they D-UMD College Pk MD cannot resolve a name · Configured with well-known root servers Lecture 5: 09-11-2002

Servers/Resolvers

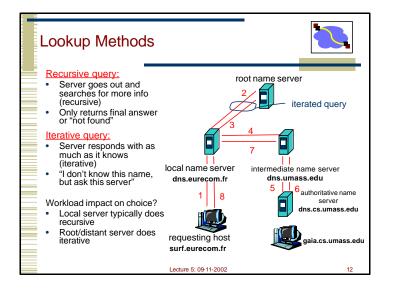
- · Each host has a resolver
 - Typically a library that applications can link to
 - Local name servers hand-configured (e.g. /etc/resolv.conf)
- Name servers
 - Either responsible for some zone or...
 - Local servers
 - · Do lookup of distant host names for local hosts
 - · Typically answer queries about local zone



DNS Header Fields

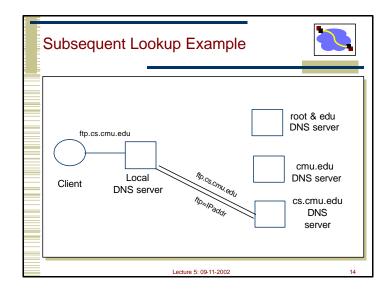
- Identification
 - Used to match up request/response
- Flags
 - 1-bit to mark query or response
 - · 1-bit to mark authoritative or not
 - 1-bit to request recursive resolution
 - 1-bit to indicate support for recursive resolution

Lecture 5: 09-11-2002


Typical Resolution

- · Steps for resolving www.cmu.edu
- Application calls gethostbyname() (RESOLVER)
- Resolver contacts local name server (S₁)
- S₁ queries root server (S₂) for (<u>www.cmu.edu</u>)
- S₂ returns NS record for cmu.edu (S₃)
- What about A record for S₃?
 - This is what the additional information section is for (PREFETCHING)
- S₁ queries S₃ for <u>www.cmu.edu</u>
- S₃ returns A record for www.cmu.edu
- Can return multiple A records → what does this mean?

Lecture 5: 09-11-2002


11

Workload and Caching

- What workload do you expect for different servers?
 - Why might this be a problem? How can we solve this problem?
- DNS responses are cached
 - · Quick response for repeated translations
 - Other queries may reuse some parts of lookup
 - NS records for domains
- DNS negative queries are cached
 - · Don't have to repeat past mistakes
 - E.g. misspellings, search strings in resolv.conf
- Cached data periodically times out

Reliability

- · DNS servers are replicated
- Name service available if = one replica is up
- Queries can be load balanced between replicas
- UDP used for queries
 - Need reliability → must implement this on top of UDP!
 - Why not just use TCP?

Lecture 5: 09-11-2002

Reliability

- Try alternate servers on timeout → what's a timeout?
- What's a good value for a timeout?
 - Hard to tell → what are the tradeoffs?
 - Better be conservative!
- Exponential backoff when retrying same server
 - Why do we need this?
- Same identifier for all queries
 - Don't care which server responds

Lecture 5: 09-11-2002

1-2002

Reverse Name Lookup

- 128.2.206.138?
 - Lookup 138.206.2.128.in-addr.arpa
 - Why is the address reversed?
 - Happens to be www.intel-iris.net and mammoth.cmcl.cs.cmu.edu → what will reverse lookup return? Both?
 - Should only return name that reflects address allocation mechanism

Lecture 5: 09-11-2002

Prefetching

- Name servers can add additional data to any response
- Typically used for prefetching
 - CNAME/MX/NS typically point to another host name
 - Responses include address of host referred to in "additional section"

ecture 5: 09-11-2002

002

Mail Addresses

- MX records point to mail exchanger for a name
 - E.g. mail.acm.org is MX for acm.org
- Addition of MX record type proved to be a challenge
 - How to get mail programs to lookup MX record for mail delivery?
 - · Needed critical mass of such mailers

Lecture 5: 09-11-2002

.

Outline

- How DNS resolves names
- How well does DNS work today
- · HTTP intro and details

DNS Experience

- · One of the greatest challenges seemed to be getting good name server implementations
 - Developers were typically happy with "good enough" implementation
 - Challenging, large scale, wide area distributed system
 - · Like routing, but easier to have broken implementations that work

DNS Experience

- Common bugs
 - · Looped NS/CNAME record handling
 - Poor static configuration (root server list)
 - · Lack of exponential backoff
 - · No centralized caching per site
 - · Each machine runs own caching local server
 - Why is this a problem?
 - How many hosts do we need to share cache? → recent studies suggest 10-20 hosts

Recent Measurements

- Hit rate for DNS = 80%
 - · Is this good or bad?
- Most Internet traffic is Web
 - What does a typical page look like? → average of 4-5 imbedded objects → needs 4-5 transfers
 - This alone accounts for 80% hit rate!
- Lower TTLs for A records does not affect performance
- DNS performance really relies more on NS-record caching

Lecture 5: 09-11-2002

Root Zone

- Generic Top Level Domains (gTLD) = .com, .net, .org, etc...
- Country Code Top Level Domain (ccTLD) = .us, .ca, .fi, .uk, etc...
- Root server ({a-m}.root-servers.net) also used to cover gTLD domains
 - · Load on root servers was growing quickly!
 - Moving .com, .net, .org off root servers was clearly necessary to reduce load → done Aug 2000

New gTLDs

- .info → general info
- .biz → businesses
- aero → air-transport industry
- .coop → business cooperatives
- .name → individuals
- .pro → accountants, lawyers, and physicians
- .museum → museums
- Only new one actives so far = .info, .biz, .name

ecture 5: 09-11-2003

New Registrars

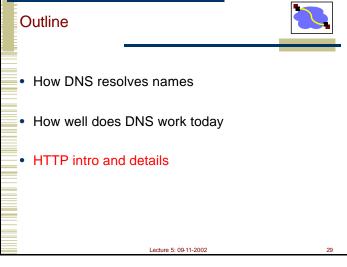
- Network Solutions (NSI) used to handle all registrations, root servers, etc...
 - Clearly not the democratic (Internet) way
 - Large number of registrars that can create new domains → However NSI still handle root servers

ecture 5: 09-11-2002

DNS (Summary)

- Motivations → large distributed database
 - Scalability
 - Independent update
 - Robustness
- Hierarchical database structure
 - Zones
 - How is a lookup done
- Caching/prefetching and TTLs
- Reverse name lookup
- What are the steps to creating your own domain?

Lecture 5: 09-11-2002


27

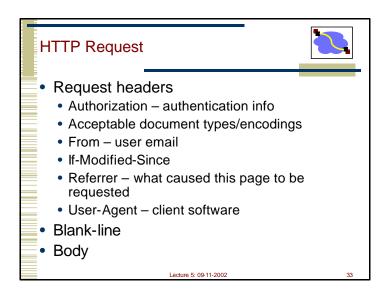
BREAK!!!

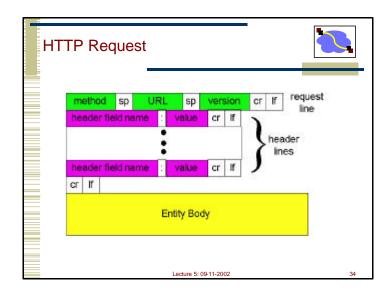
- Come see Mor & I get killed at Halo
 - Sunday 7pm, 7500 WeH

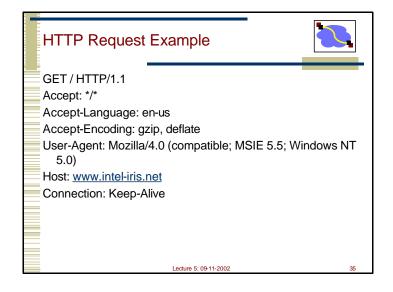
Outline How DNS resolves names How well does DNS work today HTTP intro and details

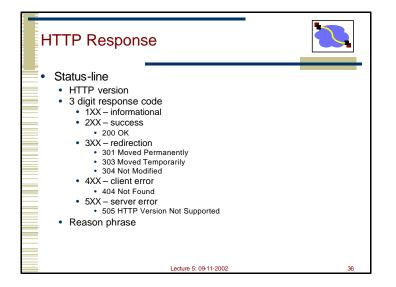
How to Mark End of Message? Size of message → Content-Length Must know size of transfer in advance Delimiter → MIME style Content-Type • Server must "escape" delimiter in content Close connection Only server can do this Lecture 5: 09-11-2002

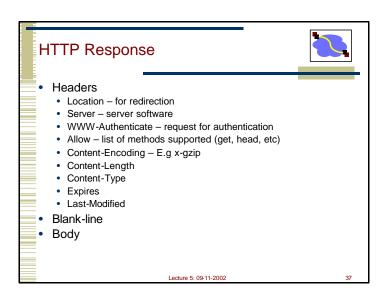
HTTP Basics

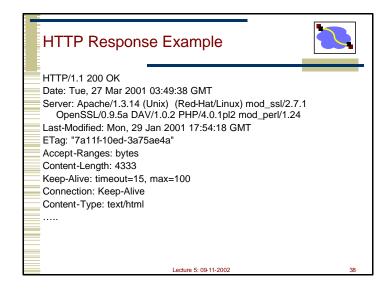


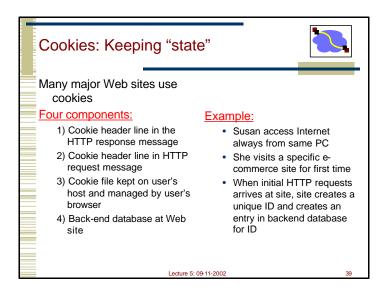

- HTTP layered over bidirectional byte stream
 - Almost always TCP
- Interaction
 - · Client sends request to server, followed by response from server to client
 - Requests/responses are encoded in text
- Stateless
 - Server maintains no information about past client requests

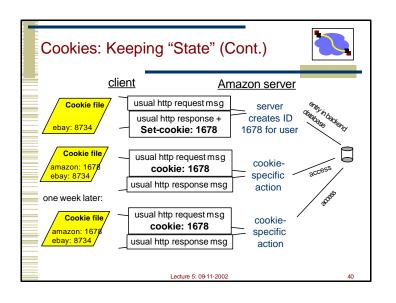

HTTP Request




- Request line
 - Method
 - GET return URI
 - HEAD return headers only of GET response
 - POST send data to the server (forms, etc.)
 - URI
 - E.g. http://www.intel-iris.net/index.html with a proxy
 - E.g. /index.html if no proxy
 - HTTP version







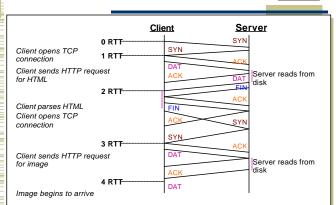
Typical Workload (Web Pages)

- Multiple (typically small) objects per page
- File sizes
 - Why different than request sizes?
 - · Also heavy-tailed
 - · Pareto distribution for tail
 - · Lognormal for body of distribution
- · Embedded references
 - Number of embedded objects = pareto p(x) = ak^ax⁻

Lecture 5: 09-11-2002

9-11-2002

HTTP 0.9/1.0

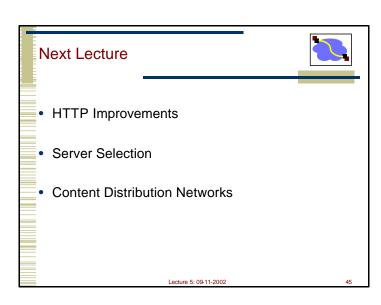

- One request/response per TCP connection
 - Simple to implement
- Disadvantages
 - Multiple connection setups → three-way handshake each time
 - Several extra round trips added to transfer
 - Multiple slow starts

Lecture 5: 09-11-2002

12

Single Transfer Example

Lecture 5: 09-11-2002


More Problems

- Short transfers are hard on TCP
 - Stuck in slow start
 - Loss recovery is poor when windows are small
- Lots of extra connections
 - · Increases server state/processing
- Server also forced to keep TIME_WAIT connection state
 - Why must server keep these?
 - Tends to be an order of magnitude greater than # of active connections, why?

Lecture 5: 09-11-2002

44

