

- Force us to rethink many assumptions
- Need to share airwaves rather than wire
 - Don't know what hosts are involved
 - Host may not be using same link technology
- Mobility
- · Other characteristics of wireless
 - Noisy → lots of losses
 - Slow
 - Interaction of multiple transmitters at receiver
 - · Collisions, capture, interference
 - · Multipath interference

Lecture 23: 11-18-02

Overview Link layer challenges Internet mobility TCP Over Noisy Links Lecture 23: 11-18-02

IEEE 802.11 Wireless LAN

- 802.11b
 - 2.4-5 GHz unlicensed radio spectrum
 - up to 11 Mbps
 - direct sequence spread spectrum (DSSS) in physical layer
 - all hosts use same chipping code
 - widely deployed, using base All have base-station stations

• 802.11a

- 5-6 GHz range
- up to 54 Mbps
- 802.11g
 - 2.4-5 GHz range
 - up to 54 Mbps
- All use CSMA/CA for multiple access
- All have base-statior and ad-hoc network versions

Lecture 23: 11-18-02

IEEE 802.11 Wireless LAN

- Wireless host communicates with a base station
 - Base station = access point (AP)
- Basic Service Set (BSS) (a.k.a. "cell") contains:
 - Wireless hosts
 - · Access point (AP): base station
- BSS's combined to form distribution system (DS)

Lecture 23: 11-18-02

Ad Hoc Networks

- Ad hoc network: IEEE 802.11 stations can dynamically form network without AP
- Applications:
 - · Laptops meeting in conference room, car
 - Interconnection of "personal" devices

ecture 23: 11-18-02

CSMA/CD Does Not Work

- Collision detection problems
 - Relevant contention at the receiver, not sender
 - Hidden terminal
 - Exposed terminal
 - Hard to build a radio that can transmit and receive at same time

Lecture 23: 11-18-02

How to Handle Mobile Nodes? (Naming)

- Naming
 - Use DHCP and update name-address mapping whenever host changes address
 - Fixes contact problem but not broken transport connections

Lecture 23: 11-18-02

How to Handle Mobile Nodes? (Transport)

- TCP currently uses 4 tuple to describe connection
 - Src Addr, Src port, Dst addr, Dst port>
- Modify TCP to allow peer's address to be changed during connection
- Security issues
 - Can someone easily hijack connection?
- Difficult deployment → both ends must support mobility

Lecture 23: 11-18-02

How to Handle Mobile Nodes? (Link Layer)

- Link layer mobility
 - Learning bridges can handle mobility → this is how it is handled at CMU
 - Encapsulated PPP (PPTP) → Have mobile host act like he is connected to original LAN
 - Works for IP AND other network protocols

Lecture 23: 11-18-02

How to Handle Mobile Nodes? (Routing 1)

- Multicast
 - Solves similar problem → how to route packets to different sets of hosts at different times
 - Can't we just reuse same solutions?
 - Don't really have solution for multicast either!

Lecture 23: 11-18-02

How to Handle Mobile Nodes? (Routing 2)

- Allow mobile node to keep same address and name
- How do we deliver IP packets when the endpoint moves?
 - Can't just have nodes advertise route to their address
- What about packets from the mobile host?
 - Routing not a problem
 - What source address on packet?
- Key design considerations
 - Scale
 - · Incremental deployment

Lecture 23: 11-18-02

04

Basic Solution to Mobile Routing

- Same as other problems in Computer Science
 - Add a level of indirection
- Keep some part of the network informed about current location
 - Need technique to route packets through this location (interception)
- Need to forward packets from this location to mobile host (delivery)

Lecture 23: 11-18-02

. . .

Interception

- Somewhere along normal forwarding path
 - At source
 - Any router along path
 - Router to home network
 - Machine on home network (masquerading as mobile host)
- Clever tricks to force packet to particular destination
 - "Mobile subnet" assign mobiles a special address range and have special node advertise route

Lecture 23: 11-18-02

23

Delivery

- Need to get packet to mobile's current location
- Tunnels
 - Tunnel endpoint = current location
 - Tunnel contents = original packets
- Source routing
 - Loose source route through mobile current location
- Network address translation (NAT)
 - What about packets from the mobile host?

Lecture 23: 11-18-02

24

Mobile IP (RFC 2290) Interception Typically home agent – a host on home network Delivery Typically IP-in-IP tunneling Endpoint – either temporary mobile address or foreign agent Terminology Mobile host (MH), correspondent host (CH), home agent (HA), foreign agent (FA) Care-of-address, home address

Other Mobile IP Issues

- Route optimality
 - · Resulting paths can be sub-optimal
 - Can be improved with route optimization
 - · Unsolicited binding cache update to sender
- Authentication
 - · Registration messages
 - · Binding cache updates
- Must send updates across network
 - Handoffs can be slow
- Problems with basic solution
 - Triangle routing
 - · Reverse path check for security

Lecture 23: 11-18-02

Overview

- Link layer challenges
- Internet mobility
- TCP Over Noisy Links

Lecture 23: 11-18-02

TCP Problems Over Noisy Links

- Wireless links are inherently error-prone
 - Fades, interference, attenuation
 - Errors often happen in bursts
- TCP cannot distinguish between corruption and congestion
 - TCP unnecessarily reduces window, resulting in low throughput and high latency
- Burst losses often result in timeouts
- Sender retransmission is the only option
 - · Inefficient use of bandwidth

Proposed Solutions • End-to-end protocols • Selective ACKs, Explicit loss notification • Split-connection protocols • Separate connections for wired path and wireless hop • Reliable link-layer protocols • Error-correcting codes • Local retransmission

