
1

15-744: Computer Networking

L-22: P2P

Lecture 22: 11-12-2002 2

Peer-to-Peer Networks

• Typically each member stores/provides access to content
• Has quickly grown in popularity

• Bulk of traffic from/to CMU is Kazaa!

• Basically a replication system for files
• Always a tradeoff between possible location of files and searching

difficulty
• Peer-to-peer allow files to be anywhere à searching is the

challenge
• Dynamic member list makes it more difficult

• What other systems have similar goals?
• Routing, DNS

Lecture 22: 11-12-2002 3

Overview

• P2P Lookup Overview

• Centralized/Flooded Lookups

• Routing-based Lookups

• CMU Research in P2P

Lecture 22: 11-12-2002 4

The Lookup Problem

Internet

N1
N2 N3

N6N5
N4

Publisher

Key=“title”
Value=MP3 data… Client

Lookup(“title”)

?

2

Lecture 22: 11-12-2002 5

Centralized Lookup (Napster)

Publisher@

Client

Lookup(“title”)

N6

N9 N7

DB

N8

N3

N2N1SetLoc(“title”, N4)

Simple, but O(N) state and a single point of failure

Key=“title”
Value=MP3 data…

N4

Lecture 22: 11-12-2002 6

Flooded Queries (Gnutella)

N4Publisher@

Client

N6

N9

N7
N8

N3

N2N1

Robust, but worst case O(N) messages per lookup

Key=“title”
Value=MP3 data…

Lookup(“title”)

Lecture 22: 11-12-2002 7

Routed Queries (Freenet, Chord, etc.)

N4Publisher

Client

N6

N9

N7
N8

N3

N2N1

Lookup(“title”)

Key=“title”
Value=MP3 data…

Lecture 22: 11-12-2002 8

Overview

• P2P Lookup Overview

• Centralized/Flooded Lookups

• Routing-based Lookups

• CMU Research in P2P

3

Lecture 22: 11-12-2002 9

Centralized: Napster

• Simple centralized scheme à motivated by
ability to sell/control

• How to find a file:
• On startup, client contacts central server and

reports list of files
• Query the index system à return a machine

that stores the required file
• Ideally this is the closest/least-loaded machine

• Fetch the file directly from peer

Lecture 22: 11-12-2002 10

Centralized: Napster

• Advantages:
• Simple
• Easy to implement sophisticated search

engines on top of the index system

• Disadvantages:
• Robustness, scalability
• Easy to sue!

Lecture 22: 11-12-2002 11

Flooding: Gnutella

• On startup, client contacts any servent (server +
client) in network
• Servent interconnection used to forward control

(queries, hits, etc)
• Idea: broadcast the request
• How to find a file:

• Send request to all neighbors
• Neighbors recursively forward the request
• Eventually a machine that has the file receives the

request, and it sends back the answer
• Transfers are done with HTTP between peers

Lecture 22: 11-12-2002 12

Flooding: Gnutella

• Advantages:
• Totally decentralized, highly robust

• Disadvantages:
• Not scalable; the entire network can be swamped with

request (to alleviate this problem, each request has a
TTL)

• Especially hard on slow clients
• At some point broadcast traffic on Gnutella exceeded 56kbps –

what happened?
• Modem users were effectively cut off!

4

Lecture 22: 11-12-2002 13

Flooding: Gnutella Details

• Basic message header
• Unique ID, TTL, Hops

• Message types
• Ping – probes network for other servents
• Pong – response to ping, contains IP addr, # of files, # of Kbytes

shared
• Query – search criteria + speed requirement of servent
• QueryHit – successful response to Query, contains addr + port to

transfer from, speed of servent, number of hits, hit results, servent
ID

• Push – request to servent ID to initiate connection, used to
traverse firewalls

• Ping, Queries are flooded
• QueryHit, Pong, Push reverse path of previous message

Lecture 22: 11-12-2002 14

Flooding: Gnutella Example

Assume: m1’s neighbors are m2 and m3; m3’s
neighbors are m4 and m5;…

A
B

C

D

E

F

m1
m2

m3

m4

m5

m6

E?

E?

E?
E?

E

Lecture 22: 11-12-2002 15

Flooding: FastTrack (aka Kazaa)

• Modifies the Gnutella protocol into two-level hierarchy
• Supernodes

• Nodes that have better connection to Internet
• Act as temporary indexing servers for other nodes
• Help improve the stability of the network

• Standard nodes
• Connect to supernodes and report list of files
• Allows slower nodes to participate

• Search
• Broadcast (Gnutella-style) search across supernodes

• Disadvantages
• Kept a centralized registration à allowed for law suits L

Lecture 22: 11-12-2002 16

Overview

• P2P Lookup Overview

• Centralized/Flooded Lookups

• Routing-based Lookups

• CMU Research in P2P

5

Lecture 22: 11-12-2002 17

Routing: Freenet

• Addition goals to file location:
• Provide publisher anonymity, security

• Files are stored according to associated key
• Core idea: try to cluster information about similar keys

• Messages
• Random 64bit ID used for loop detection

• Each node maintains the list of query IDs that have traversed
it à help to avoid looping messages

• TTL
• TTL is decremented each time the query message is

forwarded

Lecture 22: 11-12-2002 18

Routing: Freenet Routing Tables

• id – file identifier
• next_hop – another node that stores the file id
• file – file identified by id being stored on the

local node
• Forwarding of query for file id

• If file id stored locally, then stop
• Forward data back to upstream requestor
• Requestor adds file to cache, adds entry in routing

table
• If not, search for the “closest” id in the stack, and

forward the message to the corresponding
next_hop

• If data is not found, failure is reported back
• Requestor then tries next closest match in routing

table

id next_hop file

…
…

Lecture 22: 11-12-2002 19

Routing: Freenet Example

Note: doesn’t show file caching on the
reverse path

4 n1 f4
12 n2 f12

5 n3

9 n3 f9

3 n1 f3
14 n4 f14

5 n3

14 n5 f14
13 n2 f13

3 n6

n1 n2

n3

n4

4 n1 f4
10 n5 f10

8 n6

n5

query(10)

1

2

3

4

4’

5

Lecture 22: 11-12-2002 20

Routing: Structured Approaches

• Goal: make sure that an item (file) identified is always
found in a reasonable # of steps

• Abstraction: a distributed hash-table (DHT) data structure
• insert(id, item);
• item = query(id);
• Note: item can be anything: a data object, document, file, pointer

to a file…

• Proposals
• CAN (ICIR/Berkeley)
• Chord (MIT/Berkeley)
• Pastry (Rice)
• Tapestry (Berkeley)

6

Lecture 22: 11-12-2002 21

Routing: Chord

• Associate to each node and item a unique id in an
uni-dimensional space

• Properties
• Routing table size O(log(N)) , where N is the total

number of nodes
• Guarantees that a file is found in O(log(N)) steps

Lecture 22: 11-12-2002 22

Aside: Consistent Hashing [Karger 97]

N32

N90

N105

K80

K20

K5

Circular 7-bit
ID space

Key 5
Node 105

A key is stored at its successor: node with next higher ID

Lecture 22: 11-12-2002 23

Routing: Chord Basic Lookup

N32

N90

N105

N60

N10
N120

K80

“Where is key 80?”

“N90 has K80”

Lecture 22: 11-12-2002 24

Routing: “Finger table” - Faster Lookups

N80

½¼

1/8

1/16
1/32
1/64
1/128

7

Lecture 22: 11-12-2002 25

Routing: Chord Summary

• Assume identifier space is 0…2m

• Each node maintains
• Finger table

• Entry i in the finger table of n is the first node that succeeds or
equals n + 2i

• Predecessor node

• An item identified by id is stored on the successor
node of id

Lecture 22: 11-12-2002 26

Routing: Chord Example

• Assume an
identifier space 0..8

• Node n1:(1)
joinsàall entries in
its finger table are
initialized to itself

0
1

2

3
4

5

6

7

i id+2i succ
0 2 1
1 3 1
2 5 1

Succ. Table

Lecture 22: 11-12-2002 27

Routing: Chord Example

• Node n2:(3) joins 0
1

2

3
4

5

6

7

i id+2i succ
0 2 2
1 3 1
2 5 1

Succ. Table

i id+2i succ
0 3 1
1 4 1
2 6 1

Succ. Table

Lecture 22: 11-12-2002 28

Routing: Chord Example

• Nodes n3:(0), n4:(6) join
0

1

2

3
4

5

6

7

i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 0

Succ. Table

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

8

Lecture 22: 11-12-2002 29

Routing: Chord Examples

• Nodes: n1:(1), n2(3),
n3(0), n4(6)

• Items: f1:(7), f2:(2)

0
1

2

3
4

5

6

7 i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 0

Succ. Table

7

Items
1

Items

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

Lecture 22: 11-12-2002 30

Routing: Query

• Upon receiving a query for
item id, a node

• Check whether stores the
item locally

• If not, forwards the query to
the largest node in its
successor table that does not
exceed id

0
1

2

3
4

5

6

7 i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 0

Succ. Table

7

Items
1

Items

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

query(7)

Lecture 22: 11-12-2002 31

Performance Concerns

• Each hop in a routing-based P2P network
can be expensive
• No correlation between neighbors and their

location
• A query can repeatedly jump from Europe to

North America, though both the initiator and
the node that store the item are in Europe!

Lecture 22: 11-12-2002 32

Summary

• The key challenge of building wide area P2P
systems is a scalable and robust location service

• Solutions covered in this lecture
• Naptser: centralized location service
• Gnutella: broadcast-based decentralized location

service
• Freenet: intelligent-routing decentralized solution (but

correctness not guaranteed; queries for existing items
may fail)

• CAN, Chord, Tapestry, Pastry: intelligent-routing
decentralized solution

• Guarantee correctness
• Tapestry (Pastry ?) provide efficient routing, but more

complex

9

Lecture 22: 11-12-2002 33

Overview

• P2P Lookup Overview

• Centralized/Flooded Lookups

• Routing-based Lookups

• CMU Research in P2P

Lecture 22: 11-12-2002 34

What Do Games Look Like?

• Large shared world
• Composed of map information, textures, etc
• Populated by active entities: user avatars, computer AI’s, etc

• Only parts of world relevant to particular user/player

Player 1
Player 2

Game World

Lecture 22: 11-12-2002 35

Individual Player’s View

• Interactive
environment
(e.g. door,
rooms)

• Live ammo

• Monsters

• Players

• Game state

Lecture 22: 11-12-2002 36

Current Game Architectures

• Centralized client-server (e.g., Quake)
• Every update sent to server who maintains “true” state

• Advantages/disadvantages
+ Reduces client bandwidth requirements
+ State management, cheat proofing much easier
- Server bottleneck for computation and bandwidth à

current games limited to about 6000 players
- Single point of failure
- Response time limited by client-server latency

Doesn’t scale well

10

Lecture 22: 11-12-2002 37

Goal: A P2P Multiplayer Game

• Allow 1000’s of people to interact in a single
virtual world

• Key requirements
• Robustness: node failures
• Scalability: number of participants & size of virtual world
• Performance: interaction quality should only be limited

by capabilities of nodes and connectivity between them
• Extensible: should be possible to add to virtual world

Lecture 22: 11-12-2002 38

What is Publish-Subscribe ?

• Publishers produce events or publications
• Subscribers register their interests via

subscriptions
• Network performs routing such that

• Publications “meet” subscriptions
• Publications delivered to appropriate subscribers

Subscription

Publications

Lecture 22: 11-12-2002 39

Mercury

• A P2P publish-subscribe system
• Query language

• Type, attribute name, operator, value
• Example: int x = 200

• Attribute-values are sortable

• Sufficient for modeling games
• Game arenas
• Player statistics, etc

Lecture 22: 11-12-2002 40

Modeling a Game

Player

x = 50
x = 150
y = 150
y = 250

Interests

x 100
y 200

Events

(100,200)

(150,150)

(50,250)

Arena

Virtual World

