

- Typically each member stores/provides access to content
- Has quickly grown in popularity
 - Bulk of traffic from/to CMU is Kazaa!
- Basically a replication system for files
 - · Always a tradeoff between possible location of files and searching
 - Peer-to-peer allow files to be anywhere → searching is the
 - Dynamic member list makes it more difficult
- What other systems have similar goals?

Centralized: Napster

- Simple centralized scheme → motivated by ability to sell/control
- · How to find a file:
 - On startup, client contacts central server and reports list of files
 - Query the index system → return a machine that stores the required file
 - Ideally this is the closest/least-loaded machine
 - Fetch the file directly from peer

ecture 22: 11-12-2002

Centralized: Napster

- Advantages:
 - Simple
 - Easy to implement sophisticated search engines on top of the index system
- Disadvantages:
 - Robustness, scalability
 - Easy to sue!

Lecture 22: 11-12-2002

40

Flooding: Gnutella

- On startup, client contacts any servent (<u>serv</u>er + client) in network
 - Servent interconnection used to forward control (queries, hits, etc)
- Idea: broadcast the request
- · How to find a file:
 - · Send request to all neighbors
 - Neighbors recursively forward the request
 - Eventually a machine that has the file receives the request, and it sends back the answer
 - Transfers are done with HTTP between peers

Lecture 22: 11-12-2002

44

Flooding: Gnutella

- Advantages:
 - · Totally decentralized, highly robust
- Disadvantages:
 - Not scalable; the entire network can be swamped with request (to alleviate this problem, each request has a TTL)
 - Especially hard on slow clients
 - At some point broadcast traffic on Gnutella exceeded 56kbps what happened?
 - Modem users were effectively cut off!

ecture 22: 11-12-2002

12

Flooding: Gnutella Details

- · Basic message header
 - Unique ID, TTL, Hops
- Message types
 - Ping probes network for other servents
 - Pong response to ping, contains IP addr, # of files, # of Kbytes shared
 - Query search criteria + speed requirement of servent
 - QueryHit successful response to Query, contains addr + port to transfer from, speed of servent, number of hits, hit results, servent ID
 - Push request to servent ID to initiate connection, used to traverse firewalls
- Ping, Queries are flooded
- QueryHit, Pong, Push reverse path of previous message

ure 22: 11-12-2002

13

Flooding: FastTrack (aka Kazaa)

- Modifies the Gnutella protocol into two-level hierarchy
- Supernodes
 - · Nodes that have better connection to Internet
 - · Act as temporary indexing servers for other nodes
 - · Help improve the stability of the network
- Standard nodes
 - · Connect to supernodes and report list of files
 - · Allows slower nodes to participate
- Search
 - Broadcast (Gnutella-style) search across supernodes
- Disadvantages
 - Kept a centralized registration → allowed for law suits ☺

Lecture 22: 11-12-2002

45

Overview

- P2P Lookup Overview
- Centralized/Flooded Lookups
- Routing-based Lookups
- · CMU Research in P2P

Routing: Freenet

- · Addition goals to file location:
 - · Provide publisher anonymity, security
- · Files are stored according to associated key
 - Core idea: try to cluster information about similar keys
- Messages
 - Random 64bit ID used for loop detection
 - Each node maintains the list of query IDs that have traversed it → help to avoid looping messages
 - TTL
 - TTL is decremented each time the query message is forwarded

Lecture 22: 11-12-2002

11-12-2002

Routing: Freenet Routing Tables

id next_hop file

- id file identifier
- next_hop another node that stores the file id
- file file identified by id being stored on the local node
- Forwarding of query for file id
 - If file id stored locally, then stop
 - Forward data back to upstream requestor
 - Requestor adds file to cache, adds entry in routing table
 - If not, search for the "closest" id in the stack, and forward the message to the corresponding next_hop
 - · If data is not found, failure is reported back
 - Requestor then tries next closest match in routing table

Lecture 22: 11-12-2002

18

Routing: Freenet Example

Note: doesn't show file caching on the reverse path

Lecture 22: 11-12-2002

Routing: Structured Approaches

- Goal: make sure that an item (file) identified is always found in a reasonable # of steps
- Abstraction: a distributed hash-table (DHT) data structure
 - insert(id, item);
 - item = query(id);
 - Note: item can be anything: a data object, document, file, pointer to a file...
- Proposals
 - · CAN (ICIR/Berkeley)
 - · Chord (MIT/Berkeley)
 - Pastry (Rice)
 - · Tapestry (Berkeley)

Lecture 22: 11-12-2002

2002

Routing: Chord Summary Assume identifier space is 0...2^m Each node maintains Finger table Entry *i* in the finger table of *n* is the first node that succeeds or equals *n* + 2ⁱ

• Predecessor node

 An item identified by id is stored on the successor node of id

Performance Concerns

- Each hop in a routing-based P2P network can be expensive
 - No correlation between neighbors and their location
 - A query can repeatedly jump from Europe to North America, though both the initiator and the node that store the item are in Europe!

Lecture 22: 11-12-2002

2002

Summary

- The key challenge of building wide area P2P systems is a scalable and robust location service
- Solutions covered in this lecture
 - Naptser: centralized location service
 - Gnutella: broadcast-based decentralized location service
 - Freenet: intelligent-routing decentralized solution (but correctness not guaranteed; queries for existing items may fail)
 - CAN, Chord, Tapestry, Pastry: intelligent-routing decentralized solution
 - · Guarantee correctness
 - Tapestry (Pastry ?) provide efficient routing, but more complex

Goal: A P2P Multiplayer Game

- Allow 1000's of people to interact in a single virtual world
- Key requirements
 - · Robustness: node failures
 - · Scalability: number of participants & size of virtual world
 - Performance: interaction quality should only be limited by capabilities of nodes and connectivity between them
 - Extensible: should be possible to add to virtual world

Lecture 22: 11-12-2002

11-12-2002

What is Publish-Subscribe?
Publishers produce events or publications
Subscriptions
Subscriptions
Network performs routing such that
Publications "meet" subscriptions
Publications delivered to appropriate subscribers

Mercury

- A P2P publish-subscribe system
- Query language
 - Type, attribute name, operator, value
 - Example: int x = 200
 - Attribute-values are sortable
- Sufficient for modeling games
 - Game arenas
 - Player statistics, etc

Lecture 22: 11-12-2002

Modeling a Game $\begin{array}{c}
\text{Events} \\
\text{(50,250)} \\
\text{x = 100} \\
\text{y = 200}
\end{array}$ $\begin{array}{c}
\text{Arena} \\
\text{x = 150} \\
\text{y = 150} \\
\text{y = 250}
\end{array}$ Interests

Virtual World