







### TCP Performance



- If we have a large router queue → can get 100% utilization
  - But, router queues can cause large delays
- How big does the queue need to be?
  - Windows vary from W → W/2
    - · Must make sure that link is always full
    - W/2 > RTT \* BW
    - W = RTT \* BW + Qsize
    - Therefore, Qsize > RTT \* BW
  - Ensures 100% utilization
  - Delay?
    - Varies between RTT and 2 \* RTT

Lecture 10: 09-30-2002

### **Queuing Disciplines**



- Each router must implement some queuing discipline
- Queuing allocates both bandwidth and buffer space:
  - Bandwidth: which packet to serve (transmit) next
  - Buffer space: which packet to drop next (when required)
- Queuing also affects latency

Lecture 10: 09-30-2002

### Typical Internet Queuing



- FIFO + drop-tail
  - Simplest choice
  - Used widely in the Internet
- FIFO (first-in-first-out)
  - · Implies single class of traffic
- Drop-tail
  - Arriving packets get dropped when queue is full regardless of flow or importance
- Important distinction:
  - · FIFO: scheduling discipline
  - · Drop-tail: drop policy

Lecture 10: 09-30-2002

### FIFO + Drop-tail Problems



- Leaves responsibility of congestion control completely to the edges (e.g., TCP)
- Does not separate between different flows
- No policing: send more packets → get more service
- Synchronization: end hosts react to same events

Lecture 10: 09-30-2002

### FIFO + Drop-tail Problems



- Full queues
  - Routers are forced to have have large queues to maintain high utilizations
  - TCP detects congestion from loss
    - Forces network to have long standing queues in steady-state
- Lock-out problem
  - Drop-tail routers treat bursty traffic poorly
  - Traffic gets synchronized easily → allows a few flows to monopolize the queue space

ecture 10: 09-30-2002

### Active Queue Management



- Design active router queue management to aid congestion control
- Why?
  - Router has unified view of queuing behavior
  - Routers can distinguish between propagation and persistent queuing delays
  - Routers can decide on transient congestion, based on workload

Lecture 10: 09-30-2002

10

### **Design Objectives**



- Keep throughput high and delay low
  - High power (throughput/delay)
- · Accommodate bursts
- Queue size should reflect ability to accept bursts rather than steady-state queuing
- Improve TCP performance with minimal hardware changes

Lecture 10: 09-30-2002

44

### Lock-out Problem



- Random drop
  - Packet arriving when queue is full causes some random packet to be dropped
- Drop front
  - On full queue, drop packet at head of queue
- Random drop and drop front solve the lock-out problem but not the full-queues problem

ecture 10: 09-30-2002

12

### Full Queues Problem



- Drop packets before queue becomes full (early drop)
- Intuition: notify senders of incipient congestion
  - Example: early random drop (ERD):
    - If qlen > drop level, drop each new packet with fixed probability *p*
    - Does not control misbehaving users

ecture 10: 09-30-2002

Random Early Detection (RED)



- Detect incipient congestion
- Assume hosts respond to lost packets
- · Avoid window synchronization
  - · Randomly mark packets
- Avoid bias against bursty traffic

Lecture 10: 09-30-2002

2002

### **RED Algorithm**



- Maintain running average of queue length
- If avg < min<sub>th</sub> do nothing
  - Low queuing, send packets through
- If avg > max<sub>th</sub>, drop packet
  - Protection from misbehaving sources
- Else mark packet in a manner proportional to queue length
  - Notify sources of incipient congestion

Lecture 10: 09-30-2002

45











### Delayed Ack Impact



- TCP congestion control triggered by acks
  - If receive half as many acks → window grows half as fast
- Slow start with window = 1
  - · Will trigger delayed ack timer
  - First exchange will take at least 200ms
  - Start with > 1 initial window
    - Bug in BSD, now a "feature"/standard

ecture 10: 09-30-2002

### Silly Window Syndrome



- Problem: (Clark, 1982)
  - If receiver advertises small increases in the receive window then the sender may waste time sending lots of small packets
- Solution
  - Receiver must not advertise small window increases
  - Increase window by min(MSS,RecvBuffer/2)

Lecture 10: 09-30-2002

20

### Nagel's Algorithm



- · Small packet problem:
  - Don't want to send a 41 byte packet for each keystroke
  - How long to wait for more data?
- Solution:
  - Allow only one outstanding small (not full sized) segment that has not yet been acknowledged
  - Can be disabled for interactive applications

Lecture 10: 09-30-2002

### TCP Extensions



- Implemented using TCP options
  - Timestamp
  - Protection from sequence number wraparound
  - Large windows
  - Maximum segment size

Lecture 10: 09-30-2002

24

## Large Windows Delay-bandwidth product for 100ms delay 1.5Mbps: 18KB 10Mbps: 122KB 45Mbps: 549KB 100Mbps: 1.2MB 622Mbps: 7.4MB 1.2Gbps: 14.8MB 10Mbps > max 16bit window Scaling factor on advertised window Specifies how many bits window must be shifted to the left Scaling factor exchanged during connection setup

Lecture 10: 09-30-2002



# Maximum Segment Size (MSS) • Exchanged at connection setup • Typically pick MTU of local link • What all does this effect? • Efficiency • Congestion control • Retransmission • Path MTU discovery • Why should MTU match MSS?





## Changing Workloads



- New applications are changing the way TCP is used
- 1980's Internet
  - Telnet & FTP → long lived flows
  - · Well behaved end hosts
  - · Homogenous end host capabilities
  - · Simple symmetric routing
- 2000's Internet
  - Web & more Web → large number of short xfers
  - Wild west everyone is playing games to get bandwidth
  - · Cell phones and toasters on the Internet
  - Policy routing

Lecture 10: 09-30-2002

### **Short Transfers**



- Fast retransmission needs at least a window of 4 packets
  - To detect reordering
- Short transfer performance is limited by slow start → RTT

Lecture 10: 09-30-2002

### · Enables fast retransmission

• Only used in initial slow start not in any subsequent slow start

Lecture 10: 09-30-2002

### **Short Transfers**



- Start with a larger initial window
- What is a safe value?
  - TCP already burst 3 packets into network during slow start
  - Large initial window = min (4\*MSS, max (2\*MSS, 4380 bytes)) [rfc2414]

### Well Behaved vs. Wild West



- How to ensure hosts/applications do proper congestion control?
- Who can we trust?
  - · Only routers that we control
  - · Can we ask routers to keep track of each flow
    - · Per flow information at routers tends to be expensive
    - · Fair-queuing later in the semester

ecture 10: 09-30-200

### TCP Fairness Issues



- Multiple TCP flows sharing the same bottleneck link do not necessarily get the same bandwidth.
  - Factors such as roundtrip time, small differences in timeouts, and start time, ... affect how bandwidth is shared
  - The bandwidth ratio typically does stabilize
- Users can grab more bandwidth by using parallel flows.
  - Each flow gets a share of the bandwidth to the user gets more bandwidth than users who use only a single flow

Lecture 10: 09-30-2002

0.4

### TCP (Summary)



- · General loss recovery
  - Stop and wait
  - Selective repeat
- TCP sliding window flow control
- · TCP state machine
- TCP loss recovery
  - Timeout-based
    - RTT estimation
  - Fast retransmit
  - Selective acknowledgements

Lecture 10: 09-30-2002

### TCP (Summary)



- Congestion collapse
  - Definition & causes
- Congestion control
  - Why AIMD?
  - Slow start & congestion avoidance modes
  - ACK clocking
  - · Packet conservation
- TCP performance modeling
- TCP interaction with routers/queuing

Lecture 10: 09-30-2002