From Extraction to Reasoning

Chris Welty
IBM Research
Acknowledgements

- IBM Unstructured Information Management Architecture (UIMA) Project
 - David Ferrucci (IBM)
 - Bill Murdock (IBM)
 - Mary Neff (IBM)

- Richard Fikes (Stanford)
- Selene Makarios (Stanford)
- Rob McCool (Stanford)
Why extraction?

Who was in Paris on Feb. 27, 2003?
Why reasoning?

Who was in Paris on Feb. 27, 2003?

Former Iraqi Ambassador to Canada Hisham Al Shawi, who defected to the UK in August 1993, was a key figure in launching Iraq's nuclear program. From 1972 to 1974, Al Shawi was chairman of Iraq's Atomic Energy Commission and was Iraq's representative on the board of the IAEA. Al Shawi helped coordinate Iraq's efforts to train Iraqi students and send them abroad to universities and international research facilities. However, there is no evidence that Al Shawi knew of efforts to use these trainees in a military nuclear programme.

During the week of Feb. 26, 2003, Al Shawi travelled to France and proceeded up the Seine by boat. He spent three days in the latin quarter, and returned on Mar. 1. The purpose of his trip was not known.

Al Shawi and a fellow defector, former ambassador to Tunisia Hamid al Jabbouri, denied having any detailed knowledge of Iraq's nuclear program or its procurement network.
Why reasoning?

Who was in Paris on Feb. 27, 2003?

Former Iraqi Ambassador to Canada
Hisham Al Shawi, who defected to the UK in August 1993, was a key figure in launching Iraq's nuclear program. From 1972 to 1974, Al Shawi was chairman of Iraq's Atomic Energy Commission and was Iraq's representative on the board of the IAEA. Al Shawi helped coordinate Iraq's efforts to train Iraqi students and send them abroad to universities and international research facilities. However, there is no evidence that Al Shawi knew of efforts to use these trainees in a military nuclear programme.

During the week of Feb. 26, 2003, Al Shawi travelled to France and proceeded up the Seine by boat. He spent three days in the latin quarter, and returned on Mar. 1.

The purpose of his trip was not known. Al Shawi and a fellow defector, former ambassador to Tunisia Hamid al Jabbouri, denied having any detailed knowledge of Iraq's nuclear program or its procurement network.
Former Iraqi Ambassador to Canada

Hisham Al Shawi, who defected to the UK in August 1993, was a key figure in launching Iraq's nuclear program. From 1972 to 1974, Al Shawi was chairman of Iraq's Atomic Energy Commission and was Iraq's representative on the board of the IAEA. Al Shawi helped coordinate Iraq's efforts to train Iraqi students and send them abroad to universities and international research facilities. However, there is no evidence that Al Shawi knew of efforts to use these trainees in a military nuclear programme.

During the week of Feb. 26, 2003, Al Shawi travelled to France and proceeded up the Seine by boat. He spent three days in the latin quarter, and returned on Mar. 1.

The purpose of his trip was not known.

Al Shawi and a fellow defector, former ambassador to Tunisia Hamid al Jabbouri, denied having any detailed knowledge of Iraq's nuclear program or its procurement network.

What is needed?

• Reasoning
 – Temporal containment
 – Spatial containment

• Knowledge
 – Geography
 – Basic Ontology

• Coreference
 – Multiple mentions of same entities, relations
 – Find time that something happened

• Extraction
 – Recognize people, places
 – Recognize times, relations
Real World Reasoning?

- The acquisition bottleneck
- Reasoning is *hard*
 - Complexity
 - NP < Exp < Non-Elementary < Undecidable
 - More than 1,000,000 RDF triples
 - Can’t hold results of 1000 documents in memory
- Reasoning is *sound*
 - Not tolerant of errors
 - <Person>Bush International</Person>
 - Not just precision
 - Iraqi press agency says <event>the war is ended</event>
- Reasoning can be *inscrutable*
 - If I have no friends then all my friends are doctors

Text Analysis

How much reasoning when

Bounded reasoning

Explanation
General Problem

• Given
 – an ontology in OWL
 – A background knowledge base in RDF
 – Inference procedures
 – A collection of existing IE components

• Use the results of IE to populate the KB
 – Map IE semantics to KB semantics
 – Map extracted entities to possibly existing KB instances
Starting Point

Simple Token and Sentence Annotator
Annotates tokens and sentences.

EAnter
IBM EAnter - A statistical entity, relation, and event annotator.

Simple Phone Call Relation Annotator
Finds mentions of phone calls in text and annotates them as MadePhoneCallTo relations.

XsgParsing Annotator
Performs deep parse using slot grammar parsers

Ace Annotator
A statistical entity and relation annotator that performs within-document coreference resolution.

Cross Annotator
Coreference
Resolves coreference disputes across annotators

PhraseFinder Annotator
Creates annotations for phrases to be passed to ESG. Phrase sources are WordNet and pre-annotated Resporator phrases.

KS Relation Detector Aggregate
Aggregate that includes KS Relation Detector and TAE's that provide its inputs

KS Relation Annotator
Knowledge Structures Relation Annotator (pattern-based relation detector)

Simple Phone Number Annotator
Finds phone numbers in text

UIMA
Starting Point

Ace Annotator
Statistical entity and relation annotator that performs within-document coreference resolution.

HoldsDuring
Extracts relations between TimeEx3 entities and relations.

Nominator
Finds proper names and other clues.

TFSTOnBoard
Finds onBoard relations between people and vehicles.

KS Relation Detector Aggregate
Aggregate that includes KS Relation Detector and TAE's that provide input.

TFSTAddr
Finds addresses and extracts the subplace relation.

HoldsDuring
Extracts relations between TimeEx3 entities and relations.

TFSTVehicle
Finds vehicles.

KS Relation Detector
A statistical entity, relation, and event annotator that performs within-document coreference resolution.

TFSTOnBoard
Finds onBoard relations between people and vehicles.

TFSTTime
Extracts TimeEx3 entities.

TFSTAddr
Finds addresses and extracts the subplace relation.

TFSTTime
Extracts TimeEx3 entities.

TFSTVehicle
Finds vehicles.

TFSTOnBoard
Finds onBoard relations between people and vehicles.

TFSTAddr
Finds addresses and extracts the subplace relation.

TFSTOnBoard
Finds onBoard relations between people and vehicles.

TFSTTime
Extracts TimeEx3 entities.

TFSTVehicle
Finds vehicles.

TFSTOnBoard
Finds onBoard relations between people and vehicles.

TFSTAddr
Finds addresses and extracts the subplace relation.

TFSTOnBoard
Finds onBoard relations between people and vehicles.

TFSTTime
Extracts TimeEx3 entities.

TFSTVehicle
Finds vehicles.

TFSTOnBoard
Finds onBoard relations between people and vehicles.

TFSTAddr
Finds addresses and extracts the subplace relation.

TFSTOnBoard
Finds onBoard relations between people and vehicles.

TFSTTime
Extracts TimeEx3 entities.

TFSTVehicle
Finds vehicles.

TFSTOnBoard
Finds onBoard relations between people and vehicles.

TFSTAddr
Finds addresses and extracts the subplace relation.

TFSTOnBoard
Finds onBoard relations between people and vehicles.

TFSTTime
Extracts TimeEx3 entities.

TFSTVehicle
Finds vehicles.

TFSTOnBoard
Finds onBoard relations between people and vehicles.

TFSTAddr
Finds addresses and extracts the subplace relation.

TFSTOnBoard
Finds onBoard relations between people and vehicles.

TFSTTime
Extracts TimeEx3 entities.

TFSTVehicle
Finds vehicles.

TFSTOnBoard
Finds onBoard relations between people and vehicles.

TFSTAddr
Finds addresses and extracts the subplace relation.

TFSTOnBoard
Finds onBoard relations between people and vehicles.

TFSTTime
Extracts TimeEx3 entities.

TFSTVehicle
Finds vehicles.

TFSTOnBoard
Finds onBoard relations between people and vehicles.

TFSTAddr
Finds addresses and extracts the subplace relation.

TFSTOnBoard
Finds onBoard relations between people and vehicles.

TFSTTime
Extracts TimeEx3 entities.

TFSTVehicle
Finds vehicles.

TFSTOnBoard
Finds onBoard relations between people and vehicles.

TFSTAddr
Finds addresses and extracts the subplace relation.

TFSTOnBoard
Finds onBoard relations between people and vehicles.

TFSTTime
Extracts TimeEx3 entities.

TFSTVehicle
Finds vehicles.

TFSTOnBoard
Finds onBoard relations between people and vehicles.

TFSTAddr
Finds addresses and extracts the subplace relation.

TFSTOnBoard
Finds onBoard relations between people and vehicles.

TFSTTime
Extracts TimeEx3 entities.

TFSTVehicle
Finds vehicles.

TFSTOnBoard
Finds onBoard relations between people and vehicles.

TFSTAddr
Finds addresses and extracts the subplace relation.

TFSTOnBoard
Finds onBoard relations between people and vehicles.

TFSTTime
Extracts TimeEx3 entities.

TFSTVehicle
Finds vehicles.

TFSTOnBoard
Finds onBoard relations between people and vehicles.

TFSTAddr
Finds addresses and extracts the subplace relation.

TFSTOnBoard
Finds onBoard relations between people and vehicles.

TFSTTime
Extracts TimeEx3 entities.

TFSTVehicle
Finds vehicles.
Issues in the combination

• Components have *overlapping* semantics
 – Common type system, but…
 – Different meanings, precision, recall
 – ACE, Resporator

• Multiple annotations on a single span
 – Disagree 20% of the time

• Multiple overlapping co-reference chains
 – U.S. subplace of Russia
Semantic Integration Goals

• Process results of IE into a form *suitable for reasoning*
 – i.e. by advanced reasoning components (time, space, etc.)
• Map linguistic structures into knowledge-base
 – Different ontologies
 – Different semantics
• Explore utility of reasoning
 – Clean up the IE results using ontology semantics
 – Improve precision and recall
 – Propose candidate contexts
 – Experiment with different kinds of reasoning
• Scale the results along some dimension of “massive”
• Evaluate the quality of the results
Semantic Integration

“13 delegates from Turkey arrived today.”

IE

“13 delegates from <country>Turkey</country> arrived today.”

Format conversion

<OWL:country rdf:ID="Turkey" />

Easy!!!
IE ↔ KR

Entities vs. Mentions
Relations
Precision
Brittleness
Explainability
Recall
Scale
IE ↔ KR

- Entities vs. Mentions
- Relations
- Precision
- Brittleness
- Explainability
- Recall
- Scale
IE ↔ KR

Entities vs. Mentions
Relations
Precision
Brittleness
Explainability
Recall
Scale
IE ↔ KR

Entities vs. Mentions
Relations
Precision
Brittleness
Explainability
Recall
Scale
IE ↔ KR

Entities vs. Mentions
Relations
Precision
Brittleness
Explainability
Recall
Scale
IE \leftrightarrow KR

Entities vs. Mentions
Relations
Precision
Brittleness
Explainability
Recall
Scale
IE ↔ KR

Co-reference

Improve relation extraction

Use ontology semantics to improve precision & recall

Make KR more error tolerant

Explain IE

Scalable inference

Entities vs. Mentions

Relations

Precision

Brittleness

Explainability

Recall

Scale
Mapping from Extraction to Knowledge

• Type-Class Mapping
 – Person \rightarrow Person
 – Country \rightarrow Location & Political Entity

• Entity Mapping
 – Person(Abduhl Ramazi) \rightarrow kani:person-101

• Relations
 – IE:At(Person, Place) \rightarrow KANI:At
 – IE:At(Place, Place) \rightarrow KANI:subPlace

• Complex Mappings
 – HoldsDuring(At(Person, Place), TimeInterval) \rightarrow
 At(Person, fv) & fvValue(fv, Place) & fvTimeInterval(fv, TimeInterval)
 – Uses(BioTerrorism, Diseases) \rightarrow …
Joe arrived at Bush Intercontinental Airport at 12:00.

Person: Joe
Facility: BIA
Relation: at(Joe, BIA)

Relation: holdsDuring(at(Joe, BIA), 12:00)

Ontology

Knowledge Integrator

Integrate Time Relations

Text

Integrate Entities

Annotate Text Relations

Annotate Text Entities

KB
Broader Contributions

• Reuse & Adapt existing work
 – Chimaera, OntoMerge, Prompt
• Develop catalog of integration inferences
 – Extension to Prompt
 – Moving towards semi-automation for linguistic ontologies
• Mapping TimeML ↔ DAML-Time
• Expose deeper semantic requirements
• Improving P&R of IE
Catalog of Ontology Merging Operations

- Simple mappings
 - Class$_1$ \rightarrow Existing Class$_2$
 - Class$_1$ \rightarrow New Class$_2$
 - Class$_1$+Class$_2$ Subclass new Class$_2$
 - ...

- Complex mappings
 - Class$_1$ \rightarrow Set$_2$ of Classes
 - Set$_1$ of Classes \rightarrow Class$_2$
 - ...

- Language Expressivity
 - DL-expressible [Halevy] [Calvanese & DeGiacamo]
 - Function-free FOL expressible [McDermott & Smith]
 - FOL expressible [Chalupsky & MacGregor]
 - Non-FOL
Mapping TimeML to OWL-Time

- **TimeML**
 - Markup language with linguistic-based semantics
 - time expressions (Timex)
 - Events
 - Links (before, after, …)

- **DAML-Time**
 - Ontology-based specification of time points and intervals
 - Based on Allen calculus
 - No events

- High level correspondence [Pustejovsky&Hobbs]
- Generate complete OWL-Time RDF for TimeBank 1.1 corpus
Deeper Semantic Requirements

- IE focused on surface semantics
- Surface semantics appear obvious
 - Person(Chris)
 - onBoard(Chris, train)
- Requirement for reasoning exposes problems

 “Chris was in his office on April 22, 2003.”

 Holds(in(Chris, office), t1)

What is t1:

- April 22, 2003?
- A time interval during April 22, 2003?
- A time interval that includes April 22, 2003?
- A time interval that overlaps with April 22, 2003?
- A time interval that intersects with April 22, 2003?
Using Semantics to boost precision/recall

- "A man was arrested, his name was given as Chris"
 - Co-reference chain: relation of "his" to "Chris"
 - Cannot find a link from "his" to "Chris" – the relation is not lexical, it’s semantic
 - During integration, the semantics of name relation are processed and Chris assigned as name

- "He arrived at Bush Intercontinental at 12:00"
 - Relation: at(he, Bush Intercontinental)
 - Entity extraction tags "Bush Intercontinental" with Person and Facility
 - Relation extraction finds at(person, Bush Intercontinental)
 - Semantics of at relation requires range be a facility or place
 - Semantics of Person and Facility are of disjoint classes
 - Person annotation thrown away
Knowledge for Improving Precision

• Range/Domain Constraints
 – At \leftrightarrow Person \times Place

• Background Knowledge
 – “Kisumu is the AIDS capital of Kenya.”
 – Capital of Kenya is Nairobi

• Logical Consistency
 – Vehicle in two places at the same time

• Temporal Consistency
 – A time point both before and after the same event
Knowledge for Improving Recall

- **Semantic Relations**
 - Has-alias

- **Containment axioms**
 - Boston in Massachusetts in US
 - April 23, 2003 in April, 2003, in 2003

- **Classification axioms**
 - Author of newspaper article a journalist

- **Spatial axioms**
 - Passenger on vehicle located where vehicle is located

- **Temporal ordering axioms**
 - Transitivity of *before, after*
 - Full Allen calculus

- **Requires different notion of evaluation**
Trials and Tribulations

- Reasoning helps information processing
 - Increase in recall through deductive inference
 - Increase in precision through constraint processing
- General-purpose reasoning algorithms are complex
 - OWL-lite is Co-NP
 - OWL-DL is EXPTIME
 - OWL, General First-order reasoning is undecidable
 - Allen Calculus undecidable
- In practice this means reasoning must be bounded
 - A tradeoff between scale and effectiveness of reasoning
- Research agenda – explore this tradeoff
 - Techniques for bounding data (e.g. partitioning)
 - Techniques for “hiding” data
 - Incrementally apply more sophisticated reasoning (staged reasoning)
 - Measure KB and Ontology complexity (what is massive?)
Hiding Data - Motivation

- IE generates a lot of data
- Need to reduce the burden on reasoning-based processes
 - RDF-based reasoners limited to ~500K nodes
- Can we reduce the amount of data?
- What if it is needed later?
Data Volume Analysis

... Rick Wagoner is CEO of General Motors. He is an alumnus of Duke University...

... Mr. Wagoner, the author of Sleeping in the Woods...

Two triples for every co-reference

- 2.6 mentions per instance
- 20 instances per document
- 136 triples per document
- 64 triples per document for representing coreference.
Hiding Data

… Rick Wagoner is CEO of General Motors. He is an alumnus of Duke University…

… Mr. Wagoner, the author of Sleeping in the Woods…

• 47% reduction in the number of RDF triples
• 62% reduction in the number of RDF nodes
• But what if it’s wrong…
Hiding Data

... Rick Wagoner is CEO of General Motors. He is an alumnus of Duke University...

... Mr. Wagoner, the author of Sleeping in the Woods...

- 47% reduction in the number of RDF triples
- 62% reduction in the number of RDF nodes
- But what if it's wrong...
- “Hide” IE inferences in provenance
- Expose when problem arises

Mr. Wagoner (Person)

CEO of

General Motors (Organization)

alumnus of

Duke University (Organization)

authorOf

Sleeping in the Woods (Book)

P1 type Person

O1 type Org

O2 type Org

P1 ceoOf O1

P1 alumnusOf O2

P3 type Person

P3 sameAs P1

P3 authorOf O3

O3 type Book
Key Challenges

- How much reasoning when
- Artifacts of established IE
 - Imprecision
 - Co-reference
 - Multiple annotations
- Confidence, Trustworthiness
- Maintaining provenance through mapping
- Limits of Automated Reasoning for integration
 - Limits of description logic reasoning (OWL/DL) [Lenzerini, 2002], [Halevy, 2001]
 - Limits of first order reasoning (FOL) [McDermott, et al, 2002]
- Axiomatic semantics of information extraction
 - Further clarify semantics [ACE, KDD]
 - Boost precision
- Adaptability
- Evaluation
How much reasoning when?

- Incremental value of increased processing
- Many dimensions of complexity
 - Representational
 - Worst-case complexity
 - Special-purpose reasoning
 - Optimizations
 - Instance level
 - Number of instances, relations
 - Connectedness
 - Precision
 - Ontology level
 - Number of classes, properties
 - Number of axioms, constraints