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Abstract

In this paper we describe mechanisms for execution
monitoring of semantic web services, based on OWL-S. The
use of semantic descriptions and ontologies is a valuable
extension to current SOA conceptualizations. The described
mechanisms are implemented as extensions of the OWL-S
Virtual Machine that we have previously developed. The
OWL-S Virtual Machine is a component that controls the in-
teractions between a client and the web service it uses. The
presented extensions are a result of practical requirements
that arose in the course of involvement with two projects
that utilize OWL-S based semantic web services. In partic-
ular, we present an event-based model for monitoring and
logging interactions. The interaction trace allows a human
or software agent to analyze, replay or debug the execu-
tion. Additionally, we describe proposed extensions to cur-
rent specification in OWL-S for reporting and handling of
errors. Finally, we describe extensions to the OWL-S Vir-
tual Machine based on introspection to enable dynamic in-
teractions with process mediators.

1 Introduction

The main goal of Web Services is to enable and facilitate
smooth interoperation of diverse software components in
dynamically changing environments. Emerging Semantic
Web Services standards as OWL-S [24], WSMO [18] and
SAWSDL [5] enrich web service standards like WSDL [4]
and BPEL4WS [1] with rich semantic annotations to further
facilitate flexible dynamic web services discovery, invoca-
tion and composition. Since all these tasks are expected
to be performed fully or semi automatically by software
agents, many practical problems arise. A software agent
must be able to understand the semantics of the web ser-
vice and it must also be able to interpret the course and the
results of the execution and to deal with erroneous states.
It must be able to understand and interpret the sources of
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problems so that it can recover or avoid the situation next
time if possible. Furthermore, since web services are often
used as part of complex processes models and workflows,
the need for analyzing, diagnosing, simulating and optimiz-
ing of such processes models arises.

This poses challenges for both the semantic web services
specification frameworks and for invocation tools. Execu-
tion monitoring mechanisms are needed to provide human
or software agents with appropriate information about the
execution course and results. Information provided by mon-
itoring mechanisms can be used either during the execu-
tion to support a dynamic response to the given execution
course, or after the execution is finished for purposes of
analysis and auditing. In both cases different levels of ab-
straction and details may be needed depending on the given
problem. On the business level, typically highly summa-
rized information related to the process execution is of inter-
est, as for example, the profitability of individual services,
the average usage of services, or the overall workflow ef-
fectiveness. On the technical level, e.g., the performance
analysis or debugging tasks require much more detailed in-
formation about the execution process. The monitoring can
be also useful to support measuring and evaluation of Qual-
ity of Services (QoS) metrics that are required by Service
Level Agreements (SLA). To be able to deal with these pos-
sibly very diverse information needs, we propose flexible
event-based monitoring mechanisms that produce a seman-
tic interaction trace consisting of relevant execution related
information. Such a semantic interaction trace allows soft-
ware agents to respond to emerging situations during the
execution process. Additionally, complex queries can be
used to retrieve aggregate information from the interaction
trace that might be needed for analytical purposes.

In this paper, we focus on the monitoring mechanisms
of semantic web services based on OWL-S. OWL-S rep-
resents one of main efforts in the semantic web services
domain. Algorithms and software tools using OWL-S on-
tologies for discovery [16], invocation [15] and composition
[10, 23, 20, 9] were developed and are available. However,
the current specification OWL-S does not provide explicit
support for monitoring and errors handling. Specific appli-



cations and tools are supposed to cover these areas. We
will describe monitoring mechanisms that we implemented
as extensions of the OWL-S Virtual Machine (OVM) [15]
which is a component that controls interactions between the
client and web services.

The main contribution of this paper is the description
of event-based execution monitoring and errors handling
mechanisms for semantic web services based on OWL-S.
We also describe extensions to the OVM implementing de-
scribed monitoring mechanisms in combination with intro-
spection functionalities. These extensions allow to perform
different monitoring tasks such as logging, performance
measuring, execution progress tracking, execution debug-
ging or evaluations of security and other QoS parameters.

The rest of the paper is organized as follows. In Section
2 we briefly introduce the OWL-S and the OWL-S Virtual
Machine. In Section 3 we describe practical requirements
for monitoring and errors handling that arose in the course
of involvement with two projects that utilize OWL-S based
semantic web services. We provide details on monitoring
and logging in Section 4. In Section 5 we define an ap-
proach to error handling that is used as part of the monitor-
ing extension and point out a possible extension to current
OWL-S specification that would allow uniform error han-
dling of different types of errors that can occur during the
execution. Section 6 addresses the support for introspection
in the OVM. In the last section, we conclude.

2 Overview of OWL-S and the OWL-S Vir-
tual Machine

OWL-S [24] is a Semantic Web Services description lan-
guage, expressed in OWL [3]. OWL-S covers three areas:
web services capability-based search and discovery, specifi-
cation of service requester and service provider interactions,
and service execution. The Service Profile describes what
the service does in terms of its capabilities and it is used for
discovering suitable providers, and selecting among them.
The Process Model specifies how clients can interact with
the service by defining the requester-provider interaction
protocol. The Grounding links the Process Model to the
specific execution infrastructure (e.g., maps processes to
WSDL [4] operations and allows for sending messages in
SOAP [22]). Corresponding Profiles, Process Model and
Groundings are connected together by an instance of the
Service class that is supposed to represent the whole ser-
vice.

The elementary unit of the Process Model is an atomic
process, which represents one indivisible operation that the
client can perform by sending a particular message to the
service and receiving a corresponding response. Processes
are specified by means of their inputs, outputs, precondi-
tions, and effects (IOPEs). Types of inputs and outputs are

Figure 1. The OWL-S Virtual Machine Archi-
tecture

usually defined as concepts in some ontology or as simple
XSD data-types. The process preconditions must all hold
in order for the process to be successfully invoked. After
the process is invoked, the outputs are produced and its ef-
fects are applied to change the state of the world. OWL-S
introduces the term result to refer to coupled outputs and
effects. The actual result (i.e. outputs and effects) can de-
pend on conditions that hold true in the actual world state
at the time the process is performed. For example, a selling
service may require as a precondition a valid credit card and
as an input the credit card number and the expiration date.
As an output it generates a receipt, and as an effect the card
is charged, in case that the credit card limit is not exceeded.
Otherwise, a failure message is generated as an output and
no effect is applied to the world. Processes can be com-
bined into composite processes by using the various control
constructs such as sequence, any-order, choice, if-then-else,
etc. Besides control-flow, the process model also specifies
a data-flow between processes.

A tool for execution of OWL-S web services must be
able to interpret the Process Model of the service according
to its semantics and provide a generic mechanism for invo-
cation of web services represented as atomic processes in
the Process Model. The OWL-S Virtual Machine (OVM)
[15] is a generic OWL-S processor that allows Web ser-
vices and clients to interact on the basis of the OWL-S de-
scription of the Web service and OWL ontologies. Specifi-
cally, the OWL-S Virtual Machine (OVM) executes the Pro-
cess Model of a given service by going through the Process
Model while respecting the OWL-S operational semantics
[2] and invoking individual services represented by atomic
processes. During the execution, the OVM processes in-
puts provided by the requester and outputs returned by the
provider’s services, realizes the control and data flow of the
composite Process Model, and uses the Grounding to in-



voke WSDL based web services when needed. The OVM
is a generic execution engine which can be used to develop
applications that need to interact with OWL-S web services.

The architecture of the OVM and its relation with the rest
of the Web service is presented in Figure 1. On the left side
the provider is displayed together with its OWL-S Process
Model, Grounding and WSDL description that together de-
fine how clients can interact with this service. The OVM is
displayed in the center of the picture. It is logically divided
in two modules: the first one is the OWL-S Processor which
uses the OWL-S Inference Engine and a set of rules imple-
menting the operational semantics of the OWL-S Process
Model and Grounding to manage the interaction with the
provider. The second component is the Web service Invoca-
tion module that is responsible for the information transfer
with the provider. Finally, the OVM is shown as a part of
the requester which can use it to interact with the provider.

3 Motivating applications

Monitoring is recognized as a natural part of the Service-
oriented architectures. In the SOA systems the main stress
is usually put on the monitoring performance and availabil-
ity metrics. The monitoring sub-system should be able to
support tasks such as enforcement of the SLA, notifica-
tions and auditing of service performance, alert-based re-
porting on the level of adherence to the SLA, or sending
automatic notifications and allow graceful exception han-
dling when the SLAs break down. In the broader context,
web services realizing Service-oriented architectures can be
seen as a part of Business Process Management (BPM).
BPM is approaching the management and the execution of
IT-supported business operations from a business expert’s
view rather than from a technical perspective [21]. In the
context of BPM and the Business Process Analysis (BPA)
[25] monitoring is supposed to support mainly optimization,
reengineering and fine-tuning of existing process models.

Except for these general tasks we also identified a set of
specific needs for monitoring, logging, error handling and
execution introspection that arose as natural requirements
in the context of two different projects where the OVM is
used as an invocation engine of OWL-S web services. In
the following paragraphs we first briefly describe relevant
aspects of the two projects and then we summarize resulting
requirements.

In the POIROT project, computational modules use ma-
chine learning techniques in order to learn to perform com-
plex web service workflows, given a single demonstration
example. The human expert is using a graphical user inter-
face to solve some complex problem, e.g., evacuation of
wounded patients from the battlefield to a hospital. The
problem can be solved by combining primitive operations
available in the GUI. Primitive operations are realized as

semantically annotated domain web services that perform
tasks such as looking up airports by geographic location,
finding available flights to and from those airports, reserv-
ing seats on flights and reserving hospital beds at the des-
tinations. The solution of the given problem is recorded
as a sequence of calls (a trace) to individual web services.
The computational learners in the POIROT system use these
recorded traces in order to learn hierarchical task models
and generalizations of these workflow traces by inferring
task order dependencies, user goals, and the decision cri-
teria for selecting or prioritizing subtasks and service pa-
rameters. The POIROT system can dynamically access the
same variety of semantically interoperable domain services
as the user, which allows it to perform experiments to ver-
ify or falsify generated hypotheses by simulating the real
services execution. The OVM is used as an execution com-
ponent and is also part of the experiment execution module.
As such, it must provide rich enough feedback to learning
components to allow them to acquire new knowledge based
on experimental results.

In the second project, the OVM is used as part of the me-
diation / brokering component whose goal is to automati-
cally reconcile discrepancies and incompatibilities between
a service requester and a service provider assuming that the
provider is (generally) able to satisfy the requester’s needs.
Since different types of mismatches between provider’s and
requester’s process models are possible, the mediator com-
ponent must be able to analyze both process models and
to dynamically translate requester’s messages and execute
provider’s process model to allow smooth interoperation.
The OVM is used in the mediation component to allow the
dynamic execution of the the provider’s process model.

Since neither the requester nor the provider are known
in advance, the mediation component must be able to dy-
namically execute the provider’s process model depending
on incoming requester’s messages and also be able to in-
terpret the flow of the execution and its results. To allow
this, monitoring and execution introspection support must
be provided in the OVM.

Although the two projects are very different, from the
perspective of services invocation and monitoring the re-
quirements are very similar and complementary. The prob-
lems that we needed to address can be formulated as fol-
lows:

1. Record the service calls and their outcomes during the
execution of the process model(s).
The recorded sequence (interaction trace) can be used as
an observation for the POIROT learning components but
it can be useful also for different purposes as, e.g., de-
bugging of the process model or the post-execution anal-
ysis. Depending on the specific purpose a different level
of detail may be needed.

2. Replay or simulate a given sequence of calls if it is pos-



sible.
The POIROT experimental component may be interested
in replaying exactly the same sequence of calls as the
one performed by the human expert, or it may modify
the sequence to verify some hypothesis. In these cases
the OVM must be able to record enough information to
allow replaying of some execution. Also the OVM im-
plementation must provide support for replaying a given
interaction trace.

3. In the mediator / broker / client driven execution allow
the client to see what steps (calls) can be chosen in each
state of execution and/or allow the client to “simulate”
or execute the chosen call.
The process model may be complex and may contain
nondeterministic choices (any-order and choice control
constructs) and the decision of what choice is appropri-
ate often depends on the execution context and on the
application logic. Software agents enacting the client
role of some process model must be able to decide, what
choice to take, if more options are available. Since the
OVM “knows” the execution context (e.g., values of
variables, precondition evaluations, etc.), it can simplify
the client’s decision by providing introspection function-
alities allowing the client to see what choices are avail-
able in the given execution context and filtering out those
that are not available, e.g., due to unsatisfied precondi-
tions.

4. Verify if a given sequence of calls (atomic process) can
be “generated” by the composite process.
In the process mediation scenario, we are interested in
testing, if a given sequence of requester’s calls can be
satisfied by the provider’s process model. This can be
nontrivial in cases of complex process models.

5. If the process model or the service call cannot be exe-
cuted or if it fails, provide an appropriate explanation
and identify reasons for it if possible.
For the the purposes of dynamic execution and post-
execution analysis it is important to be able to identify
execution failures and their reasons. Failures must be
represented explicitly along with the context information
as a part of the interaction trace. Additionally, during
the dynamic invocation, e.g., in the mediation scenario,
the execution introspection functionalities would allow a
software agent to inspect the execution context in detail
and to identify possible reasons for the failure.

4 Event based monitoring and logging

To solve the problem of monitoring during the process
model execution, at least two questions must be answered:
what exactly should be monitored and what (implementa-
tion) model should be chosen. While OWL-S itself does
not address these issues, the clear semantics of the process

model helps in answering the first question. By analyzing
the process model and the grounding, it is possible to iden-
tify important events that might be monitored. The follow-
ing list summarizes event types that occur during the execu-
tion of the process model:

• Process call: Presents probably the most important event
type. For each process type specific event types are de-
fined representing its start and end. Start events are as-
sociated with input values and end events additionally
with produced output values and effects. A simple and a
composite process represent decomposition of a process
into subprocesses while an atomic process represents an
execution of an existing web service operation.

• Inputs assignment: Input values of processes can be
provided either by the user (client) of the process model
or by the data binding that is used, e.g., an input or an
output of some previous or ancestor process as the value
source. We distinguish these two different situations as
separate event types.

• Outputs processing: Outputs of atomic processes are
obtained as a result of the service execution which is cov-
ered by the process call event type and so no new event
type needs to be introduced. For simple and compos-
ite processes a new event type is needed to represent the
fact that the output value of the process is obtained from
some output data binding (i.e., the dataflow of the pro-
cess model specifies that the output is produced by some
previous processes).

• Preconditions evaluation: Represents preconditions
evaluation of the process with variables values assigned
and with the true or false status.

• (Conditional) result evaluation: Represents an evalua-
tion of a result comprising the grounded inCondition ex-
pression1, produced effects and output bindings. A spe-
cial event type represents a situation when no result can
be applied because the inCondition expression fails for
all conditional results.

• Control construct execution: For each control con-
struct one event type represents its start and one its end.
Furthermore, we define specific event types for particular
control constructs representing specifics of their seman-
tics. For control constructs involving nondeterministic
choices (any-order and choice) we define an event repre-
senting that a particular branch was chosen. For control
constructs whose execution depends on an expression
evaluation (if-then-else, repeat-while, repeat-until) the
information representing this expression evaluation and
the branch chosen is included in the starting event type.
Further, we introduce event types that capture events as
start and end of the iteration in loop control constructs
and start and end of the branch in the split and split-join

1The inCondition property specifies a condition under which a particu-
lar result is produced.



Figure 2. Event types taxonomy. Only se-
lected classes are displayed, particularly,
specific ExceptionEvent types are not shown
(see Section 5) and only some ControlCon-
structEvent types are shown.

constructs.
• Grounding events: There can be different groundings

for a given process model. Since currently only WSDL
grounding is defined by OWL-S specifications, we iden-
tify only event types specific to WSDL grounding. The
WSDL grounding defines mappings of atomic processes
to WSDL operations and of inputs and outputs to WSDL
messages and message parts. We define a separate event
type for each type of the mapping.

• Failures and erroneous events: For different categories
of errors specific event types are defined. We analyze
error types and errors handling in Section 5.

Based on this analysis we defined a hierarchy of event types
showed in Figure 2. Particular event types mentioned in the

previous text are in the leaves of the taxonomy. For space
reasons, the figure does not show all event types.

It is important to note that described event types are ap-
plication independent in two senses. First, event types are
derived only from the logic of the process model and there-
fore can be used in any application. Second, event types
are neutral to the purpose for which they can be used. So,
for example, it is easy to imagine, that if the OVM emitted
described events during the process model execution, they
could be used for generating logs. If a different monitoring
task needs to be performed as, e.g., performance analysis,
the same events could be used as well. Thanks to the appli-
cation independence, the described event types can serve as
a sound basis for the monitoring system.

As an implementation model for event processing we
adopted the event-based model [8, 11] which we imple-
mented as an extension to the OVM. During the execu-
tion of the process model, the OVM emits instances of de-
scribed event types (events). Events can be processed by
event-handlers. There can be one, several or none event
handler for a given event type. The hierarchical organi-
zation of event types allows to define event-handlers with
varying granularity. For example, one event-handler can
be defined for all instances of the ProcessCallEvent type.
This event-handler will be invoked also when an instance of
the AtomicProcessCallEvent is emitted, because the Atom-
icProcessCallEvent type is defined as a subclass of the Pro-
cessCallEvent type. The described mechanism is similar
to exception handling in object-oriented programming lan-
guages. The implementation of the OVM itself does not
include any event-handlers and all events are ignored by de-
fault. Event-handlers are application specific and can be
defined by the application programmer. Advantages of this
model are its efficiency and flexibility. An application can
define event-handlers only for event types that are important
to it while ignoring others.

4.1 Events ontology

We defined an ontology of event types2 with each partic-
ular event type represented by one OWL class [3]. The on-
tology exactly corresponds to the hierarchy of event types
introduced in Figure 2. Every emitted event is thus rep-
resented as an instance of the OWL class representing the
event type of the emitted event. Such a choice is quite natu-
ral for several reasons.

First, details of an event can be specified by referring to
or by including relevant parts of the executed process model
which is mainly defined in terms of OWL classes and in-
stances. So, for example, the event representing a call of
some atomic process can refer to the instance of this pro-
cess in the process model and use its inputs and outputs

2Available at http://www.daml.ri.cmu.edu/owls/events.owl



Figure 3. Direct subclasses of the Event class with their properties

definitions when specifying their values.
Second, OWL representation of events is convenient for

OWL-S aware applications since at least a basic OWL ma-
chinery must be already available. This allows an easy in-
terpretation of the events content without enforcing many
implementation changes.

Third, all events along with their content are described in
terms of explicitly defined ontologies which has many ad-
vantages. Due to a clearly defined semantics and standard-
ised serializations events expressed as OWL instances can
be easily processed and shared by software agents and other
software tools. During the execution, it is possible to em-
ploy flexible event handlers that could for example benefit
from using reasoning about processed events. After the exe-
cution is finished, an interaction trace containing the events
emitted during the execution can be used for post-execution
analysis. Compex filtering and querying techniques exploit-
ing the rich semantic interaction traces can be used to ana-
lyze the process model and its execution.

Figure 3 presents a structure of event types defined in
the events ontology. For space reasons only direct sub-
classes of the Event class are shown. Every event type is
displayed as a solid box with the name in its heading and
the list of its properties with cardinalities and range type
specification. Solid arrows with the “isa” label represent
subclassing relation while dashed arrows represent relations
between classes. Classes defined in other ontologies are
identified by an appropriate namespace and are shown as
dotted boxes. For example, process:Parameter means that

the Parameter class is defined in the OWL-S process ontol-
ogy.

Each Event instance is associated with a timeStamp refer-
ring to the time when the event was emitted. Since an event
is always emitted during the execution of some process, the
process parameter is used to refer to such a process. When
an event is emitted in a nested process, the most inner pro-
cess is used as a value of the process parameter.

The ProcessCallEvent type defines properties for spec-
ifying input and output values and effects of the executed
process. The ParameterValueBinding class used as range
of the input and the output property represents a value as-
signed to an input or to an output parameter of the process.
When a parameter is defined as a primitive XSD type, the
dataValue property is used to refer to its value, otherwise
the objectValue is used to refer to values that are instances
of OWL classes. Figure 5 shows an example event with
inputs and outputs assigned.

The AssignEvent type (representing details about assign-
ing values either to inputs or outputs) uses the same logic for
specifying parameter values as the ParameterValueBinding
class.

The PreconditionEvalEvent type represents the precon-
dition evaluation and refers to the precondition expression
with values assigned (the condition property) and to the
truth value (the truthValue property).

Finally, the ExceptionEvent defines a textMessage prop-
erty containing a text message with detail information about
the exception. For the remaining event types that are not



Figure 4. Event container classes

shown in Figure 3 properties are defined in a similar fash-
ion.

In addition to event types, the events ontology also de-
fines classes for storing interaction traces. Basically, an in-
teraction trace is represented as a list of all events that were
emitted during the process execution with some more infor-
mation added. The InteractionTrace class is defined as an
ordered list of TraceElement instances that associate emit-
ted events with the Actor responsible for emitting the event
(see Figure 4). Each InteractionTrace instance is identified
by a traceUniqueID and has start and end time associated.

Example: Figure 5 shows an instance of one event
emitted by the OVM during the execution of the isbnLookup
service. This event represents a call of the isbnLookup web
service which searches for an ISBN given a book title as
an input. The isbnLookupPM namespace refers to the pro-
cess model of the isbnLookup web service and the books
namespace refers to the books ontology that defines con-
cepts such as ISBN. In this example, the event refers to the
execution of the &isbnLookupPM;isbnLookup atomic pro-
cess with “Crime and Punishment” as the input value of
the &isbnLookupPM;bookTitle input parameter. The ser-
vice returned an instance of the books:ISBN class represent-
ing the 978-0140621808 ISBN as the value of the &isbn-
LookupPM;bookTitle output parameter.

4.2 Logging

With the event based monitoring and event-handlers we
get the logging infrastructure almost for free. The log
record of an execution session is stored as an instance of
the InteractionTrace containing a sequence of OWL in-
stances representing events generated during the execu-
tion. We developed a set of event handlers for the log-

<AtomicProcessEndEvent>
<timestamp>2007-03-12T12:35:12</timestamp>
<process rdf:resource="&isbnLookupPM;isbnLookup"/>
<input>

<ParameterValueBinding>
<toParameter

rdf:resource="&isbnLookupPM;bookTitle"/>
<dataValue>Crime and Punishment</dataValue>

</ParameterValueBinding>
</input>
<output>

<ParameterValueBinding>
<toParameter rdf:resource="&isbnLookupPM;isbn"/>
<objectValue>
<books:ISBN>

<books:value>978-0140621808</books:value>
</books:ISBN>

</objectValue>
</ParameterValueBinding>

</output>
</AtomicProcessEndEvent>

Figure 5. An event instance: atomic process
call end event representing successful isbn-
Lookup service call

ging purposes which we use in our projects and which can
be used as a general logging tool for OWL-S based appli-
cation development. Depending on the particular purpose
only some event-handlers are activated. So, for example,
in the POIROT project, services are currently represented
as atomic processes. Learning components therefore need
to see only instances of the AtomicProcessCallEvent and
possible FailureEvents in the log. In a different context,
if we need to guarantee that the execution of a composite
process model can be replayed by the OVM, additionally
all instances of the ControlConstructEvent and ProcessCal-
lEvent are recorded in the log. Finally, for the debugging
purposes all generated events are being logged.

5 Dealing with errors

OWL-S does not define a model for error handling and
reporting. Application level errors and failures such as the
situation when no ISBN is found for a given book title, are
supposed to be handled by using conditional results. Other
types of problems, e.g., invocation errors, must be taken
care of by an execution engine. This lack of support for
explicit errors handling causes several problems:

• every application must define its own specific mecha-
nisms for errors handling which leads to decreased in-
teroperability;

• an OWL-S execution engine is not able to distinguish
erroneous states caused by application level errors from
the normal flow which complicates, e.g., monitoring and
execution evaluation;

• OWL-S process model does not capture explicitly the
WSDL error handling based on fault messages of the



WSDL operations. This enforces specific application
level solutions.

We present a solution that we incorporated into our event-
based model. It solves the above mentioned problems only
partially. Solving the error handling in OWL-S in general
would require a deeper analysis which is out of the scope of
this paper.

5.1 Errors as part of the event-model

Similarly to event types that we identified in the previous
section, also different erroneous situations can be identified:
1. OWL-S processing errors: Capture parsing / syntax level

problems and problems with malformed OWL-S files of
a given service.

2. Service invocation errors: For example, communication
failure, serialization / deserialization error, no response,
malformed response, response time-out, etc.

3. Process level execution errors: Include all erroneous sit-
uations that may occur during the execution of the pro-
cess model and are caused by the discrepancies or in-
consistencies on the process model level. For example,
a required input is not provided by the client, a wrong
input type is provided, the precondition of a process fails
so that it cannot be executed, etc.

4. Application level errors: Erroneous states specific to the
application logic of a web service as, e.g., no ISBN is
found for a given book title. These problems are solved
by specifyig different results in the process model.

The first three categories of errors are application indepen-
dent which allows us to define specific event types in our
event types hierarchy representing particular erroneous sit-
uations. Figure 6 shows a snippet of the events taxonomy
with event types representing exceptional states. Exception
events instances contain context information specifying rea-
sons for the error.

The main problem of application level errors is that there
is no way for an invocation engine to identify an application
level error because it is represented as a conditional result
and it is not distinguished from normal results. Therefore,
for example, it is not possible to emit appropriate exception
events or to generate a log record that would declare an er-
roneous state. We believe that OWL-S should provide some
support for explicitly distinguishing application level erro-
neous states (results) from normal ones. One way of doing
this would be to use a different OWL class for representing
a normal result and a different one for representing an er-
roneous result. Currently every result is represented as an
instance of the Result class. If, let us say, the FaultResult
were introduced in the process model, an application de-
signer could clearly separate normal and erroneous results.
It would be also possible to define specific application ex-
ception event types hierarchies as subclasses of the FaultRe-

<WrongInputTypeException>
<timestamp>2007-03-12T12:47:23</timestamp>
<process rdf:resource="&isbnLookup;isbnLookup"/>
<parameter rdf:resource="&isbnLookup;bookTitle"/>
<dataValue>Crime and Punishment</dataValue>
<expectedType>&books;Title</expectedType>
<invocationType>&xsd;string</invocationType>

</WrongInputTypeException>

Figure 7. Example of an exception event

sult. This would allow an invocation component to handle
application errors transparently in the same fashion as other
types of exception events.

Example: Figure 7 displays an example of a process
level error, namely the exception event caused by providing
a wrong input type of the &isbnLookup;isbnLookup atomic
process. An instance of the &books;Title class is expected
as the value of the &isbnLookup;bookTitle input parame-
ter according to the process model definition, but the client
provided the &xsd;string instead.

5.2 Runtime exceptions handling

When some erroneous situation occurs during the exe-
cution the OVM generates an instance of an appropriate ex-
ception event type. If an event-handler is defined for a given
exception type, it is called. The event-handler can for exam-
ple create an appropriate log record or it can inform a moni-
toring component. Besides, the normal execution flow is in-
terrupted by throwing an ordinary exception of the program-
ming language. Since the OVM is programmed in Java, we
use the Java built-in exception handling mechanism. We did
not address explicit exception handling in the OWL-S pro-
cess model. In the OVM implementation, a thrown Java ex-
ception is propagated to the caller of the OVM. This behav-
ior is appropriate in our context. However, it might make
sense to solve exception handling and/or compensation on
the level of the process model (as for example BPEL4WS
does). This would, however, require extension of OWL-
S specifications as, for example, introducing the notion of
exceptions in the process model and mechanisms of propa-
gating of exceptions in composite processes.

6 Virtual machine introspection

Introspection functionalities are the last extension of the
OWL-S virtual machine supporting monitoring tasks. By
introspection we mean the ability of the OVM to provide the
caller or the active event-handler with information about the
state of the execution during the runtime. In particular, the
OVM allows examination of the current execution context,
i.e., the values of inputs, outputs, local variables, state of
precondition evaluation and the execution stack. Basically,
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the value of every named variable and every named expres-
sion in the process model can be inspected. This can be
useful for example for debugging or tracing of the process
model.

The OVM also provides information about what are the
possible choices in terms of available next process calls in
a given execution state. A composite process may include
branching and choices, and in a given state, more than one
choice may be possible. For example, a client of a ficti-
tious book selling service may at some point either search
for a book, see the content of the shopping cart or proceed
to checkout. Since the OVM is executing the process model
and knows the execution context it can relatively easily eval-
uate what next process calls are possible. This information
is particularly useful for components as service brokers or
process mediators. If there is more than one choice avail-
able in a given state, the client can specify which one should
be taken by the OVM.

Currently, the OVM supports only passive examination
of the execution state. It is not allowed to modify the flow of
execution by, for example, changing values of parameters.

7 Related work

Extensive work has been done in the area of events
processing, passing and monitoring. A general cover-
age of events-based systems is provided in [8] and [11].
Distributed middleware systems based on CORBA, JMS
and Web Services standards as WS-Eventing and WS-
Notification typically include a monitoring subsystem and
tools for analyzing logged events. As we mentioned ear-
lier, such systems are typically concerned with monitoring
of performance, availability and other SLA metrics. The
Web Service Level Agreement (WSLA) framework [7] is
targeted at defining and monitoring SLAs for Web Ser-
vices. This framework defines mechanisms for specifying
and monitoring Service Level Agreements. SLA monitor-
ing issues in multi-provider environments are described in

[14] and [13]. Sahai et. al. [19] developed an automated
and distributed SLA monitoring engine that allows defini-
tion of SLAs and their automatic monitoring and enforce-
ment. These existing systems and tools usually use differ-
ent formats for reading/storing log files and present their
results in different ways. This problem is addressed by the
ProM framework (pluggable environment for process min-
ing) [26]. The goal of the ProM is to define independent
algorithms for process mining. ProM uses a generic format
for representation and storing of events and allows to im-
port logs from several existing commercial systems. The
general problem of current systems is the lack of machine
processable semantics as identified in [6]. The only work
know to us that addresses the problem of semantic process
monitoring is presented in [17]. An ontology for process
monitoring and mining is used in the context of the Super
project that builds on WSMO framework [18]. Monitoring
issues are also addressed in works dealing with workflow
[12] and process adaptation [27].

8 Conclusions

In this paper we described an event-based monitoring
model for OWL-S semantic web services. The main advan-
tages of the model are its application independence, flexi-
bility and extendibility. The model is easy to comprehend
yet complex monitoring tasks can be performed by using it.
It imposes only minimal constraints on the application and
monitoring tools developers. Since it is tightly coupled with
the OWL-S definitions of the process model, it allows to
monitor virtually any aspect of the process model execution
and to provide information in a way that is understandable
by OWL-S aware clients. We applied the monitoring model
to develop a logging facilities.

As part of the even-based monitoring problem we had to
deal with error handling which is not covered by OWL-S
specifications. Specifically, we figured out that it is impos-
sible to identify application level errors in an application



independent way because OWL-S does not support explicit
specification of erroneous results/states. We suggested a rel-
atively simple extension in the form of introducing a new
category of results representing erroneous states. This ex-
tension would allow applications to clearly distinguish nor-
mal results from errors and it would allow the invocation
and monitoring tools to deal with application level errors
in the same way as with any other errors that may occur
during the execution. We are aware that the proposed ex-
tension covers only one part of the errors handling and pro-
cessing which deserves a more comprehensive examination
that would address such issues as exceptions handling in the
process model or errors compensation.
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