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Abstract. In this paper we identify challenges that confront the large-
scale multi-agent system (LMAS) designer, and claim that these chal-
lenges can be successfully addressed by agent-based software engineering
(ABSE), which we consider to be distinct from object-oriented software
engineering for multi-agent systems (OOSE for MAS) in its considera-
tion of agent goal, role, context and attitude as first class objects. We
show how we have discovered these principles through our experiences in
developing the RETSINA multi-agent system, in implementing specific
test applications, and in the derivation of three distinct architectures
that help guide and describe the designs of our systems: the individual
agent architecture, the functional architecture, and the infrastructure
architecture.

1 Introduction

As information technologies become accessible to more and more people and as
commercial and government organizations are challenged to scale their services
to larger market shares and wider user communities while minimizing or reducing
their costs in doing so, there is an increased demand for software applications to
provide the following three features to their human end-users:

1. richer application end-to-end functionalities,
2. a reduction of human involvement in “the process” by:
— reducing information overload,
— reducing configuration management and system maintenance overheads,
and
— enabling the rapid specification of new, often context-aware tasks,
and
3. in the combinatorial use of existing software applications and systems in
novel or adaptive ways.

Distributed multi-agent system (MAS) technologies and web services show much
promise at satisfying the above desiderata by means of their inherent modularity
and ease with which they can be recombined to form new applications. When de-
signing new distributed software systems, however, the above broad requirements
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and their translations into specific implementations are typically addressed by
partial, complementary and overlapping technologies, and the combination of
the three gives rise to significant software engineering challenges. Some of the
challenges that may arise are: determining the components that the MAS appli-
cation should contain, organizing the components of the MAS, determining the
assumptions that one needs to make in order to implement a MAS application,
and if using multiple components off the shelf (COTS), how can their compatibil-
ities with each other, or the degree of effort involved in making them interoperate
with each other, be estimated? In this paper we further identify other challenges,
and claim that they can be successfully addressed by agent-based software engi-
neering (ABSE). We consider ABSE to be distinct from object-oriented software
engineering for multi-agent systems (OOSE for MAS) in its consideration of
agent goal, role, context and attitude as first class objects. We show how we have
discovered these principles through our experiences in developing the RETSINA
multi-agent system, in implementing specific test applications, and in the deriva-
tion of three distinct architectures that help guide and describe the designs of
our systems: the individual agent architecture, the functional architecture, and
the infrastructure architecture.

The goal of the design of the RETSINA multi-agent system is to have a pos-
itive impact in any combination of the following three areas: (1) to augment a
human end user’s information-based perceptual capabilities by reducing infor-
mation overload and providing context-relevant information, (2) to qualitatively
and quantitatively improve the range of actions and activities in which the end
user can engage, and (3) to enhance the means — typically through the context-
aware use of devices, as is done in pervasive and ubiquitous computing — by
which humans may perceive the world or by which humans may effect their
decisions within it.

The RETSINA MAS is based on the assumption that it will be operating
in an open world. The networked environment in which an agent is operating is
open, or without bounds, it is dynamic in nature from the perspective of network
topologies, agent capabilities and agent locations, and the networked environ-
ment is uncertain, that is, the same agent that provided an answer to an earlier
request may not be available when called upon again. In the RETSINA MAS
there is also an assumption that often there will be some degree of service or
functional replication so that should one agent fail, one or many other agents
and service providers can be found to substitute for the failed agent. And fi-
nally, there is the assumption that many of RETSINA agent behaviors can port
to physical robots and produce meaningful results in the physical robotic world.

The RETSINA definition of multi-agent systems is driven by our vision
that multi-agent societies should be populated by heterogeneous agents that
autonomously organize their own social structures. Our thinking of MAS in-
frastructure is guided by the desire to enable the flexible design, building and
operation of such societies. We consider MAS infrastructure to be the domain
independent and reusable substratum on which MAS systems, services, and com-
ponents live, communicate, interact and interoperate; the infrastructure should
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support agents and facilitate their social interactions with each other rather than
impose it.

One important consequence is that to achieve heterogeneity the MAS in-
frastructure should minimize the assumptions that it makes on the agents that
populate it, therefore, we make a very strong distinction between the MAS in-
frastructure and the agent architecture. We believe that to achieve heterogeneity
the MAS infrastructure should not dictate what kind of computational architec-
ture agents have, rather it is up to the agents to find the best way to use the
infrastructure to their advantage. Ultimately, the only assumption we make on
the architecture of an agent is the awareness of the existence of the MAS infras-
tructure and of its components, and how to use those components to enable the
agent to be part of a multi-agent society, i.e to be socially aware.

The definition of MAS infrastructure that we put forward does not impose
any biases with respect to the social structure and coordination regimes of the
agents. Indeed, we do not have a “coordinator” component that makes sure
that the agents behave socially in a coherent way. Rather we claim that the
social structure and coordination regimes should emerge from the behavior of
the agents rather than being imposed by the MAS infrastructure. We claim that
the MAS infrastructure should be general enough to facilitate any coordination
scheme such as team behavior [33,13], negotiation [17], Contract Nets [27] and
auction protocols [8], etc. We feel that a coordination regime as well as social
norms [2] are not part of the infrastructure but are particular to the design
of a given MAS application society, and are determined by the requirements
of the task that the agents are performing. Multi-agent social structure and
coordination mechanisms result as applications of the MAS infrastructure rather
than being mandated by the infrastructure per se.

The rest of the paper is structured as follows. We begin with a review of the
challenges of software engineering for large-scale MASs, and our characteriza-
toin of agent-based software engineering in Section 2. Section 3 presents a brief
description of the three RETSINA architectures. Section 4 discusses some of our
lessons learned. We conclude in Section 5.

2 Challenges of SELMAS

The report from the SELMAS workshop [10] lists many challenges, perspectives,
and unanswered questions about the nature of large-scale multi-agent systems
(LMASs) and agent-based software engineering (ABSE): how does one define
a MAS, what are the central issues to be addressed when designing one, and is
there really a difference between ABSE and object-oriented software engineering
for MASs? As strong proponents of ABSE as a unique software engineering
paradigm, we would like to briefly discuss what we view as some of the challenges
of MAS and LMAS construction, how we characterize ABSE, and what are some
of the consequences of these characterizations.
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2.1 The Recognized Challenges

Multi-agent systems operate in an open, unbounded world and thus have im-
posed upon them the requirements that they must be context-aware — aware of
how the environment conditions the interactions that the agents can engage in.
MAS openness also refers to the actual, implemented agent system, itself. Even
if an initial MAS design begins with a limited number of agents, new agents or
newer versions of agents will most likely be added to the original MAS at a later
date as requirements for the system change, and new features and functions are
requested. Because of this openness, there is no single point of resource alloca-
tion, synchronization, or failure recovery. The environment is also dynamic and
changing, which challenges any software engineering paradigms that require the
explicit enumeration of objects and relationships among objects in the environ-
ment. The MAS distributed computing environment is uncertain, a characteristic
that justifies concerns for partial failure recovery [35]. In distributed computing,
where there is no centralized point of control, the failure of any one computation,
communication link or network node can render the distributed execution state
of the MAS application inconsistent, and the resulting inconsistency may be
difficult to identify and thus difficult to remedy. As the number of agents partic-
ipating in MAS applications increases, the dimensionality of the above concerns
becomes combinatorial, and challenges human perception of control and pre-
dictability of the system. And, there are different types of heterogeneities that
multi-agent systems must address, unpredictably, during their life cycle. Some
of the heterogeneities that we have identified and try to accommodate within
the RETSINA system are the following:

Communications Heterogeneity Considerations include how many different
communications interfaces can or should the agent use for effecting its com-
munications with its peers (e.g. IR, radio, wire, etc.), and what are the
available underlying network protocols that will be used.

Coordination Heterogeneity There are multiple coordination techniques [28]
such as capability-based coordination [30], team-oriented coordination [14,
33], the Contract Net Protocol [27], auction-based coordination schemes [8,
34], and others, which depend primarily on the task that needs to be per-
formed, and the coordination attitude of an agent (e.g. cooperative, self-
interested, antagonistic, etc.).

Environmental Heterogeneity The operating environment can range from
the network operating environment, in which considerations focus on how
well network protocols are performing (e.g. throughput, transport reliability,
network connection permanence, etc.), to the computational environment in
which software capabilities change, to physical and terrain environments of
agent-augmented hardware and robots.

Functional Heterogeneity This is the identification of agent roles in terms of
the services or functions that they contribute to a multi-agent system, and
is the focus of the Functional Architecture, described in Section 3.2.

Security Heterogeneity In RETSINA, security is viewed as being parame-
terized by the application [36], in addition to encryption of communications
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and authentication of component identities. Some examples of differences
in security models are evaluations of trust per individual agent vs. trust of
agents running on a trusted platform, and digital rights management for
MAS-aided information fusion, aggregation and sharing.

Semantic Heterogeneity The chief focus of any multi-agent system, this het-
erogeneity expresses the issue that any two interoperating agents must be
certain when using a vocabulary of terms, or translations thereof, that they
are using the same concepts with the same relevant inferences of relations
as the other communicating agent.

Systems Heterogeneity This heterogeneity is derived from differences of de-
vices and hardware, operating systems, implementation language and execu-
tion environment (e.g. within a virtual machine or not), etc., and from the
proliferation of versions of all of the above.

Despite these challenges, we believe that practical and non-trivial LMASs can
be implemented and executed reliably, by recognizing some important charac-
terizations of ABSE.

2.2 Agent-Based Software Engineering

Our claim is that the engineering principles that motivate a robust and reliable
MAS design are those that consider an agent to be defined by its goal, role,
context, and attitude. We consider these to be first class objects in the ABSE
paradigm, and contend that by not treating these four characteristics as first class
objects, object-oriented software engineering founders in its abilities to properly
model and predict MAS and LMAS behaviors. We describe these principles as
follows.

Goal A goal provides the motivation for an agent to perform any activity at

all. It constrains the behaviors of individual agents during their interactions
with each other, and enables inferencing and predictability of individual
agent behavior as well as of the emergent behavior of an entire MAS, itself.
We assume that all agents have at least the implicit goals of wanting to
announce their existence to the multi-agent community through the adver-
tisements of their capabilities. Another implicit goal that agents may have is
the desire to maintain the reliability of their services, which results in them
seeking alternative planning and execution strategies should one route to
goal completion fail or be perceived to be unlikely.
An agent’s goals sometimes might not be completely consistent and place
the agent in a dilemma: the agent then must evaluate the tradeoffs involved
in pursuing one or another of its goals. For example, an information agent
might have the two goals of finding the most current stock information and of
acquiring information for free or as cheaply as possible. During its execution,
the agent may discover that the free or inexpensive information providing
sites respond poorly, or do not provide current information. The agent might
need to consider a pay-per-query site that charges for every query, but guar-
antees a rapid response with the latest data. The agent must evaluate and
choose which of the goals it will attempt to achieve.
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Role The notion of role is confused by the multiple connotations that it has in
human languages. We characterize it as a mesh of agent relationships, in-
cluding authority relationships, that exist within a given context. Authority
relationships are important for deriving an agent’s range of actions when
performing tasks that were delegated to it by a human, and for reasoning
about information access and divulgence rights. An agent’s role within a
given context may change. Roles allow inferences to be made about how an
agent will interact with a group of other agents, or about how it will achieve
its goals. A characterization of role for team coordination, defined in terms
of goal, authority, and some contextual indicators, is provided in [14].

Context A context establishes the conditions by which an agent’s roles, and
sometimes goals, can be defined. We do not believe that it is possible to
enumerate all the types of contexts in which an agent may be situated, but
it is important for an agent to have the ability to recognize when its context
has changed. When an agent realizes that it is in a new context, it may need
to acquire a new set of roles. Somehow, the agent must be able to determine
if the new roles form relationships with roles from other contexts in which
the agent belongs, and if so how do the roles from one context impact the de-
cisions and actions of the agent in another context. Consider the example of
an agent that provides financial portfolio management advice to an investor,
but which also should try to sell certain stock to increase the value of that
stock’s individual shares. The agent has two distinct roles derived from the
two contexts in which it may operate: trusted advisor and interested seller. If
the role of the interested seller translates into the context in which the agent
is advising, then its role as trusted advisor will be doubted. If the role of
seller does not translate to the context of advisor, unless explicitly requested
by the client, then the agent as adviser will be trusted by the client.

Attitude The attitude of an agent is: its positive or negative disposition to pro-
vide reliable and trustworthy services, degree of being deceptive or forthright,
the degree to which it will allow its actions to be verified, and its degree of
cooperativeness, which can range from altruistic, to self-interested, to being
competitive. Most agent systems begin with an implicit assumption about
the degree of cooperativeness of their agents.

Not all of the above four characteristics need to be significantly present in a
MAS application at the same time. Just as all non-distributed software applica-
tions will have varying degrees of functional and dynamic behaviors [22], agents
will have varying degrees of: motivation by goal, identity by role, awareness of
its context, and dispositions to behave with certain attitudes.

2.3 Consequences

One of the consequences of our characterizations of agent-based software en-
gineering is that agents have grounds by which to make inferences about new
priorities and consequences as the open, uncertain, and dynamic agent environ-
ment changes. That is, the power of inference enables an agent to be adaptable to
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its changing environment. Another consequence of our ABSE characterizations
is that one of the desiderata of software engineering, predictability of MAS be-
havior, changes from two perspectives. From the agent perspective, the agent is
now empowered to infer its own range of actions, perceptions, and expectations
for achieving its multiple goals, given: its multiple roles in multiple contexts, its
attitudes, and the types of heterogeneities that are in its environment. From the
perspective of the MAS observer — which may be another agent, as well — the
range of actions and behaviors in which the agent may engage can vary greatly
based on the unpredictable contexts, the roles of the agents within those con-
texts, etc., and therefore ABSE predictability estimates should be performed in
terms of ample tolerances rather than in terms of precise specifications with nar-
row tolerances. Thus, when designing a MAS, an engineer is no longer specifying
exactly how an agent will behave, but establishing the bounds and tolerances,
or an envelope of acceptable behaviors, by which agents may plan their actions,
and by which observers may judge a MAS’ behaviors.

The other principle consequences that we will discuss in this paper are the
ways in which we translate our ABSE principles into the RETSINA MAS. One
of the first derivations of these principles was to adopt a goal-driven hierarchical
task network (HTN) deliberative planning system as the general planning archi-
tecture for a RETSINA individual agent. By doing so, we could enable agents to
plan and replan subtasks and umbrella tasks for achieving their goals. One of the
ways in which we tested this scheme was to have a goal-driven, HTN planning
agent participate in multiple simultaneous auctions, with different protocols, to
achieve the goal of acquiring an object at the “globally” lowest possible price
8]

Another way in which we translate our ABSE principles into reliable imple-
mentations is the way in which we use the nature of hierarchical task networks to
provide parallel means for composing services, monitoring the execution of dis-
tributed computations and fusing the resulting data and control flow as the con-
current, computations finish, and automatically determining rollback segments
should distributed computations fail partially. We hope that how this happens
will be clearer as the reader continues into the next section.

3 The Three RETSINA Architectures

The following three sections provide abstract architectural descriptions that,
combined, address many of the heterogeneities listed in Section 2 and that con-
form to the software engineering principles mentioned in section 2.2. They are
the architecture of an individual agent, the functional architecture of a society
of RETSINA agents, and the infrastructure architecture that provides the most
practical guidance in the systems integration of agent components and technolo-
gies.



8 Katia Sycara, Joseph A. Giampapa, Brent Langley, Massimo Paolucci

Control Knowledge
Objectives Task Structures Schedule Current: | oo Eets
Actiong | and
| Belicts
| Database
i |
E Input/Cutput Message Queus |
. R 1:.:(|:|:utm11
Communication Plam[r—) Echululer “onitU
o‘fm
KOMI. “m
Messages "C:H
ter & from — = Conirol Flow
ol ér agents .@ ] — g Data Flow
Plan Library

Fig. 1. Schematic diagram of the RETSINA Agent Architecture.

3.1 The RETSINA Individual Agent Architecture

The RETSINA Individual Agent Architecture [29,1,7] is illustrated by Figure 1.
This agent architecture implements hierarchical task network (HTN) planning,
scheduling and execution monitoring [21] in three parallel execution threads,
while a fourth thread, the Communicator [23], provides the means by which the
agent communicates with the networked world. The Communicator provides a
level of abstraction that insulates the components from issues of agent commu-
nication language (ACL), communication session management, the location of
agent services, the logging and visualization of agent messages and state infor-
mation, and the communication transport being used (e.g. infrared, telephone,
base band, etc.). The HTN Planner thread receives HTN plan objectives from the
Communicator, extracts the information and instructions contained therein (e.g.
an information request, which becomes a current goal of the recipient agent),
and attempts to apply the extracted data to all the plans in its plan library.
Plan actions are partially enabled as the data is applied to them, and once all
actions of a plan are completely enabled, they are scheduled by the Scheduler.
The Scheduler maintains the enabled actions in a priority queue, and works with
the Fxecution Monitor, which actually executes the enabled actions, monitors
the execution, and handles failures. The coordination among the three planning
modules is done in such a way that high-priority actions can interrupt those
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being executed by the Execution Monitor, if those being executed are of a lower
priority.

3.2 The RETSINA Functional Architecture
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Fig. 2. The RETSINA Functional Architecture

The RETSINA multi-agent system is a collection of heterogeneous software
entities that collaborate with each other to provide a result or a service to other
software entities or to an end user. Individual agents within that collection have
roles which represent their commitment to achieving — or participating in an
activity that will achieve — a team goal. Describing agent roles in achieving
that goal is easily done by considering the functional contributions that an agent
makes, and by focusing on the requester of that contribution (e.g. its anticipated
permanence or its frequency of requests) to determine the range of communica-
tive behaviors the service provider agent should support.

The RETSINA Functional Architecture [29] is illustrated by Figure 2, which
categorizes agents as belonging to any of four agent types:
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Interface agents present agent results to the user, or solicit input from the
user. In addition, they could learn from user actions [3]. Interface agents
typically represent specific modes of input or output, such as a VoiceRecog-
nition agent or a SpeechGeneration agent, or can interact with device agents!
to determine the proper way to display information given a device’s display
characteristics, or to retrieve input from a user. Interface agent behaviors
can also be associated with task agents.

Task agents encapsulate task-specific knowledge and use that knowledge as the
criterion for requesting or performing services for other agents or humans. In
this respect, they are the typical agent coordinators of a multi-agent system.

Middle agents [38,12] provide infrastructure for other agents. A typical in-
stance of a middle agent is the Matchmaker [30,31], or Yellow Pages agent.
Requesting agents submit a capability request to the Matchmaker, which
will then locate the appropriate service-providing agents based upon their
published capability descriptions, known as advertisements.

Information agents model the information world to the agent society, and can
monitor any data- or event-producing source for user-supplied conditions.
Information agents may be single source if they only model one information
source, or may be multi-source if one information agent represents multiple
information sources. Information agents can also update external data stores,
such as databases, if appropriate.

By classifying agents functionally, we believe that it is possible to uniformly
define agent behaviors [7] that are consistent with their functional description.
For example, information agents implement four behaviors for interacting with
the data sources that they model: ask once, monitor actively, monitor passively,
and update. RETSINA agents typically use the capability-based coordination
[28] technique to task each other, which means that one agent will dynamically
discover and interact with other agents based on their need and based on the
other agents’ capability descriptions. RETSINA agents also support other forms
of coordination techniques, such as team-oriented coordination [14], auction-
based coordination [8], and Contract Net Protocol.

3.3 The RETSINA Infrastructure Architecture

Agents in a MAS are expected to coordinate by exchanging services and infor-
mation, to be able to follow complex negotiation protocols, to construct models
of each other and shared models of their tasks and world, to agree on commit-
ments, and to perform other socially complex operations. In order to interact
robustly, agents need an infrastructure of services that enable them to, for ex-
ample, find each other in open, ever changing and uncertain environments, to
communicate, and to warrant that the proper security constraints are satisfied,

! Device agents are a type of information agent that represent systems information
about devices to a MAS. Some RETSINA device agents that have been written are
for PDAs (e.g. PalmPilots and iPAQs), and WAP-enabled cell phones.
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etc. In addition, agents need conventions, such as Agent Communication Lan-
guages (ACLs), conversational policies and ontologies that define the meaning of
the terms agents use to provide the basis for achieving semantic interoperability
and agreement with each other. Moreover, agents need to share knowledge of
how to use the infrastructure, ACLs, and protocols. In this section we analyze
some of the requirements of the MAS infrastructure as it emerged from our ex-
periences with the RETSINA MAS. The reader is referred to [32] for a more
detailed explanation.

Figure 3, which describes the organizational architecture of RETSINA, rep-
resents the abstract dependencies of the upper layers of infrastructure modules
on the lower layers, for each of the two columns?. The figure is organized to
show, in the left column, the organization of the MAS , and in the right column,
how the overall architecture of the MAS is reflected in the internal modules of
an individual agent so that it may interact with the infrastructure components.
While the diagram shows the settings adopted by the RETSINA MAS, we be-
lieve that every MAS implements, in whole or in part, implicitly or explicitly,

2 For the sake of clarity, this diagram is a simplification of our own intuitions and some
details are not accurately represented. For example, the placement of the security
level should either span or be a component of multiple layers to imply that security
is a feature of the whole MAS. Similarly, performance services are also a feature of
capability to agent mapping.
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the modules described by the diagram, thus our belief that every MAS can ulti-
mately be mapped to this diagram. Note that we do not impose the requirement
or expectation that every agent must have modules that support each of the
infrastructure components: an agent implementation may include some modules
and not others. Nor does the infrastructure dictate how these modules are im-
plemented or how they should interact with each other. Rather, as has been
our experiences, the infrastructure serves as a reference to guide in understand-
ing and placing different information technologies in an architecturally sound
manner, and in informing the ways in which interoperability may be achieved
between systems of differing MAS architectures [12]. In the paragraphs that
follow we briefly describe the layers of the left column, from the bottom, up.

Operating Environment. The operating environment may force a decision
about programming language, communication protocols, network bandwidth and
persistence. RETSINA has supported agents running under a wide variety of con-
ditions, such as: different operating systems and versions thereof, spanning from
Windows and WindowsCE, to Linux, to Sun OS, to Palm OS, to WAP-enabled
cell phones; agents implemented in many different languages including: Java,
C and C++, and Lisp, to mention a few; and agents communicating directly
in: TCP/IP, UDP, HTTP, wireless, SSL, infrared, across mobile sockets [18],
low-power radio like BlueTooth?, and the X-10* powerline carrier protocol.

Communication Infrastructure. The communication infrastructure layer
defines an abstract communication channel for intra-agent information exchange.
It should be medium-independent to allow agents to communicate on any physi-
cal transmission medium, and ACL independent to be parametrized to function
under any condition. The RETSINA Communicator [23] makes use of differ-
ent network protocols such as TCP/IP and multicast; in addition, through the
DARPA Grid, RETSINA makes use of the Jini® communication infrastructure
based on remote method invocation.

ACL Infrastructure. The ACL infrastructure layer specifies the language
spoken by the agents in the MAS, for example KQML [9] or FIPA®, as well
as conversational policies [15,26] agents should adhere to in their interactions.
Furthermore, the ACL infrastructure should specify the semantics associated
with the language, whether it is based on a mentalistic model [16] or on a so-
cial interaction model [25]. The RETSINA MAS uses a subset of KQML as
the typical ACL for all the agents in the MAS, but the modular design of the
RETSINA Communicator allows agent programmers to easily use other ACLs,
such as FIPA, or novel languages that are based on XML 8,4, 5].

Management Services. Management services can support the analysis of
agent activity to support optimization or debugging in the case of failures, and
since the deployment of a MAS requires the deployment of a number of agents,
they also should support launching capabilities to minimize the burden of de-

% http://www.bluetooth.com/

* http://www.x10.0rg/

® http://www.sun.com/jini

% Foundation for Intelligent Physical Agents, http://www.fipa.org/.
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ploying a MAS and to make the management of large MASs scalable for humans.
Within the RETSINA MAS infrastructure a number of management tools have
been developed to support activity monitoring, visualization and launching [11].
It should also be noted that the infrastructure that supports agent location
and discovery also addresses a significant portion of the activities involved in
MAS configuration management.

Performance Measurement. The performance measurement layer pro-
vides a set of protocols and tools that allow an agent to learn about the trust
and reliability of other agents. Agents should also monitor their own behavior to
verify that they are meeting their expected requirements. Self monitoring capa-
bilities have led to the implementation within RETSINA of agents that are able
to clone themselves [24] when overwhelmed by many tasks delegated to them to
increase the likelihood that they can fulfill all their assigned tasks.

Security. We identified two dimensions of security: communication security
and infrastructure integrity. Communication security guarantees privacy so that
a message cannot be eavesdropped, authentication so that an agent is certain of
its partner’s identity, and non-repudiation, which prevents agents from denying
that they took part in a transaction. Infrastructure integrity guarantees that no
agent can manipulate the information stored in the infrastructure components
such as the Agent Name Server or the Matchmaker, and that the contents of
a message cannot be changed by an unauthorized agent. RETSINA supports
communication security through the use of a Certificate Authority that provides
unique public and private keys to agents in the MAS [37]. Infrastructure integrity,
has been achieved by strictly controlling the operations an agent can do against
the infrastructure components to protect their load and prevent unexpected uses.
It has also been studied formally in the way in which it applies to protocols for
electronic commerce [36].

Name to Location Mapping and Capability to Agent Mapping. The
Name to Location Mapping module maps an agent identifier (e.g. name) to the
specific location where an agent may be found. The Capability to Agent Mapping
refers to processes of semantic matchmaking [30,31], which were described in
Section 3.2. Although, for reasons of space, we cannot elaborate on the many
complexities and heterogeneities that are embodied by these layers, these two
layers are at the heart of a robust and scalable MAS.

MAS Interoperation. This modules permits multiple agents of different
MAS architectures to interoperate with each other despite their architectural dif-
ferences. As mentioned earlier, interoperability across MAS boundaries is based
on the identification and exploitation of similarities between the two agent archi-
tectures, across multiple infrastructure levels. Details of the issues involved are
provided in [12]. In addition to interoperating with the Open Agent Architecture
(OAA) [20] and DARPA Grid [6] MASs, we have also developed interoperators
with Jini services.
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4 Lessons Learned

Given the breadth and scope of our experiences in developing the RETSINA
system and reference architectures, there are many lessons learned, evaluations
of our architectures, and metrics that we could discuss. Given limitations of
space, we limit our lessons to how we deal with heterogeneity, and how we
respond to the three questions which motivated the workshop.

4.1 Dealing with Heterogeneity

One of the lessons learned from designing the RETSINA MAS for the types
of heterogeneity listed in Section 2.1 is the confirmation that there are prac-
tical merits to designing a MAS for such levels of heterogeneity. The practical
merits are: the ease by which components can be combined to achieve better
scalability, the achievement of new functionality, and the achievement of novel
functional dimensions. The following are some example derivations of MAS func-
tionality that were accommodated by the design of the RETSINA MAS. That is,
these software artifacts, listed according to the heterogeneity that they address,
were implemented without needing to retroactively modify any of the existing
RETSINA architecture.

Communications Heterogeneity Separating the implications of contractual
commitment in agent-to-agent requests made it possible to interoperate be-
tween any RETSINA and OAA agent when designing the RETSINA —
OAA_InterOperator [12]. In contrast, the lack of such separation inhibited
scalability of agent interoperations between two other agent systems in the
same experiments. Also, by using a “loosely coupled” agent message pass-
ing scheme as opposed to a “tightly coupled” remote method invocation,
RETSINA agents need only “pick and choose” the arguments and param-
eters that they need or can translate, and can ignore the rest if they are
not essential to the computation. Nor is it necessary to modify or have ac-
cess to an agent’s program code to effect new communications between two
previously existing agents.

Coordination Heterogeneity In RETSINA, the coordination model is pro-
vided by each individual task agent”, which employs the most appropriate
coordination model for its task. Since task agents can be added and executed
as needed, RETSINA allows for a wide variety of agent coordination models
to interoperate with each other.

Environmental Heterogeneity We have describe schemes by which agents
that represent physical robot capabilities help determine role assignments
of the robots in a variety of heterogeneous team-coordination tasks [13,14].
Our location discovery infrastructure, e.g. local and hierarchical agent name
service, local and wide area discovery, and viral agent-to-agent community
formation services [19] provide agents with a variety of ways to find each
other in different network topologies and administrative domains.

7 See section 3.2.
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Functional Heterogeneity A simple extension of device agents to include spe-
cific input and output properties of their host device enabled RETSINA in-
terface agents to search for the most appropriate display device for a user in a
computer rich environment. Alternatively, if the user has limited display ca-
pabilities available, such as limited screen real estate on a WAP-enabled cell
phone or PDA, then the RETSINA interface agents would use that device
agent-provided information to modify the display of information®.

Semantic Heterogeneity In addition to the matchmaking approach to achiev-
ing semantic interoperability among agents and services [5, 30, 31], there are
also issues of different implementation-dependent representational schemes,
such as those encountered in the translation of RETSINA and OAA adver-
tisements [12].

Systems Heterogeneity To assist systems administrators in the allocation,
configuration, launching and monitoring of MAS applications in a heteroge-
neous computing environment, we developed RECoMa, the RETSINA Con-
figuration Manager [11]. RECoMa uses the RETSINA infrastructure discov-
ery services, capability-based matchmaker, and device agents that represent
the capabilities and resource loads of the heterogeneous computing platforms
on which the agents are running, in order to help systems administrators per-
form their duties.

4.2 Lessons Relevant to the Three Workshop Goals

The report from the SELMAS workshop [10] identified three concerns as the
goals of the workshop: (1) to determine the overlap and the integration of agent-
based software engineering (ABSE) and object-oriented software engineering for
multi-agent systems (OOSE for MAS); (2) to understand the issues in the agent
technology that hinder or improve the production of large-scale distributed sys-
tems; and (3) to provide a comprehensive overview of software engineering tech-
niques that may successfully be applied to deal with the complexity associated
with realistic multi-agent software.

To address the first concern, our perspective is that ABSE focuses MAS de-
sign consideration on what declaratively defines and motivates the agent system,
whereas OOSE for MAS focuses on how those motivations will be achieved and
implemented. From the RETSINA perspective, the principles of goal, role, con-
text and attitude are motivated by the task, which is represented in the MAS
by the task agents. Task agents provide the overall coordination for any ad hoc
assembly of agents, so it is fitting that the principles of agent-based software en-
gineering motivate considerations that define their nature. For example, consider
how all four first class ABSE principles simultaneously enter into consideration
of whether a task agent will need to cooperate as a peer with other task agents
and therefore need to define and understand notions of subgoals and roles for
itself and peers, while operating in an agent social context of peer-to-peer coop-
eration with a presumed attitude of mutual trust and desire to collaborate. Such

® http://www.cs.cmu.edu/ softagents/mocha.html
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considerations will motivate the need to employ mechanisms of team-oriented
plan negotiation, revision and execution monitoring. Contrast these considera-
tions, for example, with those that a task agent might have if it is participating
in a competitive auction in which its bidding might be negatively influenced by
devious agents.

We perceive OOSE for MAS, on the other hand, as informing the interac-
tions of the components of the individual layers of the RETSINA Infrastructure
Architecture, in which the issues of reliability and predictability in the tradi-
tional OOSE sense apply to the interactions between the individual agent and
the MAS infrastructure as a whole, and vice versa. By mapping OOSE for MAS
to this architecture, we feel that we respond directly to the concerns of how
to model MAS, what design standard methodologies are appropriate for MAS
without misusing the abstractions that they provide, and to the overall question
of how ABSE and OOSE for MAS differ.”

In response to the second concern, it has been our experience that the issues
which hinder agent technology are derived from the many heterogeneities, com-
plexities and views that confront the designer of a large-scale MAS, particularly
for open, uncertain and dynamic computing environments. The first step, in a
way, is to know when to focus on them, and when to know that many of these
heterogeneities and complexities will be addressed automatically by MAS infras-
tructure. We feel that MAS designers can derive inspiration for identifying their
heterogeneities and for estimating how they will be resolved by our discussions
and examples in sections 2.1 and 4.1.

MAS designers can benefit from many off-the-shelf technologies, but know-
ing how to map those technologies to a MAS implementation sometimes imposes
significant overheads to MAS designers. Hence, we view MAS infrastructure and
agent libraries to interact with that infrastructure, as is present in the RETSINA
libraries, and MAS architecture maps such as the RETSINA Infrastructure Ar-
chitecture, as critical enablers to the scalability of large-scale distributed systems.

Regarding the tacit question of what makes a MAS large-scale, we take the
position that issues of scale in terms of number of stake holders and numbers of
agents need to be evaluated in light of the tasks that motivate the agents’ inter-
actions. Based on parallels with human social institutions, tasks are iteratively
decomposed into subtasks and large populations into smaller communities until
the proper dimensions of task complexity and participants are reached. In other
words, issues of interaction complexity of large numbers of agents in complex
tasks are often reduced by the human approach to solving the task, so it is dif-
ficult to study in the abstract. Those scalability issues that can be studied in
absence of specific tasks are those that relate to infrastructure scalability, which
often provides services of search, discovery, location, and community formation.
And, given mechanisms of formal analysis and protocol simulation systems, these
types of analyses are feasible without actually implementing large-scale M ASs.

9 See the bullet, How is multi-agent software engineering different from object-oriented
software engineering, in section 8. Workshop Discussions, Lessons Learned
and Lines for Future Research of the workshop report [10].
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While the papers of the workshop respond collectively to the third work-
shop goal, we would like to add an observation that was not reflected in the
workshop summary but does respond to both the second and the third goals.
Namely, by “empowering” agents with the autonomy to pick and choose with
which other agents and services they will work, distributed network applica-
tion designers are “delegating” significant portions of their design and execution
overheads to automation. When this happens, the emphasis of design consid-
erations shift appropriately to issues of capability representation, recognition,
and understanding, and to the specifications of tolerances by which agents and
services will be composed and evaluated. In a few of our test application scenar-
ios we have seen how the enabling of agents to dynamically locate each other
across a variety of network topologies and administrative domains significantly
reduces the human overhead of managing the execution of non-trivial MASs in
a partially redundant, heterogeneous computing environment [11].

5 Conclusions

The contributions of this paper are multiple, from multiple perspectives. First,
we identified some high-level challenges that face multi-agent system designers,
and identified seven types of heterogeneities that render the challenges more con-
crete in addition to providing some initial metrics by which MAS architectures
can be evaluated. Second, in our belief that agent-based software engineering
is distinct from object-oriented software engineering for MASs, we named and
described the four principles that should be considered as first class objects in
ABSE: goal, role, context and attitude. A key motivation for identifying these
objects as first class is the generality with which they can determine which
MAS features will be needed for a specific MAS application. Third, we were
able to describe the three RETSINA architectures, combined, in a way that
illustrated their mutually complementary nature, and which also provided an
indirect validation and verification of our choice of heterogeneity types. And a
fourth contribution is the recognition that through our descriptions of challenges,
heterogeneities, and the RETSINA architectures, we were able to respond to the
three goals of the workshop, and to observe how MAS infrastructure and de-
sign principles also reduce the dimensionality of ABSE preoccupations for MAS
designers. Although ABSE is in its infancy and is therefore relatively less artic-
ulate of its precepts than traditional and object-oriented software engineering,
it certainly has features that make it a unique discipline in its own right, and
promising in the guidance that it can offer to the reliability of large-scale multi-
agent systems.
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