
A Broker for OWL-S Web services

Massimo Paolucci, Julien Soudry, Naveen Srinivasan and Katia Sycara

The Robotics Institute, Carnegie Mellon University

Abstract
Brokers are widely used in distributed information

systems such as Multi-agent systems and distributed
databases. Yet, there has not been a detailed analysis of
Brokers’ architecture and no general solution has been
proposed on how the Brokers’ tasks have to be
accomplished. In this paper, we provide a detailed analysis
of these tasks, and an implementation based on OWL-S.
We show that while OWL-S is adequate to provide all the
information that is needed by the Broker, the
straightforward implementation of the Broker using OWL-S
results in a paradoxical situation. We solve this paradox by
extending the Process Modeling language of OWL-S.
Finally, we propose a solution to a number of issues that
arise in the brokered management of the interaction
between Web services such as the abstraction from queries
to capabilities required to solve that query, and management
of the knowledge required by the Broker to control the
multi-party interaction.

Introduction
Brokers facilitate the interaction between two or more
parties. For example, if two parties want to communicate,
but they do not share a common language, Brokers may
provide translation services, or if the two parties do not
trust each other, a Broker may provide a trusted
intermediary (e.g. an escrow service for e-commerce
transactions). Furthermore, Brokers may provide
anonymization for one (or both) of the parties, by
mediating the transaction.

Not surprisingly, Brokers are one of the main discovery
and synchronization mechanisms among autonomous
agents [9][26]. Examples include the OAA Facilitator [18]
which Brokers between OAA agents that collaborate
toward the solution of a problem. Furthermore, Brokers
have been widely used in many agents applications such as
integration of heterogeneous information sources and Data
Bases [16], e-commerce [14] [11], pervasive computing
[6] and more recently in coordinating between Web
services in the IRS-II framework [20]. Finally, theoretical
studies [9] [26] show that Brokers can perform a range of
coordination activities such as load balancing between
different agents, or anonymizing between requesters and
providers.

Because of its properties and its wide applicability, a
Broker would be a natural candidate component for the
Web Services infrastructure. However, the current Web

services architecture [4] does not include Brokers with rich
functionality of discovery and mediation, as part of the
Web Services infrastructure.

In this paper, we provide an analysis of the requirements
of a Broker that performs both discovery and mediation
between agents and Web services. We show that such a
Broker performs very complex reasoning tasks that include
(1) the interpretation of the capability advertisements of
service providers; (2) the interpretation of the requesters’
queries that must be fulfilled by a service provider; (3)
finding the best provider based on the requester’s query;
(4) invocation of the selected provider on behalf of the
requester, interacting with the provider as necessary to
fulfill the query, and (5) returning the query results to the
requester. The accomplishment of these tasks requires
ontologies to describe capabilities of Web services, their
interaction patterns and the domain they operate on, and a
logic that allows reasoning on those ontologies.
Furthermore, we will provide a description of our
implementation of a Broker using OWL-S [21].

The rest of the paper is organized as follows. In section
2, we present an overview of OWL-S. In section 3, we
provide a detailed analysis of the Broker, exploring its
interaction protocol and the reasoning tasks it has to
accomplish. In section 4, we show how the current OWL-S
specification supports the reasoning of the Broker and
where this specification falls short. In section 5, we
provide extensions to OWL-S to address some of the
shortcomings of the current specification as regards
support for Broker’s reasoning tasks. In particular, we
describe the exec extension of OWL-S. In section 6, we
describe the basic features of our implementation and
provide details on how we address the reasoning problems
of the Broker. In section 7, we conclude.

OWL-S
OWL-S [21] is a Semantic Web Services description
language that enriches Web Services descriptions with
semantic information from OWL [8] ontologies and the
Semantic Web [3]. OWL-S is organized in three modules:
a Profile that describes capabilities of Web Services as
well as additional features that help to describe the service.
A Process Model that provides a description of the activity
of the Web Service provider from which the Web Service
requester can derive information about the service
invocation. A Grounding that is a description of how

 2

abstract information exchanges described in the Process
Model are mapped onto actual messages that the provider
and the requester exchange.

A Web Service capability is the description of the
service functionality, i.e. what the service does. For
example, the capability of Barnes and Noble, a bookseller,
is to sell books. The capability of a Web Service can be
viewed in two ways: first as a service category within an
ontology of services (e.g. selling books is-a selling
products) or as a transformation of a set of inputs to a set
of outputs (e.g. selling books transforms the inputs “book
title” and “book author” to the output “book invoice”). The
OWL-S Profile describes capabilities of Web Services by
the transformation that they produce. In order to make its
capabilities known to service requesters, a service provider
advertises its capabilities with infrastructure registries, or
more precisely middle agents [26], that record which
agents are present in the system. UDDI [25] is an example
of a middle agent, that can make only limited use of the
information provided by the OWL-S Profile. The OWL-
S/UDDI Matchmaker [22] [23] is another example, which
combines UDDI and OWL-S. Finally, the Broker defined
in this paper is another example of a middle agent that
performs both discovery and mediation.

The second module of OWL-S is the Process Model.
The Process Model has two aims: the first one is to show
how the provider achieves its goals, and the second to
provide the requester-provider interaction protocol. The
first goal is achieved by allowing the provider to make
public a description of its computation, to the extent that
the provider feels comfortable to do so. OWL-S
distinguishes between two types of processes: composite
processes and atomic processes. Atomic processes
correspond to operations that the provider can perform
directly. Composite processes are used to describe
collections of processes (either atomic or composite)
organized on the basis of some control flow structure. For
example, a sequence of processes is defined as a composite
process whose processes are executed one after the other.

Other control constructs supported by OWL-S are cond for
conditional expressions, choice for non-deterministic
choices between alternative control flows, and spawn for
spawning a new concurrent thread. Finally, OWL-S
includes looping constructs like while and repeat-until.

The execution of a process produces a state transition
where either some information is exchanged with some
partner, or the agent produces a change in the environment.
A state is defined as a tuple (ϕ,Π) where Π represents the
set of concurrent threads, and ϕ the state of the thread the
process is executed in [1]2. Processes modify the state by
either changing the state of their thread ϕ, for instance, an
atomic process may read a message from a port, or modify
the set of concurrent threads Π through the spawning of
new threads or the closing of other threads. The formal
semantics of the OWL-S composite and atomic processes
is shown here in Table 13. Looping constructs are
implemented as combinations of sequences and conditions.

Each rule in Table 1. specifies how the execution of a
process changes the overall state. Sequences of processes,
expressed here by the temporal constraint return v >>=e,
applies e to the results v of the previous step. The
execution of a spawn operation, results in the beginning of
the execution of a new thread (e,∅), while it returns no
value in the current thread (return ()). The other rules
specify the result of executing other types of control
constructs, CondTrue specifies the results of the execution
of a conditional statement if the condition is true; a similar
rule would be used for a false condition. ChoiceLeft
specifies the results of the execution of a non-deterministic
selection of the first process of a list; a similar rule would
be used for other choices. Finally, Atomic describes the
results of executing an atomic process, which has an effect
on the state of the current thread ϕ but it does not modify
the set of concurrent processes ∏.

The last module of OWL-S is the Grounding that
describes how atomic processes which provide abstract
descriptions of the information exchanges with the
requesters are transformed into concrete messages or
remote procedure calls over the net. Specifically, the
OWL-S Grounding is defined as a one to one mapping
from atomic processes to WSDL [5] input and output
message specifications

1 The execution semantics presented in [1] does not
include an explicit notion of atomic process, rather atomic
processes are constructed as a combination of operations
that receive messages, send messages, and apply functions.

2 The execution semantics that we use was originally
proposed for DAML-S 0.6. While many aspects of the
language changed in the evolution to OWL-S 1.0 that we
use here, the execution semantics of the basic constructs
of the Process Model is still valid.

3 We provide here a very brief explanation of the OWL-
S execution semantics. A complete presentation is in [1].

Seq
-

Π,E[return v >>=e],ϕ)→Π,(E[(e
v)],ϕ)

Spawn
-

Π,(E[spawn
e],ϕ)→Π,(E[return()],ϕ),(e,∅)

CondTrue
-

Π,(E[cond C e1
e2],ϕ)→Π,(E[e1],ϕ)

ChoiceLeft
Π,(E[e1],ϕ)→Π′,(E[e1′],ϕ′)

Π,(E[choice e1
e2],ϕ)→Π′,(E[e1′],ϕ′)

Atomic1
-

Π,(E[atomic e],ϕ)→Π,(E[return
()],ϕ′)

Table-1. Execution Semantics of OWL-S control structures

 3

The Web Services philosophy of interaction between a
service requester and a service provider is that a requester
would need to know the information that a service provider
requires at different stages of the interaction. For example,
in industrial standards, the requester-provider interaction is
governed by knowledge of the provider’s Web Services
Description (WSD) given in WSDL, and in Semantic Web
Services, the requester-provider interaction presupposes
knowledge on the part of the requester of the Process
Model (plus WSD) of the provider.

Overview of the Broker
 Any transaction involving a Broker requires three parties.
(Figure 1). The first party is a requester that initiates the
transaction by requesting information or a service to the
Broker. The second party is a provider which is selected
among a pool of provider as the best suited to resolve the
problem of the requester. The last party is the Broker itself.

The protocol in Figure 1 can be divided in two parts: the
advertisement protocol, and the mediation protocol. In the
advertisement protocol, the Broker first collects the
advertisements of Web services that are available to
provide their services. These advertisements, shown in
Figure 1 by straight thin lines, are used by the Broker to
select the best provider during the interaction with the
requester. The mediation protocol, shown in Figure 1 using
thick curve lines, requires (1) the requester to query the
Broker and wait for a reply while the Broker uses its
discovery capabilities to locate a provider that can answer
the query. Once the provider is discovered, (2) the Broker
reformulates the query for that provider, and finally
queries it. Upon receiving the query, (3) the provider
computes the reply to the Broker and finally (4) the Broker
replies to the requester.

The protocol described above shows that the Broker
needs to perform a number of complex reasoning tasks for
both the discovery and mediation part of its interaction.
The discovery process requires two different reasoning
tasks. The first one is to abstract from the query of the
requester to the capabilities required by a provider in
order to answer that query. The second process is to
compare/match the capabilities required to answer the
query with the capabilities of the providers to find the best
provider for the particular query.

The mediation task of the Broker requires that the
Broker must transform the query of the requester into a
query to send to the provider. This process of mediation
has two aspects. The first one is the efficient use of the
information provided by the requester to the Broker, the
second one is the mapping from the messages of the
requester to messages to the provider and vice versa.

Since the requester does not know which is the relevant
provider, the (initial) query it sends to the Broker and the
query input that the (selected) provider may need in order
to provide the service may not correspond exactly.

Consider the example of a requester that asks to book the
cheapest flight from Pittsburgh to New York. Besides the
trip origin and destination, the selected provider may
expect date and time of departure. In the example, the
requester never provided the departure time, and the
provider has no use for the “cheaper” qualifier. It is the
task of the Broker to reconcile the difference between the
information that the requester provided and the
information that the provider expects, by (1) recognizing
that the departure time was not provided, and therefore it
should be asked for, and (2) finding a way to select the
cheapest flight among the ones that the provider can find.

Moreover, the Broker may have to perform the mapping
between ontologies and terms used by the two parties. For
example, the requester may have asked for information on
IBM whereas the provider expects inputs in terms of
International Business Machine Corporation. Another,
more complicated mismatch may be at the level of
concepts and their relations in the ontologies used for
inputs and outputs of the provider vis a vis the ontological
information used by the requester. For example, the
requester may have asked for the weather in Pittsburgh,
but instead the provider can report only the weather at
major airports. The task of the Broker in this case is to
infer which is the most appropriate airport, and use it in the
query to the provider. Therefore, instead of asking for the
weather in Pittsburgh, the Broker asks the provider for the
weather at PIT, where PIT is the code of the Pittsburgh
International Airport.

Finally, the Broker has the non-trivial task of translating
between the different syntactic forms of the queries and
replies. The examples that we discussed above assume
semantic mismatches between the different messages that
the Broker has to interpret and send. These messages have
to be compiled in an appropriate syntactic form, and
despite their semantic similarity, the messages would be

Figure-1. The Broker's Protocol

 4

realized in very different ways. The task of the Broker is
to resolve syntactic differences, and to formulate messages
that all the parties can understand.

In conclusion, the Broker performs a number of
complex reasoning tasks that range from discovery to the
interpretation, translation and compilation of messages.
To accomplish these tasks, the Broker needs the support of
a formal framework that allows complex reasoning about
agents, what they do and how to interact with them.

OWL-S Support for the Broker
The OWL-S language and ontology provides constructs to
support the Broker in both discovery and mediation
between Web services. The OWL-S Profile supports the
discovery process by providing a representation of
capabilities of Web services and agents. The OWL-S
Process Model and Service Grounding provide support for
the interaction between the Broker and the requester and
provider of the service.

The Service Grounding provides a mapping from the
semantic form of the messages exchanged as defined in the
Process Model, to the syntactic form as defined in the
WSDL input and output specifications. The Grounding
provides to the Broker the mapping from the abstract
semantic representation of the messages to the syntactic
form that these messages adopt when they become
concrete information exchanges. The Broker uses this
mapping to interpret the messages that it receives and
compile the messages that it sends to the requester or to the
provider.

A number of capability matching algorithms for OWL-S
based Web services have been proposed (see
[2][10][15][22]) which exploit OWL ontologies and the
related logics to infer which advertisements satisfy a
request for capabilities. These algorithms can be used to
solve the problem of matching from the capabilities
required for the query to the capabilities of the available
providers.

 The abstraction from the requester’s query to the
capabilities required, is more complicated. First of all,
there is no explicit support in OWL-S for queries,
nevertheless, it is easy to use the OWL Query Language
(OWL QL) [7][12] which relies on the same logics
required by OWL-S. The transformation is still an open
problem, which, to our knowledge, has never been
addressed. In section 6.1, we will propose an abstraction
algorithm to transform queries into capabilities.

After selecting a provider, the Broker has access to the
provider’s Process Model from which it can derive the
provider’s interaction protocol by extracting what
information the provider will need, in what order, and what
information it will return. For the rest of the interaction
the Broker acts as the provider’s direct requester.
However, this relation is not straightforward. Since the
Broker acts on behalf of the requester, it must somehow

transform the requester’s initial query (and all subsequent
messages) into a query (or a sequence of queries) to the
provider. This transformation is necessary since the
requester cannot “see” directly the Process Model of the
provider, but interacts with the provider only through the
Broker. We show how this transformation can be done in
section 6.2.

Furthermore, since the requester initiated its query
without having access to the provider’s Process Model
(since the provider was not known at the time of the
requester’s query initiation), the Broker needs to infer what
additional information it needs from the requester. Once it
has done that, it then uses this knowledge to construct a
new Process Model. This new Process Model is presented
by the Broker to the requester, not as the Process Model of
the selected provider but as the process Model of the
Broker. This makes sense since the requester interacts only
with the Broker. The new Process Model indicates to the
requester what information is needed and in what order.
How the Broker infers the additional information it needs
from the provider and how it constructs the new Process
Model is presented in section 6.2.

Since, to the requester, the Broker is a (representative
of) the provider, the Process Model of the Broker should
contain the crucial elements of the Process Model of the
provider. However, since the Broker is unaware of the
provider until it has discovered and selected the provider
based on a requester’s query, the Broker is faced with a
challenge: it must publish a Process Model that depends on
the provider’s Process Model, but the provider is not
known until the requester reveals its query. On the other
hand, the requester cannot query (interact with) the Broker
until the Broker publishes its Process Model. The result is
a paradoxical situation in which the Broker cannot reveal
its Process Model until it receives the query of the
requester, but cannot receive the query from the requester
until it publishes its Process Model.

Essentially, the Broker paradox results from an
inflexibility of the OWL-S specification of service
invocation, which requires the specification of the Process
Model before the interaction, and it does not allow any
means to modify the Process Model during the interaction.1

Extending OWL-S
The solution of the Broker’s Paradox that we propose
requires an extension of the specification of the OWL-S
Process Model to allow the flexibility to dynamically
modify an agent’s Process Model during the interaction.
As a result, the Broker can provide an initial, provider-
neutral, Process Model to the requester, and then modify it

1 The current industry proposed standards have the same
inflexibility, since the Web services Description must be
specified once and for all with no provisions for on-the-fly
loading or modification.

 5

consistently with the requirements of the Process Model of
the provider. This results in the New Process Model, which
the requester uses in its interactions with the Broker.

To implement this solution, we propose to extend the
OWL-S Model Processing language by adding a new
statement, that we call exec. The exec statement takes as
input a Process Model and executes it. Therefore, the
Broker can compile a new Process Model, return it as an
output of one of its processes, and then use the exec to
turn the new Process Model into executable code that
specifies the Broker’s new interaction protocol.

The provider-neutral Process Model of the Broker is
shown in Figure 2. It shows that the Broker performs a
sequence of three operations. The first operation is
GetQuery in which the Broker gets the query from the
requester. The second operation is Discover in which
the Broker uses its discovery capabilities to find the best
provider. The result of the Discover process is a new
Process Model that depends on the provider found.
Finally, the Broker performs the exec operation which
passes control to a new Process Model. This change of
control is shown in the figure by the three small rectangles
that display processes that will be run as a consequence of
the exec.

The use of the exec solves the Broker’s Paradox by
removing the inflexibility of the OWL-S Process Model.
The exec operation allows the separation of service
discovery from service invocation and interaction. First
the discovery is completed, then the interaction, which
depends on the discovered provider, is initiated through the
exec.

One important question that is left unanswered is
whether there is a clever way to use OWL and OWL-S that
does not require the extension of the language that we
propose. Unfortunately, such an extension does not exist,
because neither OWL nor OWL-S provides a way to
transform a term into a predicate of the logic, which is the
essential step that is performed by the exec.

Formal Semantics of exec
Intuitively, the semantics of the exec operation is to
execute the processes that it contains as arguments. In
other words, the state transformation produced by exec(P)
is equivalent to the state transformation produced by the

direct execution of P. This intuition is captured by the
axiomatic semantics of exec, described in Table 2, which
is a natural extension of the axiomatic execution semantics
of OWL-S shown in Table 1.

The execution of an exec statement is shown in Table 2.
This rule specifies that the execution of exec(P) in the state
(∏,ϕ) should produces the same results that are produced
by the execution of P in the same state in the state (∏,ϕ).
This definition allows us to transform the specification of a
process P into the execution of the process, which is
exactly what we are seeking with the definition of exec.

Π,(E[P],ϕ)→Π′,(E[P′],ϕ′) exec(P)

Π,E[exec(P)],ϕ)→ Π′,(E[P′],ϕ′)

Table-2. The execution semantics of the exec statement

Broker Implementation
We have implemented a prototype of a Broker that makes
use of OWL-S with the exec extension described above to
mediate between agents and Web services. We based our
implementation of the Broker on the OWL-S Virtual
Machine (OWL-S VM) [24], which is a generic OWL-S
processor that allows Web services and agents to interact
on the basis of the OWL-S description of the Web service
and OWL ontologies. In the implementation of the
Broker, we extended the OWL-S VM to include the
semantics of the exec. Furthermore, we developed the
reasoning that allows the Broker to perform discovery and
to mediate the interaction between the provider and the
requester.

Broker-based discovery
The Broker expects from the requester a query in OWL-
QL format [12], where the predicate corresponds to a
property in the ontology, the terms in the query are either
variables, or instances that are consistent with the semantic
type requirements of the predicate.

The discovery process takes as input the query of the
requester and generates as output the advertisement of a
provider (if any is known to the Broker) that can answer
the query. The discovery process has three steps. First the
Broker abstracts from the query to the capabilities that are
required to answer that query, thus constructing a service
request. Second, the Broker finds appropriate providers by
matching the capabilities required to solve the query (the
service request) with the capability advertisements of
providers. Third, the Broker uses similarity of the match
of the service request and the returned advertisements as
well as other parameters in the returned Service Profiles to
select the most appropriate provider. The matching of the
service request against the advertised capabilities was
implemented using the OWL-S matching engine reported
in [22] and [23].

S e q u e n c e

G e t Q u e r y e x e cD i s c o v e r

Figure-2. Broker's Process Model

 6

The automatic abstraction from the requester’s query to
a service request is, to our knowledge, an unexplored
problem. The abstraction process must respect the
constraints of the OWL-S discovery process, namely
generation of an OWL-S service profile with the
appropriate required service inputs and outputs that (1)
reflected the semantic content of the query and (2)
reflected the requirements of the generated service request.

1. set V = set of variables in the query
2. set T= set of instantiated terms in the query
3. set I= abstraction of each term in T to its immediate

class
4. use predicate definition in the ontology to abstract

variables in V to their class
5. set O= abstraction of each variable in V to its class
6. generate a service request with input I and outputs O

Figure 3: The abstraction algorithm

The instantiation algorithm follows the 6 steps listed in
Figure 3. In the steps 1 and 2, terms from the query are
extracted distinguishing between variables and instantiated
terms. In step 3, the set of inputs of the service request is
derived by abstracting the instantiated terms to their
immediate class. For instance, if one term were Pittsburgh,
it would be abstracted to City (assuming the presence of a
location ontology). Step 4 is needed to handle variables.
In OWL-QL variables are of class Variable, but there is no
constraint on the type that they have to assume. We use
the definition of the predicate in the ontology to constrain
the type of the values of the variable to the most restrictive
class of values that they can be assigned to. In step 5, we
use the abstraction in step 4 to generate the set of outputs
O. Finally, in step 6, the service request is generated by
specifying the inputs and the outputs1.

1. KB= knowledge from query
2. I= input of process
3. for i∈I
4. select k from KB with the same semantic type of I
5. if k exists
6. remove i from I
Figure-4. Algorithm for pruning redundant information

Broker-based mediation
After the Broker has selected a provider, it must mediate
between the provider and the requester. The mediation
process depends on the Process Model of the provider
which specifies what information is required and when. In
theory, the Broker may just present to the requester the
Process Model of the provider and limit mediation to
message forwarding. But this solution is very inefficient,

1 Inputs and outputs are the most important information
for matching; if the query includes additional information,
this could also be abstracted. Currently, we did not concern
ourselves with this issue.

since it ignores the information that the requester already
provided to the Broker. For example, the requester may
ask the Broker to book a trip to Pittsburgh. The Broker
may find a Travel Web service that asks for departure and
arrival location. The task of the Broker is to recognize that
arrival location information has already been specified so
the Broker needs to ask the requester for the departure
location only.
The algorithm for pruning redundant information is shown
in Figure 4. First, the Broker records the information
provided by the query in a KB (step 1), and the inputs of
the process (step 2). Next for each input i, the Broker
looks in the KB for information that it can use in place of i.
If any is found, i is removed from the inputs of a process.

Broker-based Interaction
The architecture of the Broker is shown in Figure 5. To
interact with the provider and the requester the Broker
instantiates two ports: a server port for interaction with the
requester (since the Broker acts as a provider vis a vis the
requester) and a client port for interaction with the
provider (since the Broker acts as a client vis a vis the
provider). The functionalities of the server port are
described using OWL-S. Specifically, the Broker exposes
to the requester its Process Model, Grounding and WSDL
specification. The client (requester) uses these
descriptions to instantiate an OWL-S Virtual Machine to
interact with the Broker. Since the provider-neutral
Process Model exposed by the Broker makes use of the
exec extension described in section 5, the OWL-S Virtual
Machine used by the requester also includes an
implementation of the axioms for exec that we presented in
section 5.1. The client port is also implemented as an
OWL-S Virtual Machine that uses the Process Model,
Grounding and WSDL description of the provider to
interact with it.

BrokerBroker

OWL_S VM

Advertisement DB

Matching
Engine

Query
Processor

KB

ProcessModel
Grounding
WSDL

Client
Port

RequesterRequester ProviderProvider
Server PortOWL_S VM

Client
Port

ProcessModel
Grounding
WSDL

Server Port

Discovery Engine

Figure-5. Broker's Architecture

The reasoning of the Broker happens in the Query
Processor (see Figure 5) that is responsible for the

 7

translation of the messages between the two parties and for
the implementation of the algorithms in Figures 3 and 4.
Specifically, the Query Processor stores information
received from the query in a Knowledge Base to be used as
needed during the execution. Furthermore, the Query
Processor interacts with the Discovery Engine, which
provides the storage and matching of capabilities, when it
receives a capability advertisement and when it needs to
find a provider that can answer the query of the requester.

Conclusion
Despite the wide use of Brokers in different aspects of
distributed systems, and despite the many uses Brokers can
have in the discovery and mediation of Web Services, no
detailed analysis of what tasks a Broker should carry on
has been proposed. One contribution of this paper is to
provide such as analysis. In the course of this analysis, a
few challenges were uncovered, and solutions for these
challenges were presented.

The first of the challenges is the “Broker’s paradox”,
namely that the Broker cannot publish a Process Model
that is based on a yet unknown provider before it receives
a request query but the requester cannot send a query until
it knows the Broker’s process Model. This paradox arises
from the OWL-S (and WSDL among others) Web Service
interaction specification that is based on the declarative
specification of a process model that guides the requester
and provider interaction. To address the Broker paradox,
we extended the OWL-S Process Modeling language with
an exec operation that allows the dynamic modification of
the Broker’s Process Model during its execution to include
Process Models of dynamically discovered new parties.
We provide a formal semantics for the exec operator that is
grounded in the formal execution semantics of OWL-S,
and we show how it can be used as a basis for the use of
OWL-S to represent the interactions of more than two
parties.

A second set of challenges derives from the
management of the mediation between the provider and the
requester. To address these challenges, we developed a
method for abstracting from a service query to a service
request. We proposed an algorithm to address this issue.
Furthermore, we provided an algorithm for the Broker to
make efficient use of the knowledge provided by the
requester during the interaction with the provider.

Crucially, the issues emerging with the mediation
between the provider and the requester are not unique to
Web services Brokering, rather they comes up in web
services composition as well. In the context of Web
service composition, a planner may issue a goal that it
wants to subcontract. The task of the Web service is first
to abstract from the specific goal to a capability description
of a provider that can solve the goal, then use its current
knowledge, and the goal, to interact with the provider. In

current research, we are looking to integrate our work in
the context of Brokering to automated composition.

Acknowledgements
We would like to thank Khalid El-Arini for his
contribution to early development of this work. This work
has been was funded by the Defense Advanced Research
Projects Agency as part of the DARPA Agent Markup
Language (DAML) program under Air Force Research
Laboratory contract F30601-00-2-0592 to Carnegie Mellon
University.

References
[1] Ankolekar, A, Huch, F, and Sycara, K. "Concurrent

Execution Semantics for DAML-S with Subtypes." In The
First International Semantic Web Conference, 2002.

[2] Benatallah, B, Hacid, M, Rey, C, and Toumani F. ”Towards
Semantic Reasoning for Web Services Discovery”, In Proc.
of the International Semantic Web Conference (ISWC'03),
Springer Verlag, Sanibel Island, Florida, USA Oct 2003.

[3] Berners-Lee, T, Hendler, J, and Lassila, O. “The semantic
web” Scientific American, 284(5):34--43, 2001.

[4] Booth, D., Haas, H., McCabe F., Newcomer, E., Champion,
M., Ferris, C., Orchard. D. “Web Services Architecture,
W3C Working Draft 8 August 2003”,
http://www.w3.org/TR/2003/WD-ws-arch-20030808/

[5] Christensen, E, Curbera, F, Meredith, G, and Weerawarana,
S.: Web Services Description Language:
http://www.w3.org/TR/2001/NOTE-wsdl-20010315 2001.

[6] Chen, H, Finin, T, and Joshi, A. “Semantic Web in the
Context Broker Architecture”, In Proceedings of the IEEE
Conference on Pervasive Computing and Communications
(PerCom), Orlando, March, 2004.

[7] DAML Joint Committee, “DAML Query Language (DQL)
Abstract Specification”, August 2002,
http://www.daml.org/2002/08/dql/dql

[8] Dean, M, Schreiber, G, Bechhofer, S, van Harmelen, F,
Hendler, J, Horrocks, I, McGuinness, D. L., Patel-Schneider
P. F. and Stein, L. A. “OWL Web Ontology Language
Reference”, W3C Candidate Recommendation 18 August
2003 http://www.w3.org/TR/owl-ref/

[9] Decker, K, Sycara, K, and Williamson, M. “Matchmaking
and Brokering.” In Proceedings of the Second International
Conference on Multi-Agent Systems (ICMAS-96), The AAAI
Press, 1996

[10] Di Noia, T, Di Sciascio, E, Donini, F, and Mongiello, M. ”A
system for principled matchmaking in an electronic
marketplace.” In Proceedings of the twelfth international
conference on World Wide Web. ACM Press, 2003.

[11] Faisst, W. “Information Technology as an Enabler of Virtual
Enterprises: A Life-CycleOriented Description.” In
Proceedings of the European Conference on Virtual
Enterprises and Networked Solutions, Paderborn, Germany,
April 1997

 8

[12] Fikes, R., Hayes, P., and Horrocks, I. “OWL-QL - A
Language for Deductive Query Answering on the Semantic
Web.” Technical Report Knowledge Systems Laboratory,
Stanford University, Stanford, CA, KSL-03-14, 2003.

[13] Foundation for Intelligent Physical Agents (FIPA). “FIPA
Communicative Act Library Specification.”
www.fipa.org/specs/fipa00037/SC00037J.html

[14] Jennings, N. R, Faratin, P, Norman, T. J, O'Brien, P. and
Odgers, B. “Autonomous Agents for Business Process
Management” Int. Journal of Applied Artificial Intelligence
14 (2) 145-189, 2000.

[15] Li, L, and Horrocks, I. “E-commerce: A software framework
for matchmaking based on semantic web technology.” In
Proceedings of the twelfth international conference on World
Wide Web, pages 331-339. ACM Press, 2003.

[16] Lu, J, Mylopoulos, J. “XIB: eXtensible Information
Broker.” International Journal on Artificial Intelligence
Tools, Vol. 11, No. 1, March 2002.

[17] Drew McDermott. “Estimated-Regression Planning for
Interactions with Web Services.” In Proceedings of the AI
Planning Systems Conference, 2002.

[18] Martin, D. L., Cheyer, A. J, and Moran, D. B. “The Open
Agent Architecture: A Framework for Building Distributed
Software Systems”. Applied Artificial Intelligence, vol. 13,
no. 1-2, pp. 91-128, January-March 1999

[19] Mitra, N. “SOAP Version 1.2 Part0: Primer” W3C
Recommandation 24 June 2003. url:
www.w3c.org/TR/2003/REC-soap12-part0-20030624

[20] Motta, E, Domingue, J, Cabral, L, and Gaspari, M. “IRS-II:
A Framework and Infrastructure for Semantic Web Services”
In Proc. of the International Semantic Web Conference
(ISWC'03), Springer Verlag, Sanibel Island, Florida, USA
Oct 2003.

[21] The OWL Services Coalition: Semantic Markup for Web
Services (OWL-S): http://www.daml.org/services/owl-s/1.0/

[22] Paolucci, M,, Takahiro Kawamura, Payne, T. R, Sycara, K.;
“Semantic Matching of Web Services Capabilities” In In
Proc. of the International Semantic Web Conference
(ISWC'02), Springer Verlag, Sardegna, Italy, June 2002.

[23] Paolucci, M, Sycara, K., and Kawamura, T. “Delivering
Semantic Web Services.” In Proceedings of the 12Th
international conference on World Wide Web. ACM Press,
2003.

[24] Paolucci, M,, Ankolekar, A, Srinivasan, N, and Sycara, K.,
"The DAML-S Virtual Machine," In Proceedings of the
Second International Semantic Web Conference (ISWC),
2003, Sandial Island, Fl, USA, October 2003, pp 290-305.

[25] UDDI.org “UDDI Technical White Paper”, 2000,
http://www.uddi.org/whitepapers.html

[26] Wong, H. C, and Sycara, K. "A Taxonomy of Middle-agents
for the Internet." In Proceedings of the fifth International
Conference on Multia-Agent Systesms (ICMAS'2000), 2000

