
> S1-006 <

1

Abstract— The relation between DAML-S, a language for the
descr iption of Web services grounded in the Semantic Web, and
the growing Web services infrastructure based on WSDL is, by
an large, still an open question. In this paper we descr ibe a
mapping from WSDL to DAML-S whose contr ibution is twofold:
on the theoretical side it clear ly shows what information is
contr ibuted by the DAML-S specification, on a more practical
side it facilitates the compilation of DAML-S descr iptions.

Index Terms—Web services, WSDL, DAML-S.

I. INTRODUCTION

Existing specifications of Web services describe the primitive
units of interaction. In the real world, there is a need to
describe the ordering of business activities and their
interactions in terms of lower level services and compose their
execution. Such descriptions of Web service linkages and
interactions have been described in industry using terminology
such as orchestration, collaboration, coordination, composition
and choreography. In this paper, we follow the definition of
the Web services Architecture Working Group of the World
wide Web Consortium (W3C) [11] and the definition in the
recently chartered W3C Choreography Working Group [12]
and call these set of activities Choreography. The activities
comprising choreography can be different steps within a
particular web service or belong to different web services.
Current industry description languages, such as WSDL [4]
have proven very useful in describing the interface of Web
services. WSDL has recently started to be used extensively by
industry (e.g. Amazon.com, Google, Acrobat to mention just a
few). However, currently, natural language descriptions
(understandable only by human programmers) must
accompany WSDL descriptions in order to outline how to use
the service (e.g. operation sequencing, state management), the
participants’ obligations, compositionality of results etc. It is
therefore desirable to replace these natural language imprecise

instructions with formal semantically meaningful and program
understandable descriptions. Such precise specification could
reduce the cost of businesses to integrate their processes using
Web services. The Darpa Agent Markup Language for
Services (DAML-S) [7] provides Web service providers with a
core set of markup language constructs for describing the
concepts and capabilities of their Web services in
unambiguous and computer interpretable terms. The current
paper reports on our work in developing and implementing a
method and tool for translating WSDL descriptions to DAML-
S descriptions.

WSDL provides declarative information to map abstract
messages1 into concrete messages and it expresses the bindings
to specify the port where to post a message or to read the
message from. In this capacity WSDL provides the foundation
for composition of Web services, by providing the information
that supports information exchange between Web services. But
WSDL is not rich enough to specify the semantics of the
composition or of the interaction protocol needed for
composition. In contrast to WSDL, DAML-S, rather than
describing Web services in terms of their ports or the messages
that they receive, it describes the capabilities of Web services
in terms of the abstract function that they provide, their
Process Model, (ie what the workflow of the service steps is)
and the Grounding, which describes how services interact.
WSDL and DAML-S are complementary to each other:
DAML-S provides the abstract information about composition
of operations and information exchange, while WSDL
describes how such abstract information is mapped into actual
messages and how these messages are transmitted. Because of
its compementarity with DAMLS, WSDL has been
incorporated in the specification of the DAML-S Grounding to
provide binding information.

Given the above analysis, a top-down approach, which first

1 WSDL supports two modes of interaction between Web services: Remote

Procedure Call (RPC) and asynchronous messaging. The distinction between
them is not relevant for this paper; with message we intend any information
exchange between Web services which may or may not be implemented using
RPC.

{paolucci,naveen,katia,nishi}@cs.cmu.edu

Towards a Semantic Choreography of Web
Services: from WSDL to DAML-S.

Massimo Paolucci1, Naveen Srinivasan1, Katia Sycara1, Takuya Nishimura1,2

1The Robotics Institute, Carnegie Mellon University, USA

 2Media Technology Development Division, SONY Corporation, Japan

> S1-006 <

2

formalizes the abstract information exchanged in DAML-S,
and then specifies WSDL to meet the needs of the DAMLS
specification, seems the correct way to represent Web services.
Yet many times the opposite path is more appropriate: given a
WSDL specification, the problem becomes to enrich it and
transform it in a DAML-S specification. This process has both
theoretical and practical value. On the theoretical side, it
pinpoints exactly the information that is added by DAML-S
specifications, which cannot be derived from WSDL. On the
practical side, the description of a mapping from WSDL to
DAML-S simplifies the compilation of DAML-S documents.
Indeed, WSDL specifications of Web services are widely
available, providing an obvious starting point for their DAML-
S formalization; furthermore WSDL specifications can be
generated automatically using Java2WSDL [2].

The research contribution of this paper is the description
and implementation of WSDL2DAML, a tool for the
translation of WSDL into DAML-S specifications.
WSDL2DAMLS takes as input a WSDL specification, and it
returns as output a partial DAML-S description of the Web
service. The translation is based on the assumption that there
is a 1:1 correspondence between DAML-S atomic processes
and WSDL operations, which allows a partial specification of
DAML-S Process Models. In addition, WSDL2DAMLS
generates a complete specification of the Grounding which is
used to map DAML-S Atomic Processes to WSDL, a primitive
DAML-S Profile, and a DAML ontology of concepts based on
the data types adopted by WSDL. Such ontology can be used
to complete the specification of the DAML-S Process Model
and Profile as well as for mapping the new DAML-S
specification into existing DAML ontologies. Such a
completion requires information that is not contained in the
WSDL document and it should be done through human
intervention.

In the rest of the paper, we first give a brief overview of
DAML-S; we then describe the algorithms behind
WSDL2DAMLS and the assumptions behind such a tool. We
will then describe how this tool has been used to map the
WSDL of the amazon.com Web service into a DAML-S Web
service. The result of this experiment is a DAML-S
specification that when used by a DAML-S processor
automatically generates a client for the Web service. Finally,
we conclude with an analysis of the tool and future directions
of this project.

II. DAML-S

DAML-S is emerging as a Web Services description
language that enriches Web Services descriptions based on
WSDL with semantic information from DAML [6] ontologies
and the Semantic Web [3]. DAML-S is organized in three
modules: a Profile that describes capabilities of Web Services
as well as additional features that help to describe the service;
a Process Model that provides a description of the activity of
the Web Service provider from which the Web Service
requester can derive the interaction; Grounding that is a

description of how abstract information exchanges described
in the Process Model is mapped onto actual messages that the
provider and the requester exchange.

The DAML-S Profile describes the Web Service
capabilities, as well as additional features of Web Services
such as provenance and quality of cost specifications of the
Web service. The role of the DAML-S Profile is to support
different modalities of discovery [10] and to support the
requester decision of whether to use a given Web service.
DAML-S describes capabilities of Web Services by the
transformation that they produce. This transformation is
described at two levels: at the information level a set of inputs
are transformed in a set of outputs; at the domain level a set of
conditions become true, while others become false. For
example, if we consider a travel booking Web service, at the
information level it may require departure and arrival
information and it provides a flight schedule and a
confirmation number; while at the domain level it books a
flight, generate a ticket, and charges a credit.

In addition to capabilities, DAML-S Profiles provides
provenance information that describes the entity (person or
company) that deployed the service; and non-functional
parameters that describe features of the services such as
quality rating for the service.

The second module of DAML-S is the Process Model; the
Process Model fulfills two tasks: the first one is to specify the
interaction protocol in the sense that it allows the requester to
know what information to send to the provider and what
information will be sent by the provider at a given time during
the transaction. In addition, to the extent that the provider
makes public its own processes, it allows the client to know
what the provider does with the information.

A Process Model is defined as an ordered collection of
processes, where each process produces a state transformation
or a data exchange with the Web service clients. The DAML-S
Process Model distinguishes between two types of processes:
composite processes and atomic processes. Atomic processes
correspond to operations that the provider can perform
directly. Composite processes are used to describe collections
of processes (either atomic, or composite) organized on the
basis of some control flow structure. For example, a sequence
of processes is defined as a composite process of type
sequence. Similarly, a conditional statement (or choice as
defined in DAML-S) is also a composite process. The
DAML-S process model allows any type of control flow
structure including loops, sequences, conditionals, non-
deterministic choice and concurrency.

The last module of DAML-S is the Grounding that describes
how atomic processes; which provide abstract descriptions of
the information exchanges with the requesters, are transformed
into concrete messages that can be exchanged on the net, or
through procedure call. Specifically, the DAML-S Grounding
is defined as a one to one mapping from atomic processes to
WSDL specifications of messages. From WSDL it inherits the
definition of abstract message and binding, while the

> S1-006 <

3

information that is used to compose the messages is extracted
by the execution of the process model.

III. WSDL2DAMLS

The goal of WSDL2DAMLS is to provide a translation
between WSDL and DAML-S. The results of this translation
are a complete specification of the Grounding and an
incomplete specification of the Process Model and Profile.
The incompleteness of the specification is due to differences in
information contained in DAML-S and WSDL. Specifically
WSDL does not provide any process composition information,
therefore the result of the translation will also lack process
composition information; furthermore, WSDL does not
provide a service capability description, therefore the DAML-
S Profile generated from WSDL is also necessarily sketchy
and must be manually completed. Nevertheless the outputs of
WSDL2DAMLS provide the basic structure of a DAML-S
description of Web services and saves a great deal of
manpower2.

The mapping produced by WSDL2DAMLS is roughly
based on the following two observations.

1. A WSDL operation is equivalent to a DAML-S
atomic process: in other words we can guess the
atomic processes of the DAML-S Process Model
from the operations of the WSDL description.

2. XSD types are realized as DAML concepts:
DAML-S descriptions make use of DAML
concepts to specify the content of inputs and
outputs, while WSDL makes use of XSD types to
specify inputs and outputs. Since the DAML-S
Grounding that specifies the mapping between
DAML-S Process Models and WSDL does not
provide any mapping from concepts to types we
are forced to assume a 1:1 correspondence
between them.

The first observation provides the basic mapping between
WSDL and DAML-S. It is used for both the generation of the
basic Process Model and for the generation of the Grounding.
The second rule generates the basic data used by DAML-S.
The two rules correspond to the two main modules of
translation as shown in figure 1.

Upon loading a WSDL file, WSDL2DAMLS first uses the
XSD→DAML Converter to translate XSD types into the
corresponding DAML concepts; then it uses the constructed
mapping in the Operation Converter to translate WSDL
operations into DAML-S atomic processes, generating the

2 The translation of a complex WSDL document such as the specification of
the Amazon Web service takes about a week of man time, where most of the
time is spent dealing with the syntactic transformation from WSDL to
DAML-S and only a few hours to construct the composition of processes in
the Process Model and compiling the description of the Profile. Using
WSDL2DAMLS the syntactic translation takes less than a minute and the
programmer can finally concentrate on the Process Model composition and
Profile description. We observed that the tool significantly reduced the time
and effort to create the DAML-S augmented web service. We measured that
the tool generated 100% of the DAML-S Grounding, 90% of the needed
Process Model information.

Grounding as well as a rough Profile. In the next two sections
we describe the two modules in details.

A. XSD→DAML Converter

 The task of the XSD→DAML Converter is to translate the
XSD types defined in the WSDL specification into
corresponding DAML ontologies. There are two design
alternatives. The first is to generate DAML-S specifications
that make use of XSD types and no use of DAML ontologies.
This solution would prevent any type of reasoning about the
concepts used in the DAML-S specification [9]. The second
alternative is to force a translation to generate concepts that
could be totally unrelated to ontologies available in the
Semantic Web and therefore effectively useless from the
automatic reasoning point of view. We chose the second
solution because it allows programmers or automatic ontology-
mapping programs to map the generated ontologies to existing
ontologies on the Semantic Web.

XSD2DAML converter parses the WSDL file and extracts

the XSD definitions defined between the WSDL type tags. The
extracted XSD definitions are converted into DAML classes.

The conversion process is defined as follows:
• Primitive XSD types like string and integer are not

converted to DAML definitions, rather they are
defined directly as inputs or outputs of atomic
process in the process model file.

• Complex XSD types are translated into DAML
concepts whose properties correspond to the
elements in the translated type.

This translation generates correct DAML ontologies, which,
as described above, need to be mapped onto existing

Figure 1. WSDL2DAMLS Architecture

> S1-006 <

4

ontologies in the Semantic Web to become useful for
automatic process composition.

B. Operation Converter

The conversion of the WSDL operations into DAML-S
processes is based on rule 1. mentioned above where the basic
idea is that WSDL operations map into DAML-S atomic
processes, with the result that the WSDL portType
description defines a primitive Process Model. The complete
mapping is described in figure 2.

The mapping of WSDL Operations into DAML-S Atomic
 Processes is realized in the following way:
• The name of the operation becomes the name of

the corresponding atomic process
• The inputs messages of the operation become the

inputs of the atomic process
• The outputs and faults messages of the operation

become the outputs of the atomic process
 Once the atomic processes are generated WSDL2DAMLS

proceeds with the specification of the grounding. This
specification is quite straightforward since all the pieces are in
place and we make explicit the link between the operations and
their parts with atomic processes and their parts. In contrast to
other DAML-S modules, the Grounding is completely
specified during the translation and it should not require any
modification.

One issue with the mapping described here is that DAML-S
Atomic Processes may include inputs and outputs that are local
to the process, and not reflected in the WSDL document.
These inputs and outputs should be added by a programmer
when she refines the DAML-S description. Furthermore the
list of atomic processes may not be complete since DAML-S
allows the addition of atomic processes that do not generate
any message, but provide (partial) visibility on the internal
processes of the Web service.

C. Service Profile Generator

The last translation performed by WSDL2DAMLS is the
generation of the Service Profile; the result of this

transformation is a skeleton Profile. DAML-S Profiles consist
of three sections: the first one is provenance information that
describes the entity (person or company) that deployed the
service; the second consists of non-functional parameters that
describe features of the services such as quality rating for the
service and finally it provides a description of the
capability/functionality of the service in terms of the inputs it
receives, the outputs it generates, the furthermore, the
preconditions that should be satisfied for the Web service to
execute and the effects that will result as consequence of such
execution. Since WSDL provides only input and output
information, the rest of the DAML-S profile must be
completed manually.

Figure3: From Java to DAML-S

One important contribution of the work described here is
that it provides the basis for an automatic generation of
DAML-S specifications starting from the Java implementation
of the Web service. The complete process is described in
figure 3. The first step is to use JAVA2WSDL [2] to generate
the WSDL specifications directly from the Java code, and then
compile the WSDL specification into the corresponding
DAML-S specifications using the tool described here.

IV. CASE STUDY: AMAZON WEB SERVICE

Amazon.com has exposed a Web service [1] that allows to
browse Amazon’s catalogue and to fill a shopping cart with
books that a customer would like to buy. Specifically,
Amazon’s Web Service allows 16 different varieties of
searches (e.g. author search, actor search, ISBN search etc.) to
browse and find items in their inventory, and five shopping
cart operations including getting and clearing the shopping
cart, add, removing and modifying items from the shopping
cart.

The WSDL description of Amazon’s Web service contains
the 21 operations described above, 66 types, and 42
input/output messages (there is no use of fault messages).
Using WSDL2DAMLS we were able to compile the WSDL
specification in the corresponding DAML-S specification,
which resulted of course in the 4 files describing the different

Figure 2: Operation Translation

> S1-006 <

5

aspects of DAML-S: Profile, Process, Grounding and a file
that represents the XSD types into DAML concepts. After this
translation a programmer is left with only three tasks to
complete the DAML-S specification: the first one is to analyze
the interaction flow between Amazon’s Web service and its
clients to complete the Process Model; the second one is to
map the concepts derived from the XSD types into concepts in
existing ontologies; finally the third task is to complete the
specification of the DAML-S Profile adding provenance
information and the non-functional parameters.

The first task proves to be quite simple since the interaction
flow is easily extracted from the control flow described in the
documentation of the Web service, and it resulted in the
addition of 5 composite processes. The other two tasks are
more challenging because the mapping between the types used
in the WSDL file are quite arbitrary and do not match with any
ontology for bibliographic information such as the Dublin
Core [8]. For example, one type is called AuthorArray, which
has properties specific to both author and Amazon web
service, and does not have any obvious semantic status. The
Profile is also difficult to generate because the concepts used
in the Profile are also arbitrary as a consequence of the
ontologies used. We believe that the arbitrariness of the
concepts used is a consequence of the general attitude in the
construction of the Web service, which is targeted to human
users rather than to automatic interaction with other Web
services which is what DAML-S attempts to facilitate;
furthermore, it is a consequence of the expectation that any
activity involving the Web service will be mediated by
programmers that will hardcode the connection between their
Web services and Amazon’s. Once DAML-S or other
semantically oriented technologies become widespread, more
principled use of ontologies can be expected.

V. CONCLUSIONS

The contribution of this paper is twofold: on the practical
side it describes a tool for generating DAML-S descriptions of
Web services starting from its WSDL description; on the
theoretical side it highlights the contribution provided by
DAML-S to the description of Web services.

Upon deciding to extend a WSDL specification into a
DAML-S specification, a programmer can use
WSDL2DAMLS described in this paper to generate the
DAML and DAML-S code. The result of the translation is a
first approximation of the final DAML-S description; which
contains all the DAML-S modules, but still requires work to be
completed.

The first task of the programmer is to map the ontologies
generated into existing DAML ontologies. Our example
shows that such mapping may prove very challenging since the
XSD types may not have any ontological status.

The second task is to construct the composite processes that
complete the Process Model. These composite processes
specify the order of execution of the WSDL operations to
implement the expected interaction protocol.

The Process Model may contain some atomic processes and
information flow that are private of the Web service and not
shared with its clients. Since this information is not reflected
in the WSDL specification, the third task is to add it to the
DAML-S description under construction.

Once the Process Model is completed, the programmer
should complete the DAML-S Profile. Specifically, she needs
to select which input and output information better specifies
the service provided. This process may require the removal of
some inputs and outputs and the generalization of others.
Furthermore, the programmer needs to add other two pieces of
information; the first one is provenance information that
specifies the company or institution that provides the service;
the second one is information about non functional parameters
and service classification.

The work described in this paper may be generalized to
include Web services information contained in UDDI [13] as
well as BPEL4WS [5]. While this mapping would be a natural
extension of the work presented here, some predictions on its
results can already be drawn. The addition of this information
may add some automatism to the translation: UDDI provides
provenance information possibly some functional parameters,
while BPEL4WS provides processes composition. Yet,
neither of the two provides semantic information so the
XSD→DAML mapping described above would still be needed
with the relative mapping to existing ontologies; furthermore,
neither of the two provides capability description; which
would still require the programmer intervention.

VI. BIBLIOGRAPHY

[1] Amazon.com: Web Services V.2.0:
http://associates.amazon.com/exec/panama/associates/ntg/browse/-
/1067662/ref=gw_hp_ls_1_3/

[2] Apache Software Foundation: WSIF: http://ws.apache.org/wsif/
[3] T. Berners-Lee, J. Hendler, and O. Lassila.: The semantic web.:

Scientific American, 284(5):34--43, 2001.
[4] E. Christensen, F. Curbera, G. Meredith, and S.Weerawarana.: Web

Services Description Language (WSDL):
http://www.w3.org/TR/2001/NOTE-wsdl-20010315 2001.

[5] F. Curbera, Y. Goland, J. Klein, Microsoft, F. Leymann, D. Roller, S.
Thatte, and S. Weerawarana: Business Process Execution Language for
Web Services, Version 1.0: http://www-
106.ibm.com/developerworks/webservices/library/ws-bpel/

[6] DAML Joint Committee.: Daml+oil (march 2001) language.:
http://www.daml.org/2001/03/daml+oil-index.html 2001

[7] DAML-S Coalition.: Daml-s: Web service description for the semantic
web: In ISWC2002.

[8] Dan King: The Dublin Core Element Set Ontology:
http://www.daml.org/ontologies/201

[9] M. Klein, D. Fensel, F. van Harmelen, and I. Horrocks. The relation
between ontologies and xml schemas. In Electronic Trans. on Artificial
Intelligence, 2001.

[10] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara.: Semantic
matching of web services capabilities. In ISWC2002, 2002

[11] W3C Web Services Architecture Working Group: Web services
Glossary: http://www.w3.org/TR/2002/WD-ws-gloss-20021114/

[12] W3C Web services Choreography Working Group: Charter:
http://www.w3.org/2003/01/wscwg-charter

[13] UDDI: The UDDI Technical White Paper.: http://www.uddi.org/ 2000.

