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Abstract-This paper presents a method for inferring threat
in a military campaign through matching of battlefield entities
to a doctrinal template. In this work the set of random vari-
ables denoting the possible template matches for the scenario
entities is a realization of a Markov Random Field. This ap-
proach does not separate low level fusion from high level fu-
sion but optimizes both simultaneously. The result of the added
high level context is a method that is robust to false positive
and false negative, or missed, sensor readings. Furthermore,
the high level context helps to direct the search for the best
template match. Empirical results illustrate the efficacy of the
method both at identifying threats in the face of false nega-
tives, and at negating false positives, as well as illustrating the
reduced computational effort resulting from the incorporation
of additional high-level context.

Keywords: Data association, Markov Random Fields, situa-
tion assessment, intent inference.

1 Introduction

In a battlefield environment it is critical that intelligence
analysts develop hypotheses about the high-level intent of
the enemy. Examples of high-level enemy intent include
the intent to retreat or to ambush. Intelligence analysts
form such hypotheses by fusing sensor reports with infor-
mation about the terrain and enemy doctrine. This antic-
ipation of enemy intent allows military planners to allo-
cate resources and to develop counter strategies in order
to achieve mission objectives while minimizing losses.

A battlefield environment is high dimensional and
noisy. Fusing heterogeneous sources of information to
draw useful conclusions about enemy intent in such an
environment is extremely difficult even for human beings.
Furthermore, sensors are becoming smaller and cheaper.
In a network centric battlefield the problem of informa-
tion overload will become increasingly prevalent and sig-

nificant. The problem of sensor false positives and nega-
tives too will be exacerbated in a sensor rich environment.
Long delays in decision cycles result from these problems
which in turn have a great cost in terms of human lives.
Automating parts of this inference can significantly speed
up the decision cycle. An automated analysis can also
take advantage of data at a much higher granularity.

Context is critical for information fusion at all levels.
A common task in low-level information fusion is deter-
mining sensor false positives. Little can be said in terms
of discrediting a sensor reading that suggests that a tank is
alone in the middle of an open field. However, if that read-
ing suggests that the tank is near other tanks of an appro-
priate type with a similar heading and velocity this lends
credence to it. Other factors like proximity to key ter-
rain features help to disambiguate as well. Context is also
invaluable in high-level information fusion. Noting tem-
poral relationships between the activity of spatially sepa-
rated military units, for example, is an important source
of context in determining the intent of the larger force.

We formulate intent inference as a labeling problem.
The entities to be labelled are enemy vehicles, friendly
vehicles, events, and key terrain features. The labels are
drawn from a template that represents a specific enemy
plan taken from doctrine. A plan template is modeled as
a relational structure [1], a type of graph where the nodes
represent roles that enemy vehicles can fulfill as well as
key terrain features and significant events. The edges rep-
resent contextual relationships between the nodes. For ex-
ample in an ambush scenario one of the roles might be to
be a part of a unit that attacks from the front of an unsus-
pecting adversary unit while another role could be to be
a part of a unit that waits near a suitable piece of terrain
in the rear in case the unit under attack attempts a retreat.
The contextual relationships in the previous example in-
clude relative position and velocity with the respect to
other units filling the same role or temporal relationships
between significant events. Each entity and event in the



scenario has an associated random variable that takes on
the discrete labels from the template. Furthermore, there
is a neighborhood system which defines a gating criteria
on which entities are related. The set of aforementioned
random variable forms a Markov Random Field (MRF).
The equivalence between an MRF and a Gibbs distribu-
tion [2] allows us to formulate likelihoods and priors in a
Bayesian sense in terms of clique potentials which serve
to allow the modeling ofa-priori knowledge about the
contextual interactions between labels in the template and
hence entities and events in the scenario. We can then find
the maximum a posterior (MAP) labeling using combina-
torial optimization.

The aforementioned MAP-MRF formulation has
proven effective for template matching in high-
dimensional, noisy search spaces, particularly in the
computer vision and image processing communities [3].
Furthermore, because it is a probabilistic model uncer-
tainty in sensor estimates as well as abstract relationships
can be modeled simultaneously. High level context too
has been successfully modeled using MRFs for low-level
fusion. MRFs, for example, have been used for data
association in target tracking [4]. In [5] we developed
algorithms for automatic terrain analysis to provide high
level terrain context. In [6] we presented algorithms to
describe the behavior of battlefield entities in terms of
environmental influences. This paper describes a method
for uniting these sources of context to provide high-level
threat estimates.

The degree of uncertainty in a battlefield environment
make statistical models such as Dynamic Bayesian Net-
works a popular choice for inference on a state space of
discrete and continuous variables representing a battle-
field. However, as is a general drawback of all statisti-
cal methods, in a high dimensional state space the combi-
natorially large number of possible interactions between
variables make it infeasible to calculate conditional dis-
tributions. Many approaches resort to particle filtering
which approximates the conditional distributions using
a weighted sum of state variable samples to reduce the
computational complexity of an inference [7],[8]. This
approach is does not effectively leverage the strong con-
textual relationships between the variables that represent
a battlefield. By explicitly modeling this context using
Markov Random Fields (MRF) the contextual relation-
ships between entities and hence the variables that rep-
resent them directly inform which calculations are neces-
sary for a successful inference. This is similar to human
reasoning in that instead of sampling a state space based
on statistical dependencies between variables as in the
case of particle filtering, an MRF approach samples based
on configurations of variables that match a high level pre-
scription of how the system being modeled should work.

That is it concentrates most of the computational effort
in the parts of the state space that prescribe logical in-
ferences based on contextual dependencies between vari-
ables. This is particularly effective in a battlefield en-
vironment because successful military operations require
careful organization. Markov Random Fields also make
it relatively easy to represent such relationships both tem-
poral and spatial. Military planners use terrain features to
organize forces, as reference when interpreting enemy in-
tent. Much of the intent inference literature marginalizes
or ignores terrain. Some use a simplified terrain repre-
sentation. We use a realistic model of terrain and rely
on an automated terrain analysis to segment the terrain
into high-level features suitable for use in the inference
process.

The remainder of the paper is organized as follows. In
section 2 the problem is formally defined. In section 3
the formal definition of a Markov Random Field is given.
Section 4 illustrates how contextual dependencies both
between scenario entities and between roles in the tem-
plate are modeled as separate relational structures. Sec-
tion 4.1 gives a derivation of the posterior probability for
a given match between the scenario entities and the tem-
plate in terms of clique potentials derived from the afore-
mentioned unary and binary relationships. Section 4.2 de-
scribes how the optimal posterior is found using combina-
torial optimization to give the MAP solution for the best
match between entities and the template. Finally Section
5 provides empirical results illustrating the efficacy of the
model.

2 Problem

The following provides a formal description of the intent
inference problem as an instance of template matching.
We view a battlespace as a set of entities and events each
of which is represented as a vector containing both dis-
crete (e.g. entity id) and continuous (e.g. velocity) vari-
ables. The intent inference process is formulated as a la-
beling problem where labels are taken from a template
representing military doctrine. Formally: The signifi-
cant events in the scenario are indexed by the setE =
{1, ...,m}. Battlespace entities are indexed by the set
B = {1, .., n}. LetG = E∪B. The set of possible labels
contained in the template is given byL = {0, 1, ...,M}
where theNULL match0 is reserved for sensor false pos-
itives and entities not viewed as conforming to the behav-
ioral model represented by the template. Section 4 de-
scribes the template representation in detail. An inference
of enemy intent is then a labeling or mappingf of the
battlespace entities and events in terms of the template la-
bels:



f : G → L

Let V be a real valued functional that assigns to every
such mapping anr ∈ R that indicates the quality of the
match. Then an inference requires finding a mappingf

′

such that:
f
′
= argminfV (f)

3 Markov Random Fields

Markov random field (MRF) theory enables the model-
ing of contextual dependencies between a set of sitesS.
These sites might be pixels in an image, individuals in a
social network, or battlespace entities and events for ex-
ample. Thei ∈ S are related to each other by a neighbor-
hood systemN = {Ni | ∀i ∈ S} whereNi is the set of
neighboring sites to N. The purpose ofNi is to provide a
gating criteria for the set of sites that have a relationship
to the sitei. In the vision exampleNi might be the set of
all pixels within a certain euclidean distance of the pixel
represented byi. A pair-wise cliqueC2 defined onN and
S is given by:

C2 = {{i, i′} | i
′
∈ Ni, i ∈ S}

Cliques of arbitrary order can be defined. Pre-defined
cliques are effective for modeling the contextual depen-
dencies for certain image properties, for example edges.
This rigid pre-definition of a clique is unsuitable for our
model so we choose cliques dynamically depending on
gating criteria determined by the properties of the en-
tity or event represented byi. A family of random vari-
ablesF = {F1, ..., Fm} with a specific configuration
f = {f1, ..., fm} is said to be Markov random field on
S with respect toN subject to the following conditions:

P (f) > 0,∀f ∈ F

P (fi | fS−{i}) = P (fi | fNi
)

wherefi denotes thatFi takes on valuefi at sitei. The
second criteria is the Markov property for a random field
and states that the probability of a certain configuration at
a sitei is statistically independent of the configurations of
all otheri ∈ S given the configurations ati ∈ Ni.

Specifying the joint probabilityP (f) for a Markov ran-
dom field is in general intractable. However, an equiva-
lence between an MRF and a Gibbs distribution proved by
Hammersley and Clifford [2] gives us an alternate means
to specifyP (f) by reformulatingF as a Gibbs distribu-
tion.

The possible configurationsf of a set of random vari-
ablesF obey a Gibbs distribution if the joint takes the
form:

P (f) = Z−1 × e
−1
T U(f)

whereZ is a normalizing constant given by:

Z =
∑
f∈F

e
−1
T U(f)

andU is given by:

U(f) =
∑
c∈C

Vc(f)

U is an energy function that is determined by a sum of
clique potentialsVc(f) over all cliques. Clique potentials
serve to allow the modeling ofa-priori knowledge about
the contextual interactions between labels at neighboring
sites. The clique potentials used in this investigation are
developed in Section 4.1. The energyU(f) for a partic-
ular configuration ofF corresponds to the probability of
that configuration. Lower energies correspond to more
likely configurations. The parameterT is often referred
to as a temperature and controls the sharpness of the dis-
tribution. Calculation of the partition functionZ is in-
tractable even for relatively small problems. However in
the MAP formulation where we seek a configurationf of
F that optimizesP (f), calculation ofZ is unnecessary.

4 Template Representation

A doctrinal template is a prescription for a military plan
used as a reference by Intelligence analysts to interpret in-
coming battlefield data. For the example of an ambush a
doctrinal template might contain the prefered vehicle em-
placement, for a unit waiting in ambush, with respect to
other units both friendly and adversarial. Such a template
might also prescribe the preferred direction of attack and
velocity for an attacking unit. We formulate the inference
of the intent of a military unit as labeling it relative to a
doctrinal template. This might involve finding the best
match for the unit to several templates. In this investiga-
tion we use only a single template. However the method
is easily extended to incorporate several templates.

We model a doctrinal template as a relational structure
(RS) [1] as shown in figure 1.

In an RS nodes represent entities which can be both
physical entities and events. Each node has an associ-
ated vector of unary properties. For the nodei the vec-
tor of associated unary properties is given byd1(i) =
[d1

1(i), ..., d1
k1(i)]

T
. For example, if the node represents

a tank then one of the elements in its unary properties vec-
tor is an id for the tank, another might be a confidence



Figure 1: Relational graph showing unary, binary, and
triple contextual relationships between nodes.

measure in the identification. Each pair of nodes in the
RS has an associated vector of binary relations given by

d2(i, i
′
) = [d1

1(i, i
′
), ..., d1

k1(i, i′)]
T

. This can be gener-
alized arbitrarily to vectors ofn-aryrelationships between
groups ofn nodes. In this investigation we limit our rela-
tional structures to contain binary relationships. A neigh-
borhood systemN identifies which nodes in the RS are
connected by an edge. We represent the battlespace events
and vehicles as an RSG with neighborhood systemN and
unary and binary relationsd. In addition we represent the
doctrinal template as an RSG

′
with neighborhood sys-

tem N
′

and unary and binary relationsD. Then our in-
ference process is reduced to finding the optimal mapping
between the battlespace entities and the template:

f : G(B,N, d) → G
′
(L,N

′
D)

The following is a description of the nodes as well as
unary and binary context that we use in defining a rela-
tional structure that represents a doctrinal template. An
example of a relational structure representing an ambush
using these contextual relationships is given in Figure 2.

In an RS representing a doctrinal template nodes can
represent entities or events. The entities can be either key
terrain features [6] or vehicles. Events include an abrupt
change in velocity of a vehicle, a radio transmission, or
a vehicle firing on another. Unary context includes en-
tity ids and related confidence measures as well as sym-
bolic relationships which denote the type of entity that
can match a template node. For example we don’t ex-
pect an event to match a node that represents a terrain
feature in the template. Binary contextual relationships
include, relative position, velocity and heading between
vehicles, temporal distance between events. Modeled too
is the goal relationship between a moving vehicle and pos-

Figure 2: Relational graph representing a doctrinal tem-
plate of an ambush.

sible target. This relationship is modeled using a potential
field technique [6]. In addition abstract relationships like
nearandsooncan be modeled with an appropriate choice
of distributions.

4.1 Derivation of the Posterior Energy

The following summarised from [1] is a derivation of the
posterior energyU(f | d) for f a particular labeling of
the scenario in terms of the template. We assume that
the unary and binary contextual relations observed for and
between scenario entities respectively,d1, d2, are a result
of the addition of independent zero mean Gaussian noise
to the unary and binary relations,D1, D2, given in the
template. For a unary relation this gives:

d1(i) = D1(fi) + e1(i)

wheree is independent zero mean Gaussian noise. Simi-
larly for a binary relation.

d1(i, i
′
) = D1(fi, fi′ ) + e2(i, i

′
)

This assumption is generally invalid but we have found
that with an appropriate choice of parameters this assump-
tion produces satisfactory results. The prior energy is
given by:

U(f) =
∑
i∈S

V1(fi) +
∑
i∈S

∑
i′∈Ni

V2(fi, fi′ )

where V1 and V2 are constant penalties on theNULL
match forfi andf

′

i . This allows for modeling of prior
knowledge of the number of false positives expected for
a given sensor. The likelihood potential is given by:



U(d | f) =
∑

i∈S,fi 6=0

V1(d1(i) | fi)+∑
i∈S,fi 6=0

∑
i′∈S−{i},fi 6=0

V2(d2(i, i
′
) | fi, fi′ ) (1)

where the clique potentials are defined as:

V1(d1(i) | fi) =

{∑K1
k=1 [d(k)

1 (i)−D
(k)
1 (fi)]2/{2[σ(k)

1 ]2} fi 6= 0
0 fi = 0

(2)

V2(d2(i, i
′
) | fi, fi′ ) =


∑K2

k=1 [d(k)
2 (i, i

′
)− D

(k)
2 (fi, fi′ )]

2/{2[σ(k)
2 ]2}

i 6= i
′
, fi 6= 0, fi′ 6= 0

0 fi = 0
(3)

Symbolic unary relation are handled by assigningσ = ∞.
To denote for example that a tank is not an event as op-
posed to say a confidence measure which can be modeled
with a finiteσ. The posterior energy is given by:

U(f | d) = U(f) + U(d | f)

The posterior energy gives a measure of the degree of
match to the template for a given labeling of the events
and entities in the scenario. This then becomes the objec-
tive function in a combinatorial optimization process to
find the best labeling in the MAP sense. The following
section explains the simulated annealing algorithm that
we use to perform the combinatorial optimization.

4.2 Simulated Annealing

Simulated Annealing is a method for combinatorial op-
timization [9]. The algorithm simulates the physical an-
nealing process of a solid. If we have a posterior energy
measureU for a configurationf of a set of discrete ran-
dom variablesF simulated annealing can be used to find
an fi that gives a minima inU . The algorithm starts by
randomly sampling the search space of possible configu-
rations. In successive iterations new configurationsfn+1

are generated by randomly perturbing the previous con-
figuration fn. The change is accepted with probability
P = e−∆U/T . Where∆U is the difference in posteriors

evaluated atfn andfn+1 respectively.T is a temperature
parameter that starts out high and is lowered according
to a schedule that is designed to produce desired results.
This is repeated until the value of the function being op-
timized reaches a steady state. This algorithm is partic-
ularly good at avoiding becoming trapped in local min-
ima unlike many gradient descent methods. The cooling
schedule we use in this investigation isTn+1 = 0.99Tn.

4.3 Supporting Algorithms

4.3.1 Data pre-processing

The first step in the template matching algorithm is the
pre-processing of sensor data. All of the sensor inputs are
processed to detect pre-defined significant events. Pos-
sible events are outlined in Section 4. There are three
main types of sensor inputs modeled. The first is a sim-
ulated Synthetic Aperture Radar (SAR) scan of the bat-
tlefield with output processed by a simulated automatic
target recognition (ATR) system. The output of the ATR
is a confusion matrix with labels of entity types and con-
fidence values which follow a distribution as indicated in
the confusion matrix described in [10]. The second sen-
sor input is a simulated Ground Moving Target Indicator
(GMTI) which produces tracks for moving entities. Fi-
nally detection of radio frequency transmissions is mod-
eled with the start time and source of transmissions input
to the template matching algorithm.

Next the raw terrain data elevation, soiltype, etc. is sub-
jected to an automatic terrain analysis, as described in [5],
that identifies, segments, and labels militarily significant
terrain. This step serves to provide high-level context for
a template match based on terrain conditions. For exam-
ple if key terrain is identified by the terrain analysis as an
engagement area then this can be used to match the tem-
plate for an ambush.

5 Experiments

The following scenario was used for our experiments.
Figure 3 shows the scenario as configured in the OTBSaf
simulation environment before execution. OTBSaf was
chosen as a simulation environment because it models the
kind of variability that one would expect in a battlefield
environment. For example, during the execution of a sce-
nario military units break formation to respond to terrain
features. Furthermore, each individual was represented
separately in the doctrinal template to give the algorithm
a problem of sufficiently high dimension while keeping
the scenario relatively simple to simulate multiple times.

The Area of Operations (AO) is a50km x 50km area
of unpopulated terrain. Two blue force platoons are em-



placed on the map, identified by squares in Figure 3. In

Figure 3: Screenshot of scenario under test as simulated
in OTBSaf.

addition, four red force companies of 14 M1A1 tanks
each, circled in Figure 3, and a single red force platoon
of four M2A2 tanks, signified by a triangle, are conduct-
ing maneuvers throughout the AO. Two of the companies
are on a reconnaissance mission. The other two compa-
nies and the lone platoon are conducting an ambush as
prescribed in the doctrinal template given in section 4.
In total 56 individual tanks make up the red force. At
the start of the scenario the two red force reconnaissance
companies begin moving. At ten simulated minutes later,
one of the attack companies begins moving along a route
towards the blue force platoon being ambushed. Simul-
taneously the lone red force platoon begins occupying a
position with oversight of an engagement area situated
along the lone escape route for the blue force platoon un-
der siege. Finally a radio transmission is sent from the
first attack company to a second attack company three
simulated minutes later. Upon receipt of the transmis-
sion a negligible amount of time later, the second attack
company begins following a route towards the blue force
platoon under threat. The scenario was intentionally de-
signed to be symmetrical to increase its ambiguity. That
is, it was designed with two possibilities of friendly pla-
toon under threat and four enemy companies to choose
the two attacking companies from.

Two experiments were performed using the data ob-
tained during a fifteen (simulated) minute time window of
an execution of the above scenario. The purpose of these
experiments was twofold. The first was to show that an
MRF approach would produce accurate template matches
when confronted with a high degree of sensor false posi-
tives and false negatives. The second was to confirm our
hypothesis that in the face of a high-dimensional noisy

state space, inter-variable context would help to direct the
computational effort. In the experiments the false positive
and false negative rates of the sensors were varied and
the number of correct template matches collected. The
inference required matching the scenario entities to the
template given in section 4, that is to correctly identify
the friendly platoon under threat and to identify the two
attacking enemy companies. In all experiments false neg-
atives were generated by uniformly randomly negating a
percentage of the entities sensed. When false positives
were generated, the identities, positions, and velocities
reported with the false detections were chosen randomly
from a uniform distribution. The range of the magnitudes
for these velocities were taken between the maximum and
minimum for a particular vehicle type according to the
random choice of vehicle identity.

In experimentA the false negative rate of the sensors
was varied between0− 90% in increments of ten and the
false positive rate was set to zero. For each data-point
thirty trials were run. A trial consisted of a single infer-
ence. That is, one instance of optimizing the posterior
match between scenario entities and the template using
simulated annealing. The simulated annealing parameters
were kept constant throughout all experiments in an ef-
fort to measure the context modeling performance of the
MRF template independently. The annealing parameters
used were those reported in Section 4.2. For the first ex-
periment the time window was chosen arbitrarily near the
midpoint of scenario execution.

In experimentB the false negative rate for the sensors
was set to zero and the false positive rate was varied be-
tween0 − 50% The other experimental parameters were
the same as in experimentA. ExperimentB was run
twice, once with a time window the same as in experi-
mentA and once with a time window near the beginning
of the scenario so that the added context of the relative
start times between the enemy units could be used.

5.1 Model Performance

The results of experimental configurationA is shown in
Figure 4. This graph shows the percentage of scenario en-
tities correctly assigned to the template vs the percentage
of the total scenario entities present that the sensors actu-
ally reported. The curve with the dashed lines shows the
accuracy of the template match given by the highest prob-
ability labeling found in the thirty trials. The solid curve
shows the average accuracy among all labelings found in
the thirty trials. From the dashed curve it is evident that
even with a very high sensor miss rate (with the sensors
only reporting10% of the scenario entities) the percent-
age of enemy vehicles correctly matched to the template
by the highest probability match is still above80%. This



Figure 4: Graph showing the percentage of scenario en-
tities correctly assigned to the template vs the percentage
of scenario entities that the sensors reported. The dashed
curve gives the accuracy of the highest probability match
found in 30 trials. The solid curve gives the average accu-
racy of all of the matches found over the 30 trials.

is probably due to the fact that the negated sensor readings
were chosen at random. This meant that for most trials the
algorithm was presented with at least some vehicles from
every unit involved in the template. This likely allowed
for strong inter-unit context even when relatively few ve-
hicles were detected. However, one would expect that in
this case there would be relatively little intra-unit context
in terms of identifying vehicles as belonging to the same
unit. However, intra-unit ambiguity is more likely to be
caused by false positives which were not considered in
this graph. Another possible source of intra-unit ambi-
guity is when two neighboring units are spatially close
enough that it is difficult to resolve them. The main source
of intra-unit ambiguity in the scenario under test was due
to false positives.

5.2 Influence of Additional Context

In this section we investigate the effect of additional con-
text on the computational effort required to find the MAP-
MRF match between the battlefield data and the doctrinal
template.

The results of experimental configuration B are given in
figures 5 and 6. In Both figures the independent variable
is given by the percentage of entities correctly matched
to the template, in this case including false positives be-
ing labelled with theNULL label. The dependent vari-
able is the percentage of entities reported by the sensors
that are false positives. For example, a value of50% for
the dependent variable means that the sensors reported a

Figure 5: No temporal context - Graph showing the per-
centage of scenario entities correctly assigned to the tem-
plate vs the percentage of scenario entities that the sensors
reported that were false positives. The dashed curve gives
the accuracy of the highest probability match found in 30
trials. The solid curve gives the average accuracy of all of
the matches found over the 30 trials.

total of 140 entities,70 of which do not exist. Figure
5 shows the results of the template matching algorithm
when the context of temporal coordination between red
force units was not considered, while Figure 6 shows the
results with this additional context included. From Figure
5 we can tell that the labeling of the scenario that corre-
sponds with the highest probability labeling found in30
trials (the dashed curve) is reasonably accurate. However,
the average accuracy over the30 trials (the solid curve) is
significantly less. We believe that this illustrates a rough
measure of how discriminating the posterior is between
configurations. That is, although the posteriors assigned
by the model are correct in terms of relative magnitude,
assigning lower values to inferior matches, their standard
deviation is small making it more difficult for the combi-
natorial optimization to locate a minima in the posterior
energy close to the global minima. Figure 6 shows the
same curves except with the context of temporal coordi-
nation between units represented as part of the template.
This is a powerful context for determining which vehi-
cles are actually taking part in the plan illustrated by the
template. Consequently, we see that the average accuracy
shown in Figure 6 shows a significant improvement over
that in Figure 5. We believe that in this case the posteriors
were more discriminating between ambiguous configura-
tions reducing the computational effort necessary to find
a good labeling.



Figure 6: Temporal context included-Graph showing the
percentage of scenario entities correctly assigned to the
template vs the percentage of scenario entities that the
sensors reported that were false positives. The dashed
curve gives the accuracy of the highest probability match
found in 30 trials. The solid curve gives the average accu-
racy of all of the matches found over the 30 trials.

6 Conclusion

In this paper we present a method for intent inferenc-
ing using the MAP-MRF formulation of template match-
ing between battlefield entities and events and a doctrinal
template. We feel that the results illustrate that the method
is robust to sensor errors. The empirical results show that
the template matching algorithm performed well in terms
of dealing with sensor false positives and false negatives.
We believe that combined with the relative ease of model
building, this makes a strong case for incorporating MRF
models of context into intent threat inference systems.
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