SIGGRAPH 2000 Course on 3D Photography

http://www.es.cmu.edu/~seitz/course/3DPhoto.html

Introduction

Steve Seitz

Carnegie Mellon University

Brian Curless

University of Washington

3D Photography from 2D Photography Objects Radiate Visible Light This Pattern of Light Depends On • Scene illumination • Surface geometry • Surface reflectance Cameras Capture This Light • Enables analysis of scene structure

Passive vs. Active 3D Photography **Objective** Infer structure from radiated light Two Styles Passive sensing of light already in environment > widely applicable **Morning** > cheap Session > brittle, less accurate Active control of illumination > not always viable **Afternoon** > expensive but getting cheaper Session > extremely accurate

Speakers

Jean-Yves Bouguet, Intel Corporation

Brian Curless, University of Washington

Paul Debevec, University of Southern California

Marc Levoy, Stanford University

Shree Nayar, Columbia University

Steven Seitz, Carnegie Mellon University

Speakers (Morning Session)

Shree Nayar Columbia University

8:40am Sensing for Vision and Graphics

Speakers (Morning Session)

Paul Debevec U.S.C, Institute for Creative Technologies

11:15am Facade: Modeling Architectural Scenes

Speakers (Afternoon Session) Brian Curless University of Washington 1:30pm Overview of Active Vision 3:15pm Shape and Appearance from Images and Range Data

Speakers (Afternoon Session) Marc Levoy Stanford University

3:55pm The Digital Michelangelo Project

Course Objectives

What Not to Expect

• "Build-your-own" 3D camera instructions

What to Expect

- Practical understanding of issues
- Overview of major approaches
- Latest research results
- Current capabilities, limitations

Course Notes
http://www.cs.cmu.edu/~seitz/course/3DPhoto.html

Slides

Acrobat versions of speakers' slides

Abstracts

- Digital Michelangelo Project
- Passive vision intro
- Modeling architecture from photographs

Models, Movies, Online Presentations

- VRML models, HTML
- Quicktime movies

Papers

Electronic versions of relevant publications