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Abstract
A simple and inexpensive approach for extracting the three-

dimensional shape of objects is presented. It is based on `weak
structured lighting'. It requires very little hardware besides the
camera: a light source (a desk-lamp or the sun), a stick and
a checkerboard. The object, illuminated by the light source, is
placed on a stage composed of a ground plane and a back plane;
the camera faces the object. The user moves the stick in front
of the light source, casting a moving shadow on the scene. The
3D shape of the object is extracted from the spatial and tempo-
ral location of the observed shadow. Experimental results are
presented on �ve di�erent scenes (indoor with a desk lamp and
outdoor with the sun) demonstrating that the error in recon-
structing the surface is less than 0:5% of the size of the object.
A mathematical formalism is proposed that simpli�es the nota-
tion and keep the algebra compact. A real-time implementation
of the system is also presented.

1 Introduction and motivation
One of the most valuable functions of our visual

system is informing us about the shape of the ob-
jects that surround us. Manipulation, recognition, and
navigation are amongst the tasks that we can better
accomplish by seeing shape. Ever-faster computers,
progress in computer graphics, and the widespread ex-
pansion of the Internet have recently generated inter-
est in imaging both the geometry and surface texture
of objects. The applications are numerous. Perhaps
the most important ones are animation and entertain-
ment, industrial design, archiving, virtual visits to mu-
seums, and commercial on-line catalogues.

In designing a system for recovering shape, di�er-
ent engineering tradeo�s are proposed by each appli-
cation. The main parameters to be considered are
cost, accuracy, ease of use and speed of acquisition.
So far the commercial 3D scanners (e.g. the Cy-
berware scanner) have emphasized accuracy over the
other parameters. Active illumination systems are
popular in industrial applications where a �xed in-
stallation with controlled lighting is possible. These
systems use motorized transport of the object and ac-
tive (laser, LCD projector) lighting of the scene which
makes them very accurate, but unfortunately expen-
sive [2, 23, 26, 38, 43]. Furthermore most active sys-
tems fail under bright outdoor scenes except those
based upon synchronized scanning. One such system
has been presented by Riou in [33].

An interesting challenge for vision scientists is to
take the opposite point of view: emphasize low cost

Figure 1: The general setup of the proposed method: The
camera is facing the scene illuminated by the light source (top-
left). The �gure illustrates an indoor scenario when a desk lamp
(without re
ector) is used as light source. In outdoor the lamp
is substituted by the sun. The objects to scan are positioned
on the ground 
oor (horizontal plane), in front of a background
plane. When an operator freely moves a stick in front of the
light, a shadow is cast on the scene. The camera acquires a
sequence of images I(x; y; t) as the operator moves the stick so
that the shadow scans the entire scene. A sample image is shown
on the top right �gure. This constitutes the input data to the
3D reconstruction system. The three dimensional shape of the
scene is reconstructed using the spatial and temporal properties
of the shadow boundary throughout the input sequence.

and simplicity and design 3D scanners that demand
little more hardware than a PC and a video camera
by making better use of the data that is available in
the images.

A number of passive cues have long been known
to contain information on 3D shape: stereoscopic
disparity, texture, motion parallax, (de)focus, shad-
ows, shading and specularities, occluding contours and
other surface discontinuities. At the current state of
vision research stereoscopic disparity is the single pas-
sive cue that reliably gives reasonable accuracy. Un-
fortunately it has two major drawbacks: it requires
two cameras thus increasing complexity and cost, and
it cannot be used on untextured surfaces, which are
common for industrially manufactured objects.

We propose a method for capturing 3D surfaces
that is based on what we call `weak structured light-
ing.' It yields good accuracy and requires minimal
equipment besides a computer and a camera: a stick,
a checkerboard, and a point light source. The light
source may be a desk lamp for indoor scenes, and the
sun for outdoor scenes. A human operator, acting as
a low precision motor, is also required.
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Figure 2: Geometrical principle of the method

We start with the description of the scanning
method in Sec. 2, followed in Sec. 3 by a number
of experiments that assess the convenience and accu-
racy of the system in indoor as well as outdoor sce-
narios. We end with a discussion and conclusions in
Sec. 4. In addition, we show that expressing the prob-
lem in dual-space geometry [12] enables to explore and
compute geometrical properties of three dimensional
scenes with simple and compact notation. This for-
malism is discussed in the appendix together with a
complete error analysis of the method.

2 Description of the method

The general principle consists of casting a moving
shadow with a stick onto the scene, and estimating the
three dimensional shape of the scene from the sequence
of images of the deformed shadow. Figure 1 shows a
typical setup. The objective is to extract scene depth
at every pixel in the image. The point light source and
the leading edge of the stick de�ne, at every time in-
stant, a plane; therefore, the boundary of the shadow
that is cast by the stick on the scene is the intersec-
tion of this plane with the surface of the object. We
exploit this geometrical insight for reconstructing the
3D shape of the object. Figure 2 illustrates the ge-
ometrical principle of the method. Approximate the
light source with a point S, and denote by �h the
horizontal plane (ground) and �v a vertical plane or-
thogonal to �h. Assume that the position of the plane
�h in the camera reference frame is known from cal-
ibration (sec. 2.1). We infer the location of �v from
the projection �i (visible in the image) of the inter-
section line �i between �h and �v (sec. 2.2). The

goal is to estimate the 3D location of the point P in
space corresponding to every pixel p (of coordinates
xc) in the image. Call t the time when the shadow
boundary passes by a given pixel xc (later referred to
as the shadow time). Denote by �(t) the correspond-
ing shadow plane at that time t. Assume that two
portions of the shadow projected on the two planes
�h and �v are visible on the image: �h(t) and �v(t).
After extracting these two lines, we deduce the lo-
cation in space of the two corresponding lines �h(t)
and �v(t) by intersecting the planes (Oc; �h(t)) and
(Oc; �v(t)) with �h and �v respectively. The shadow
plane �(t) is then the plane de�ned by the two non-
collinear lines �h(t) and �v(t) (sec. 2.5). Finally, the
point P corresponding to xc is retrieved by intersect-
ing �(t) with the optical ray (Oc; p). This �nal stage
is called triangulation (sec. 2.6). Notice that the key
steps are: (a) estimate the shadow time ts(xc) at ev-
ery pixel xc (temporal processing), (b) locate the two
reference lines �h(t) and �v(t) at every time instant
t (spatial processing), (c) calculate the shadow plane,
and (d) triangulate and calculate depth. These tasks
are described in sections 2.4, 2.5 and 2.6.

Goshtasby et al. [22] also designed a range scanner
using a shadow generated by a �ne wire in order to
reconstruct the shape of dental casts. In their system,
the wire was motorized and its position calibrated.

Notice that if the light source is at a known location
in space, then the shadow plane �(t) may be directly
inferred from the point S and the line �h(t). Conse-
quently, in such cases, the additional plane �v(t) is
not required. We describe here two versions of the
setup: one containing two calibrated planes and an
uncalibrated (possibly moving) light source; the sec-
ond containing one calibrated plane and a calibrated
light source.

2.1 Camera calibration

The goal of calibration is to recover the location of
the ground plane �h and the intrinsic camera parame-
ters (focal length, principal point and radial distortion
factor). The procedure consists of �rst placing a pla-
nar checkerboard pattern on the ground in the location
of the objects to scan (see �gure 3-left). From the im-
age captured by the camera (�gure 3-right), we infer
the intrinsic and extrinsic parameters of the camera,
by matching the projections onto the image plane of
the known grid corners with the expected projection
directly measured on the image (extracted corners of
the grid); the method is proposed by Tsai in [39]. We
use a �rst order symmetric radial distortion model for
the lens, as proposed in [11, 39, 25]. When using a
single image of a planar calibration rig, the principal
point (i.e. the intersection of the optical axis with the
image plane) cannot be recovered [25, 37]. In that
case it is assumed to be identical to the image cen-
ter. In order to �t a full camera model (principal
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point included), we propose to extend that approach
by integrating multiple images of the planar grid po-
sitioned at di�erent locations in space (with di�erent
orientations). This method has been suggested, stud-
ied and demonstrated by Sturm and Maybank in [37].
Theoretically, a minimum of two images is required to
recover two focals (along x and y), the principal point
coordinates, and the lens distortion factor. We recom-
mend to use that method with three or four images for
best accuracies on the intrinsic parameters [37]. In our
experience, in order to achieve good 3D reconstruction
accuracies, it is suÆcient to use the simple approach
with a single calibration image without estimating the
camera principal point. In other words, the quality of
reconstruction is quite insensitive to errors on the prin-
cipal point position. A whole body of work supporting
that observation may be found in the literature. We
especially advise the reader most interested in issues
on sensitivity of 3D Euclidean reconstruction results
with respect to intrinsic calibration errors, to refer to
recent publications on self-calibration, such as Boug-
noux [5] or Pollefeys et al. [28, 31, 32].

For more general insights on calibration techniques,
we refer the reader to the work of Faugeras [19] and
others [10, 11, 14, 18, 36, 42]. A 3D rig should be
used for achieving maximum accuracy.

Figure 3: Camera calibration

2.2 Vertical plane localization �
v

Call !h and !v respectively the coordinate vectors
of �h and �v (refer to �gure 2 and Appendix A for
notation). After calibration, !h is known. The two
planes �h and �v intersect along the line �i observed
on the image plane at �i. Therefore, according to
proposition 1 in Appendix A, !h�!v is parallel to �i,
coordinate vector of �i, or equivalently, there exists a
scalar � such that !v = !h+��i. Since the two planes
�h and �v are by construction orthogonal, we have
h!h; !vi = 0. That leads to the closed-form expression
for calculating !v :

!v = !h �
h!h; !hi

�i; !h

��i:
Notice that in every realistic scenario, the two planes
�h and �v do not contain the camera center Oc. Their
coordinate vectors !h and !v in dual-space are there-
fore always well de�ned (see Appendix A and sections
2.6 and 2.7 for further discussions).
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2.3 Light source calibration

When using a single reference plane for scanning
(for example �h without �v), it is required to know
the location of the light source in order to infer the
shadow plane location �(t) (see section 2.5 for de-
tails). Figure 4 illustrates a simple technique for cal-
ibrating the light source that requires minimal extra
equipment: a pencil of known length. The operator
stands a pencil on the reference plane �h (see �g.
4-top-left). The camera observes the shadow of the
pencil projected on the ground plane. The acquired
image is shown on �gure 4-top-right. From the two
points b and ts on this image, one can infer the po-
sitions in space of B and Ts, respectively the base of
the pencil, and the tip of the pencil shadow (see bot-
tom �gure). This is done by intersecting the optical

rays (Oc; b) and (Oc; ts) with �h (known from cam-
era calibration). In addition, given that the height of
the pencil h is known, the coordinates of its tip T can
be directly inferred from B. The point light source
S has to lie on the line � = (T; Ts) in space. This
yields one linear constraint on the light source posi-
tion. By taking a second view, with the pencil at a
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di�erent location on the plane, one retrieves a second
independent constraint with another line �0. A closed
form solution for the 3D coordinate of S is then de-
rived by intersecting the two lines � and �0 (in the
least squares sense). Notice that since the problem is
linear, one can integrate the information from more
than 2 views and make the estimation more accurate.
If N > 2 images are used, one can obtain a closed form

solution for the closest point ~S to the N inferred lines
(in the least squares sense). We also estimate the un-

certainty on that estimate from the distance of ~S to
each one of the � lines. That indicates how consis-
tently the lines intersect a single point in space. Refer
to [7, 8, 6] for the complete derivations.

2.4 Spatial and temporal shadow edge lo-
calization

A fundamental stage of the method is the detec-
tion of the lines of intersection of the shadow plane
�(t) with the two planes �h and �v; a simple ap-

proach to extract �h(t) and �v(t) may be used if we
make sure that a number of pixel rows at the top and
bottom of the image are free from objects. Then the
two tasks to accomplish are: (a) Localize the edges
of the shadow that are directly projected on the two
orthogonal planes �h(t) and �v(t) at every discrete
time t (every frame), leading to the set of all shadow
planes �(t) (see sec. 2.5), (b) Estimate the time ts(xc)
(shadow time) where the edge of the shadow passes
through any given pixel xc = (xc; yc) in the image
(see �gure 5). Curless and Levoy [16] demonstrated
that such a spatio-temporal approach is appropriate
for preserving sharp discontinuities in the scene as well
as reducing range distortions. A similar temporal pro-
cessing for range sensing was used by Gruss, Tada and
Kanade in [23, 27].

Both processing tasks correspond to �nding the
edge of the shadow, but the search domains are dif-
ferent: one operates on the spatial coordinates (image
coordinates) and the other one on the temporal coor-
dinate. Although independent in appearance, the two
search procedures need to be compatible: if at time t0
the shadow edge passes through pixel xc = (xc; yc),
the two searches should �nd the exact same point
(xc; yc; t0) (in space/time). One could observe that
this property does not hold for all techniques. One
example is the image gradient approach for edge de-
tection (e.g. Canny edge detector [13]). Indeed, the
maximum spatial gradient point does not necessar-
ily match with the maximum temporal gradient point
(which is function of the scanning speed). In addition,
the spatial gradient is a function both of changes in
illumination due to the shadow and changes in albedo
and changes in surface orientation. Furthermore, it
is preferable to avoid any spatial �ltering on the im-
ages (e.g. smoothing) which would produce blending
in the �nal depth estimates, especially noticeable at
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Figure 5: Spatial and temporal shadow localization

occlusions and surface discontinuities (corners for ex-
ample). These observations were also addressed by
Curless and Levoy in [16].

It is therefore necessary to use a unique criterion
that would equally describe shadow edges in space
(image coordinates) and time and is insensitive to
changes in surface albedo and surface orientation.
The simple technique we propose here that satis�es
that property is spatio-temporal thresholding. This
is based on the following observation: as the shadow
is scanned across the scene, each pixel (x; y) sees its
brightness intensity going from an initial maximum
value Imax(x; y) (when there is no shadow yet) down to
a minimum value Imin(x; y) (when the pixel is within
the shadow) and then back up to its initial value as the
shadow goes away. This pro�le is characteristic even
when there is a fair amount of internal re
ections in
the scene [29, 41].

For any given pixel xc = (x; y), de�ne Imin(x; y) and
Imax(x; y) as its minimum and maximum brightness
throughout the entire sequence:(

Imin(x; y)
:
= min

t
fI(x; y; t)g

Imax(x; y)
:
= max

t
fI(x; y; t)g

(1)

We de�ne the shadow edge to be the locations (in
space-time) where the image I(x; y; t) intersects with
the threshold image Ishadow(x; y) de�ned as the mean
value between Imax(x; y) and Imin(x; y):

Ishadow(x; y)
:
=

1

2
(Imax(x; y) + Imin(x; y)) (2)
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This may be also regarded as the zero crossings of the
di�erence image �I(x; y; t) de�ned as follows:

�I(x; y; t)
:
= I(x; y; t)� Ishadow(x; y) (3)

The two bottom plots of �g. 5 illustrate shadow
edge detection in the spatial domain (to calculate
�h(t) and �v(t)) and in the temporal domain (to calcu-
late ts(xc)). The bottom-left plot shows the pro�le of
�I(x; y; t) along row y = 209 at time t = t0 = 288
versus the column pixel coordinate x. The second
zero crossing of that pro�le corresponds to one point
xedge(t0) = (114:51; 209) belonging to �h(t0), the right
edge of the shadow (computed at subpixel accuracy by
linear interpolation). Identical processing is applied
on 39 other rows for �h(t0) and 70 rows for �v(t0) in
order to retrieve the two edges (by least square line �t-
ting across the two sets of points on the image). Simi-
larly, the bottom-right �gure shows the temporal pro-
�le �I(xc; yc; t) at the pixel xc = (xc; yc) = (133; 120)
versus time t (or frame number). The shadow time
at that pixel is de�ned as the �rst zero crossing loca-
tion of that pro�le: ts(133; 120) = 287:95 (computed
at sub-frame accuracy by linear interpolation). Notice
that the right edge of the shadow corresponds to the
front edge of the temporal pro�le, because the shadow
was scanned from left to right in all experiments. Intu-
itively, pixels corresponding to occluded regions in the
scene do not provide any relevant depth information.
Therefore, we only process pixels with contrast value
Icontrast(x; y)

:
= Imax(x; y) � Imin(x; y) larger than a

pre-de�ned threshold Ithresh. This threshold was 30
in all experiments reported in this paper (recall that
the intensity values are encoded from 0 for black to
255 for white). This threshold should be proportional
to the level of noise in the image.

Due to the limited dynamic range of the camera, it
is clear that one should avoid saturating the sensor,
and that one would expect poor accuracy in areas of
the scene that re
ect little light towards the camera
due to their orientation with respect to the light source
and/or low albedo. Our experiments were designed to
test the extent of this problem.

2.5 Shadow plane estimation �(t)

Denote by !(t), �h(t) and �v(t) the coordinate vec-
tors of the shadow plane �(t) and of the shadow edges
�h(t) and �v(t) at time t. Since �h(t) is the pro-
jection of the line of intersection �h(t) between �(t)
and �h, then !(t) lies on the line passing through !h
with direction �h(t) in dual-space (from Appendix A).

That line, denoted �̂h(t), is the dual image of �h(t) in
dual-space (see Appendix A). Similarly, !(t) lies on

the line �̂v(t) passing through !v with direction �v(t)
(dual image of �v(t)). Therefore, in dual-space, the
coordinate vector of the shadow plane !(t) is at the

intersection between the two known lines �̂h(t) and
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Figure 6: Shadow plane estimation using two planes: The
coordinate vector of the shadow plane !(t) is the intersection

point of the two dual lines �̂h(t) and �̂v(t) in dual-space (
).
In presence of noise, the two lines do not intersect. The vector
!(t) is then the best intersection point between the two lines
(in the least squares sense).

�̂v(t). In the presence of noise these two lines will not
exactly intersect (equivalently, the 3 lines �i, �h(t)
and �v(t) do not necessarily intersect at one point on

the image plane, or their coordinate vectors �i, �h(t)

and �v(t) are not coplanar). However, one may still
identify !(t) with the point that is the closest to the
lines in the least-squares sense. The solution to that
problem reduces to:

!(t) =
1

2
(!1(t) + !2(t)) ; (4)

with

!1(t)
:
= !h + �h�h(t)

!2(t)
:
= !v + �v�v(t)

(5)

if [�h �v]
T = A�1b, where A and b are de�ned as

follows (for clarity, the variable t is omitted):

A
:
=

� 

�h; �h

�
�



�h; �v

�
�



�h; �v

� 

�v; �v

� � ; b
:
=

� 

�h; !v � !h

�

�v; !h � !v

� �

Note that the two vectors !1(t) and !2(t) are the
orthogonal projections, in dual-space, of !(t) onto

�̂h(t) and �̂v(t) respectively. The norm of the dif-
ference between these two vectors may be used as an
estimate of the error in recovering �(t). If the two
edges �h(t) and �v(t) are estimated with di�erent re-
liabilities, a weighted least squares method may still
be used.

Figure 6 illustrates the principle of shadow plane es-
timation in dual-space when using the two edges �h(t)
and �v(t). This reconstruction method was used in
experiments 1, 4 and 5.

Notice that the additional vertical plane �v en-
ables us to extract the shadow plane location without
requiring the knowledge of the light source position.
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the light source position: In dual-space, the coordinate vec-
tor of the shadow plane !(t) is the intersection point of the line

�̂h(t) and the plane Ŝ, dual image of the point light source S.
This method requires the knowledge of the light source position.
A light source calibration method is presented in section 2.3.

Consequently, the light source is allowed to move dur-
ing the scan (this may be the case of the sun, for
example).

When the light source is of �xed and known location
in space, the plane �v is not required. Then, one may
directly infer the shadow plane position from the line
�h(t) and from the light source position S:

!(t) = !h + �h�h(t) (6)

where

S 2 �(t) ,



!(t); XS

�
= 1 , �h =

1�


!h; XS

�


�h(t); XS

�
where XS = [XS YS YS ]

T is the coordinate vector
of the light source S in the camera reference frame.
In dual-space geometry, this corresponds to intersect-

ing the line �̂h(t) with the plane Ŝ, dual image of
the source point S. This process is illustrated in
�gure 7. Notice that



�h(t); XS

�
= 0 corresponds to

the case where the shadow plane contains the camera
center of projection Oc. This is singular con�gura-
tion that makes the triangulation fail (k!(t)k ! 1).
This approach requires an additional step of estimat-
ing the position of S. Section 2.3 describes a simple
method for light source calibration. This reconstruc-
tion method was used in experiments 2 and 3.

It is shown in Appendix B that 1 �


!h; XS

�
=

hS=dh where hS and dh are the orthogonal distances
of the light source S and the camera center Oc to the
plane �h (see �gure 8). Then, the constant �h may
be written as:

�h =
hS=dh


�h(t); XS

� = 1=dh

�h(t); XS=hS

� (7)

This expression highlights the fact that the algebra
naturally generalizes to cases where the light source is
located at in�nity (and calibrated). Indeed, in those

cases, the ratio XS=hS reduces to dS= sin� where dS
is the normalized light source direction vector (in the
camera reference frame) and � the elevation angle of
the light source with respect to the plane �h (de�ned
on �gure 8). In dual-space, the construction of the
shadow plane vector !(t) remains the same: it is still

at the intersection of �̂h(t) with Ŝ. The only di�erence

is that the dual image Ŝ is a plane crossing the origin
in dual-space. The surface normal of that plane is
simply the vector dS .

2.6 Triangulation

Once the shadow time ts(xc) is estimated at a given
pixel xc = [xc yc 1]T (in homogeneous coordinates),
one can identify the corresponding shadow plane
�(ts(xc)) (with coordinate vector !c

:
= !(ts(xc))).

Then, the point P in space associated to xc is retrieved
by intersecting �(ts(xc)) with the optical ray (Oc; xc)
(see �gure 2):

Zc =
1

h!c; xci
=) Xc = Zc xc =

xc

h!c; xci
; (8)

if Xc = [Xc Yc Zc]
T is de�ned as the coordinate

vector of P in the camera reference frame.
Notice that the shadow time ts(xc) acts as an index

to the shadow plane list �(t). Since ts(xc) is estimated
at sub-frame accuracy, the plane �(ts(xc)) (actually
its coordinate vector !c) results from linear interpo-
lation between the two planes �(t0 � 1) and �(t0) if
t0 � 1 < ts(xc) < t0 and t0 integer:

!c = �t !(t0 � 1) + (1��t)!(t0);

where �t = t0 � ts(xc), 0 � �t < 1 (see �gure 17).
Once the range data are recovered, a mesh is gen-

erated by connecting neighboring points in triangles.
The connectivity is directly given by the image: two
vertices are neighbors if their corresponding pixels are
neighbors in the image. In addition, since every vertex
corresponds to a unique pixel, texture mapping is also
a straightforward task. Figures 9, 11, 12, 13 and 14
show experimental results.

Similarly to stereoscopic vision, when the baseline
becomes shorter, as the shadow plane moves closer
to the camera center triangulation becomes more and
more sensitive to noise. In the limit, if the plane
crosses the origin (or equivalently k!ck ! 1) triangu-
lation becomes impossible. This is why it is not a big
loss that we cannot represent planes going through
the origin with our parameterization. This observa-
tion will appear again in the next section on error
analysis.
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2.7 Design Issues - Error analysis

When designing the scanning system, it is impor-
tant to choose a spatial con�guration of the camera
and the light source that maximizes the overall qual-
ity of reconstruction of the scene.

The analysis conducted in Appendix C leads to an
expression for the variance �2Zc

of the error of the
depth estimate Zc of a point P belonging to the scene
(equation 18):

�2Zc

= Z4
c

�
!x cos'+ !y sin'

fc krI(xc)k

�2

�2I (9)

where xc is the coordinate vector of the projection p
of P on the image plane, !c = [!x !y !z]

T is the

shadow plane vector at time t = ts(xc), rI(xc) =

[Ix(xc) Iy(xc)]
T = krI(xc)k [cos' sin']T is the

spatial gradient vector of the image brightness at the
shadow edge at xc at time t = ts(xc) (in units of
brightness per pixel), �I is the standard deviation of
the image brightness noise (in units of brightness), and
fc is the camera focal length (in pixels).

Three observations may be drawn from equation 9.
First, since �2Zc

is inversely proportional to krI(xc)k
2,

the reconstruction accuracy increases with the sharp-
ness of the shadow boundary. This behavior has been
observed in past experiments, and discussed in [8].
This might explain why scans obtained using the sun
(experiments 4 and 5) are more noisy that those with a
desk lamp (as the penumbra is larger with the sun by a
factor of approximately 5). Second, notice that �2Zc

is

proportional to k!ck
2 (through the terms !2

x and !
2
y),

or, equivalently, inversely proportional to the square of
the distance of the shadow plane to the camera center
Oc. Therefore, as the shadow plane moves closer to the
camera, triangulation becomes more and more sensi-
tive to noise (see discussion in section 2.6). The third
observation is less intuitive: one may notice that �Zc

does not explicitly depend on the local shadow speed
at xc, at time t = ts(xc). Therefore, decreasing the
scanning speed would not increase accuracy. However,
for the analysis leading to equation 9 to remain valid
(see Appendix C), the temporal pixel pro�le must be
suÆciently sampled within the transition area of the
shadow edge (the penumbra). Therefore, if the shadow
edge were sharper, the scanning should also be slower
so that the temporal pro�le at every pixel would be
properly sampled. Decreasing further the scanning
speed would bene�t the accuracy only if the temporal
pro�le were appropriately low-pass �ltered or other-
wise interpolated before extraction of ts(xc). This is
an issue for future research.

An experimental validation of the variance expres-
sion (9) is reported in section 3 (�gure 10).

In the case where the light source position is known,
it is possible to write the \average" depth variance as

hS

Xc

Oc

Πh

dh

cZ
Yc

S

φ
θ

C

Lξ

Camera
Light source

Figure 8: Geometric setup: The camera is positioned at a
distance dh away from the plane �h and tilted down towards it
at an angle �. The light source is located at a height hS, with
its direction de�ned by the azimuth and elevation angles � and
� in the reference frame attached to the plane �h. Notice that
the sign of cos � directly relates to which side of the camera the
lamp is standing: positive on the right, and negative on the left.

a direct function of the variables de�ning the geometry
of the system (Appendix C, equation 22):

�Zc
javerage � dh

tan�

sin2 � jcos �j

�I

fc jIx(xc)j
(10)

where the quantities dh, �, � and � characterize
the spatial con�guration of the camera and the light
source with respect to the reference plane �h (�gure
8). Notice that this quantity may even be computed
prior to scanning right after calibration.

In order to maximize the overall reconstruction
quality, the position of the light source needs then to
be chosen so that the norm of the ratio tan�= cos �
is minimized. Therefore, the two optimal values for
the azimuth angle are � = 0 and � = � corresponding
to positioning the lamp either to the right (� = 0) or
to the left (� = �) of the camera (see �gure 8). Re-
garding the elevation angle �, it would be bene�cial
to make tan� as small as possible. However, making
� arbitrarily small is not practically possible. Indeed,
setting � = 0 would constrain the light source to lie on
the plane �h which would then drastically reduce the
e�ective coverage of the scene due to large amount of
self-shadows cast on the scenery. A reasonable trade-
o� for � is roughly between 60 and 70 degrees. Regard-
ing the camera position, it would also be bene�cial to
make sin � as large as possible (ideally equal to one).
However, it is very often not practical to make � ar-
bitrarily close to �=2. Indeed, having � = �=2 brings
the reference plane �h parallel to the image plane.
Then, standard visual camera calibration algorithms
are known to fail (due to lack of depth perspective in
the image). In most experiments, we set � to roughly
�=4.

Once again, for validation purposes, we may use
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equation 10 to estimate the reconstruction error of the
scans performed in experiment 3 (�gure 12). From a
set of 10 images, we �rst estimate the average image
brightness noise (�I = 2), and the shadow edge sharp-

ness (krIk � 50). After camera and light source
calibration, the following set of parameters is recov-
ered: fc = 428 pixels, dh = 22 cm, � = 39:60 degrees,
hS = 53:53 cm, � = �4:91 degrees and � = 78:39
degrees. Equation 10 returns then an estimate of the
reconstruction error (�Zc

� 0:2 mm) very close to the
actual error experimentally measured on the �nal re-
constructed surface (between 0:1 mm and 0:2 mm).
The �rst expression given in equation 9 may also be
used for obtaining a more accurate estimate of �Zc

speci�c to every point in the scene.

2.8 Merging scans

The range data can only be retrieved at pixels cor-
responding to regions in the scene illuminated by the
light source and seen by the camera. In order to ob-
tain better coverage of the scene, one may take multi-
ple scans of the same scene having the light source at
di�erent locations each time, while keeping the cam-
era position �xed. Consider the case of two scans with
the lamp �rst on the right, and then on the left of the
camera (see �gure 9). Assume that at a given pixel xc
on the image, two shadow planes are available from
the two scans: �L

c and �R
c . Denote by !Lc and !Rc

their respective coordinate vectors. Then, two esti-
mates ZL

c and ZR
c of the corresponding depth at xc

are available (from equation 8):

�
ZL
c = 1=



!Lc ; xc

�
ZR
c = 1=



!Rc ; xc

� (11)

One may then calculate the depth estimate at xc
by taking a weighted average of ZL

c and ZR
c :

Zc
:
= �L Z

L
c + �R Z

R
c (12)

where the weights �L and �R are computed based on
the respective reliabilities of the two depth estimates.
Assuming that ZL

c and ZR
c are random variables with

independent noise terms, they are optimally averaged
(in the minimum variance sense) using the inverse of
the variances as weights [30]:

�L

�R
=

�2R
�2L

=)

�
�L = �2R=(�

2
R + �2L)

�R = �2L=(�
2
R + �2L)

(13)

where �2L and �2R are the variances of the error at-

tached to ZL
c and ZR

c respectively.
A sensitivity analysis of the method described in

Appendix C provides expressions for those variances
(given in equation 9). This technique was used in ex-
periment 1 for merging two scans (see �gure 9).

2.9 Real-time implementation
We implemented a real-time version of our 3D scan-

ning algorithm in collaboration with Silvio Savarese of
the university of Naples, Italy. In that implementation
the process is divided into two main steps. In the �rst
step, the minimum and maximum images Imin(x; y)
and Imax(x; y) (eq. 1) are computed through a �rst
fast shadow sweep over the scene (with no shadow
edge detection). That step allows to pre-compute the
threshold image Ishadow(x; y) (eq. 2) which is useful to
compute in real-time the di�erence image �I(x; y; t)
(eq. 3) during the next stage: the scanning proce-
dure itself. During scanning, temporal and spatial
shadow edge detections are performed as described
in section 2.4: As a new image I(x; y; t0) is acquired
at time t = t0, the corresponding di�erence image
�I(x; y; t0) is �rst computed. Then, a given pixel
(xc; yc) is selected as a pixel lying on the edge of
the shadow if �I(xc; yc; t) crosses zero between times
t = t0 � 1 and t = t0. In order to make that deci-
sion, and then compute its corresponding sub-frame
shadow time ts(xc; yc), only the previous image dif-
ference �I(x; y; t0 � 1) needs to be stored in memory.
Once a pixel (xc; yc) is activated and its sub-frame
shadow time ts(xc; yc) computed, one may directly
identify its corresponding shadow plane � by linear
interpolation between the current shadow plane �(t0)
and the previous one �(t0 � 1) (see sec. 2.5). There-
fore, the 3D coordinates of the point may be directly
computed by triangulation (see sec. 2.6). As a re-
sult, in that implementation, neither the shadow times
ts(x; y), nor the entire list of shadow planes �(t) need
to be stored in memory, only the previous di�erence
image �I(x; y; t0 � 1) and the previous shadow plane
�(t0 � 1). In addition, scene depth map (or range
data) is computed in real-time. The �nal implemen-
tation that we designed also takes advantage of pos-
sible multiple passes of the shadow edge over a given
pixel in the image by integrating all the successive
depth measurements together based on their relative
reliabilities (equations 11, 12 and 13 in section 2.8).
Details of the implementation may be found in [34].

The real-time program was developed under Visual
C++ and works at 30 frames a second on images of
size 320 � 240 on a Pentium 300MHz machine: it
takes approximately 30 seconds to scan a scene with
a single shadow pass (i.e. 30� 30 = 900 frames), and
between one and two minutes for a re�ned scan using
multiple shadow passes. The system uses the PCI
frame grabber PXC200 from Imagenation, a NTSC
black and white SONY XC-73/L camera (1/3 inch
CCD) with a 6mm COSMICAR lens (leading to a 45o

horizontal �eld of view). Source code (matlab for cal-
ibration and C for scanning) and complete hardware
references and speci�cations are available online at
http://www.vision.caltech.edu/bouguetj/ICCV98.
At the same location, a short demonstration movie of
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the working system is also available.

3 Experimental Results
3.1 Calibration accuracy
Camera calibration. For a given setup, we ac-
quired 5 images of the checkerboard pattern (see �gure
3-right), and performed independent calibrations on
them. The checkerboard, placed at di�erent posi-
tions in each image, consisted of 187 visible corners
on a 16 � 10 grid. We computed both mean values
and standard deviations of all the parameters inde-
pendently: the focal length fc, radial distortion fac-
tor kc and ground plane position �h. Regarding the
ground plane position, it is convenient to look at its
distance dh to the camera originOc and its normal vec-
tor nh expressed in the camera reference frame (recall:
!h = nh=dh). The following table summarizes the cal-
ibration results:

Parameters Estimates Relative
errors

fc (pixels) 426:8 � 0:8 0:2%

kc �0:233 � 0:002 1%

dh (cm) 112:1 � 0:1 0:1%

nh

0
@

�0:0529 � 0:0003
0:7322 � 0:0003
0:6790 � 0:0003

1
A 0:05%

!h (m�1)

0
@

�0:0472 � 0:0003
0:653 � 0:006
0:606 � 0:006

1
A 0:1%

Lamp calibration. Similarly, we collected 10 images
of the pencil shadow (like �gure 4-top-right) and per-
formed calibration of the light source on them. See
section 2.3. Notice that the points b and ts were
manually extracted from the images. De�ne XS as
the coordinate vector of the light source in the cam-
era reference frame. The following table summarizes
the calibration results obtained for the setup shown in
�gure 4 (refer to �gure 8 for notation):

Parameters Estimates Relative
errors

XS (cm)

0
@

�13:7� 0:1
�17:2� 0:3
�2:9� 0:1

1
A � 2%

hS (cm) 34:04 � 0:15 0:5%

� (degrees) 146:0 � 0:8 0:2%

� (degrees) 64:6� 0:2 0:06%

The estimated lamp height agrees with the manual
measure (with a ruler) of 34� 0:5 cm.

This accuracy is suÆcient for not inducing any
signi�cant global distortion onto the �nal recovered
shape, as we discuss in the next section.

3.2 Scene reconstructions
Experiment 1 - Indoor scene: We took two scans
of the same scene with the desk lamp �rst on the right
side and then on the left side of the camera. The two
resulting meshes are shown on the top row on �gure

Figure 9: Experiment 1 - Indoor scene

9. The meshes were then merged together following
the technique described in section 2.8. The bottom
�gure shows the resulting mesh composed of 66; 579
triangles. We estimated the surface error (�Zc

) to ap-
proximately :7 mm in standard deviation over 50 cm
large objects, leading to a relative reconstruction error
of 0:15%. The white holes in the mesh images corre-
spond to either occluded regions (not observed from
the camera, or not illuminated) or very low albedo ar-
eas (such as the black squares on the horizontal plane).
There was no signi�cant global deformation in the �-
nal structured surface: after �tting a quadratic model
through sets of points on the two planes, we only no-
ticed a decrease of approximately 5% in standard devi-
ation of the surface error. One may therefore conclude
that the calibration procedure returns suÆciently ac-
curate estimates. The original input sequences were
respectively 665 and 501 frames long, each image be-
ing 320� 240 pixels large, captured with a grayscale
camera.

Figure 10 reports a comparison test between the
theoretical depth variances obtained from expression
(9) and that computed from the reconstructed surface.
This test was done on the �rst scan of the scene shown
on �gure 9-top-left. In that test, we experimentally
compute the standard deviation �Zc

of the error on
the depth estimate Zc at 13 points p = (A;B; : : : ;M)
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B
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C
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D
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Figure 10: Comparison of measured and predicted re-

construction error �Zc : The standard deviation �Zc of the
depth estimate error are experimentally calculated at 13 points
p = (A;B; : : : ;M) picked randomly on the horizontal plane �h

and computed theoretically using equation 9. The experimental
estimates are reported in the last column of the table (in mm)
and the second last column reports the corresponding theoreti-
cal estimates. The terms involved in equation 9 are also given:
rI (in units of brightness per pixel), [!x !y]T (in m�1) and
Zc (in mm). The image noise was experimentally estimated to
�I = 2 brightness values, and the focal value used was fc = 426
pixels. The top-left �gure shows a plot is the theoretical stan-
dard deviations versus the experimental ones. Observe that the
theoretical error model captures quite faithfully the actual vari-
ations in accuracy of reconstruction within the entire scene: as
the point of interest moves from the left to the right part of the
scenery, accuracy increases due to sharper edges, and a smaller
shadow plane vector !c; in addition, deeper areas in the scene
are more noisy mainly because of larger absolute depths Zc and
shallower shadow edges (smaller krIk). We conclude from that
experiment that equation 9 returns an accurate estimate for
�Zc .

picked randomly on the horizontal plane �h of the
scan data shown on �gure 9-top-left. Figure 10-top-
right shows the positions of those points in the scene.
The standard deviation �Zc

at a given point p in the
image is experimentally calculated by �rst taking the
9� 9 pixel neighborhood around p resulting into a set
of 81 points in space that should lie on �h. We then
�t a plane across those 81 points (in the least squares
sense) and set �Zc

as the standard deviation of the
residual algebraic distances of the entire set of points
to this best �t plane. The experimental estimates for
�Zc

are reported in the last column of the table (in
mm). The second last column reports the correspond-
ing theoretical estimates of �Zc

(in mm) computed
using equation 9. The terms involved in that equation
are also given: rI (in units of brightness per pixel),
[!x !y]

T (in m�1) and Zc (in mm). The image noise
was experimentally estimated to �I = 2 brightness val-
ues (calculation based on 100 acquired images of the
same scene), and the focal value used was fc = 426
pixels. See sec. 2.7 for a complete description of those
quantities. The top-left �gure shows a plot of the the-
oretical standard deviations versus the experimental
ones. Observe that the theoretical error model cap-
tures quite faithfully the actual variations in accuracy
of reconstruction within the entire scene: as the point
of interest moves from the left to the right part of the
scenery, accuracy increases due to sharper edges, and
a smaller shadow plane vector !c; in addition, deeper
areas in the scene are more noisy mainly because of
larger absolute depths Zc and shallower shadow edges
(smaller krIk). We conclude from that experiment
that equation 9 returns a valid estimate for �Zc

.

Experiment 2 - Scanning of a textured skull:
We took one scan of a small painted skull, using a
single reference plane �h, with known light source po-
sition (pre-calibrated). Two images of the sequence
are shown on the top row of �gure 11. The recovered
shape is presented on the second row (33,533 trian-
gles), and the last row shows three views of the mesh
textured by the top left image. Notice that the tex-
tured regions of the object are nicely reconstructed (al-
though these regions have smaller contrast Icontrast).
Small artifacts observable at some places on the top
of the skull are due to the saturation of the pixel val-
ues to zero during shadow passage. This e�ect in-
duces a positive bias on the threshold Ishadow (since
Imin is not as small as it should be). Consequently,
those pixels take on slightly too small shadow times
ts and are triangulated with shadow planes that are
shifted to the left. In e�ect, their �nal 3D location
is slightly o� the surface of the object. One possible
solution to that problem consists of taking multiple
scans of the object with di�erent camera apertures,
and retain each time the range results for the pix-
els that do not su�er from saturation. The overall
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reconstruction error was estimated to approximately
0.1 mm over a 10 cm large object leading to a rela-
tive error of approximately 0:1%. In order to check
for global distortion, we measured the distances be-
tween three characteristic points on the object: the
tip of the two horns, and the top medium corner of the
mouth. The values obtained from physical measure-
ments on the object and the ones from the retrieved
model agreed within the error of measurement (on the
order of 0.5mm over distances of approximately 12 to
13cm). The sequence of images was 670 frames long,
each image being 320�240 pixels large (acquired with
a grayscale camera).

Experiment 3 - Textured and colored fruits:
Figure 12 shows the reconstruction results on two tex-
tured and colored fruits. The second row shows the
reconstructed shapes. The two meshes with the pixel
images textured on them are shown on the third row.
Similar reconstruction errors to the previous exper-
iment (Experiment 2) were estimated on that data
set. Notice that both textured and colored regions of
the objects were well reconstructed: the local surface
errors was estimated between 0:1 mm and 0:2 mm,
leading to relative errors of approximately 0:1%.

Experiment 4 - Outdoor scene: In this experi-
ment, the sun was the light source. See �gure 13. The
�nal mesh is shown on the bottom �gure (106; 982 tri-
angles). The reconstruction error was estimated to
1mm in standard deviation, leading to a relative error
of approximately 0:2%. The larger reconstruction er-
ror is possibly due to the fact that the sun is not well
approximated by a point light source (as discussed in
Appendix C). Once again, there was no noticeable
global deformation induced by calibration. After �t-
ting a quadratic model to sets of points on the planes,
we only witnessed a decrease of approximately 5% on
the standard deviation of the residual error. The orig-
inal sequence was 790 images long acquired with a
consumer electronics color camcorder (at 30 Hz). Af-
ter digitization, and de-interlacing, each image was
640�240 pixel large. The di�erent digitalization tech-
nique may also explain the larger reconstruction error.

Experiment 5 - Outdoor scanning of a car:
Figure 14 shows the reconstruction results on scan-
ning a car with the sun. The two planes (ground 
oor
and back wall) approach was used to infer the shadow
plane (without requiring the sun position). The initial
sequence was 636 frames long acquired with a con-
sumer electronics color video-camera (approximately
20 seconds long). Similarly to Experiment 4, the se-
quence was digitized resulting to 640� 240 pixel large
non-interlaced images. Two images of the sequence
are presented on the top row, as well as two views of
the reconstructed 3D mesh after scanning. The re-
construction errors were estimated to approximately
1 cm, or 0:5% of the size of the car (approximately 3

meters).

4 Conclusion and future work
We have presented a simple, low cost system for 3D

scanning. The system requires very little equipment (a
light source, and a straight edge to cast the shadow)
and is very simple and intuitive to use and to cali-
brate. This technique scales well to large objects and
may be used in brightly lit scenes where most active
lighting methods are impractical (expect synchronized
scanning systems [33]). In outdoor scenarios, the sun
is used as light source and is allowed to move during a
scan. The method requires very little processing and
image storage and has been implemented in real time
(30 Hz) on a Pentium 300MHz machine. The accu-
racies that we obtained on the �nal reconstructions
are reasonable (error at most 0:5% of the size of the
scene). In addition, the �nal outcome is a dense and
conveniently organized coverage of the surface (one
point in space for each pixel in the image), allowing di-
rect triangular meshing and texture mapping. We also
showed that using dual-space geometry enables us to
keep the mathematical formalism simple and compact
throughout the successive steps of the method. An er-
ror analysis was presented together with a description
of a simple technique for merging multiple 3D scans
in order to obtain a better coverage of the scene, and
reduce the estimation error. The overall calibration
procedure, even in the case of multiple scans, is intu-
itive, simple, and accurate.

Our method may be used to construct complete 3D
object models. One may take multiple scans of the
object at di�erent locations in space, and then align
the sets of range images. For that purpose, a number
of algorithms have been explored and shown to yield
excellent results [3, 21, 40]. The �nal step consists of
constructing the �nal object surface from the aligned
views [1, 17, 40].

It is part of future work to incorporate a geometri-
cal model of extended light source to the shadow edge
detection process, in addition to developing an uncal-
ibrated (projective) version of the method. One step
towards an uncalibrated system may be found in [9].
In this paper, we study the case of 3D reconstruction
from a set of planar shadows when there is no cali-
brated background plane in the scene.

A Dual-space formalism

Let (E) = IR3 be the 3D Euclidean space. A plane
� in (E) is uniquely represented by the 3-vector ! =
[!x !y !z]

T such that any point P of coordinate

vector Xc = [Xc Yc Zc]
T (expressed in the camera

reference frame) lies on � if and only if


!;Xc

�
= 1

(h:; :i is the standard scalar product operator). Notice
that !

:
= n=d where n is the unitary normal vector

of the plane and d 6= 0 the plane's distance to the
origin. Let (
) = IR3. Since every point ! 2 (
)
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Figure 11: Experiment 2 - Scanning of a textured skull

Figure 12: Experiment 3 - Textured and colored fruits

Figure 13: Experiment 4 - Outdoor scanning of an object

Figure 14: Experiment 5 - Outdoor scanning of a car
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Figure 15: Proposition 1: The direction of the line connecting
two planes vectors !a and !b in dual-space (
) is precisely �,
the coordinate vector of the perspective projection � of the line
of intersection � between the two planes �a and �b in Euclidean
space (E).

corresponds to a unique plane � in (E), we refer to
(
) as the `dual-space'. Conversely, every plane �
that does not contain the origin has a valid coordinate
vector ! in (
). Notice that the set of plane crossing
the origin cannot be parameterized in (
) space, since
the ! diverges to in�nity as d gets closer to zero.

Similarly, a line � on the image plane is represented
by the 3-vector � (up to scale) such that any point p
of coordinates xc = [xc yc 1]T lies on this line if and

only if


�; xc

�
= 0. See [20, 24, 35].

Originally, the dual-space of a given vector space
(E) is de�ned as the set of linear forms on (E) (lin-
ear functions of (E) into the reals IR). See [4]. In
the case where (E) is the three dimensional Euclidean
space, each linear form may be interpreted as a plane
� in space that is typically parameterized by a homo-
geneous 4-vector � = [�1 �2 �3 �4]

T . A point P

of homogeneous coordinates X = [X Y Z 1]T lies
on a generic plane � of coordinates � if and only if

�;X

�
= 0 (see [12]). Our !�parameterization dif-

fers from the conventional parameterization in that it
does not allow to represent planes crossing the origin
(the correspondence between the two parameteriza-
tions is ! = �[�1 �2 �3]

T =�4, therefore �4 6= 0).
However, that does not constitute a limitation in our
application since none of the planes we need to param-
eterize are allowed to cross the origin (as discussed in
sections 2.2 and 2.6). Furthermore, this new repre-
sentation exhibits useful properties allowing to natu-
rally relate objects in 3D (planes, lines and points) to
their perspective projections on the image plane (lines
and points) in addition to providing very compact an-
alytical results in error sensitivity analysis.

The following proposition constitutes the major
property associated to our choice of parameterization:

Proposition 1: Consider two planes �a and �b in
space, with respective coordinate vectors !a and !b
(!a 6= !b), and let � = �a\�b be the line of intersec-

tion between them. Let � be the perspective projec-
tion of � on the image plane, and � its representative
vector. Then � is parallel to !a � !b (see �gure 15).
In other words, !a�!b is a valid coordinate vector of
the line �.

Proof: Let P 2 � and let p be the projection of
P on the image plane. Call X = [X Y Z]T and

x = 1
Z
X the respective coordinates of P and p. We

successively have:

P 2 � ()

�
P 2 �a

P 2 �b

()

� 

!a; X

�
= 1


!b; X
�

= 1
=) h!a � !b; xi = 0:

Therefore (!a�!b) is a representative vector of � and

must be parallel to �. �
Consequently, the coordinate vector ! of any plane

� containing the line � will lie on the line connecting
!a and !b in dual-space (
). We denote that line

by �̂ and call it the dual image of �. The following
de�nition generalizes that concept of dual image:

De�nition: Let A be a submanifold of (E) (e.g. a
point, line, plane, surface or curve). The dual image

Â of A is de�ned as the set coordinates vectors !
in dual-space (
) representing the tangent planes to
A. Following that standard de�nition (see [12]), the
dual images of points, lines and planes in (E) may be
shown to be respectively planes, lines and points in
dual-space (
), as illustrated in �gure 16. Further
properties regarding non-linear sub-manifolds may be
observed, such as for quadric surfaces in [15].

B Proof of h
S
=d

h
= 1�



!
h
; X

S

�

Since !h is the coordinate vector of the plane �h,
the vector nh = dh !h is the normal vector of the plane
�h in the camera reference frame (see �gure 8). Let P
be a point in Euclidean space (E) of coordinate vector

X. The quantity dh �


nh; X

�
is then the (algebraic)

orthogonal distance of P to �h (positive quantity if the
P is on the side of the camera, negative otherwise).

In particular, if P lies on �h, then


nh; X

�
= dh,

which is equivalent to


!h; X

�
= 1. The orthogonal

distance of the light source S to �h is denoted hS on
�gure 8. Therefore hS = dh�



nh; X

�
, or equivalently

1�


!h; XS

�
= hS=dh. �

C Sensitivity Analysis
This appendix presents a complete error analysis

for the whole reconstruction scheme. As �rst men-
tioned in section 2, the method proposes to associate
to every pixel xc the time instant ts(xc) at which the
shadow crosses that particular pixel. That given time
corresponds to the shadow plane �(ts(xc)) in space (of
coordinate vector !c), used at the triangulation step
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Figure 16: Duality principle: The dual images of a plane �,
a line � and a point P . Notice that the perspective projection �
of the line � is directly observable in dual-space as the direction
vector of its dual image �̂. Similarly, the coordinate vector x of
the projection of P is precisely the normal vector the plane P̂
(dual image of P ).

to retrieve the coordinates of the point P in space
(see �gure 2). In addition, at every time instant t, a
shadow plane �(t) is estimated based on two line seg-
ments �h(t) and �v(t) extracted from the image plane
(see section 2.4).

Therefore, one clearly identi�es two possible
sources of error a�ecting the overall reconstruction:
errors in localizing the two edges �h(t) and �v(t) lead-
ing to error in estimating the shadow plane �(t) (or
error on the vector !(t)), and errors in �nding the
shadow time ts(xc) (at every pixel xc) leading to an
error in shadow plane assignment.

Experimentally, we found that the error coming
from spatial processing (shadow plane localization)
was much smaller than the one coming from tempo-
ral processing (shadow time computation). In other
words, in all the experiments we carried out, the
shadow planes were localized to such a degree of accu-
racy that the errors induced by the noise on !c were
negligible compared to the errors induced by the noise
on ts(xc). This experimental observation is reasonable
because the shadow edges �h(t) and �v(t) are recov-
ered by �tting lines through many points on the image
plane (an order of 50 points per line) while shadow
time ts(xc) is estimated on a basis of a single pixel.
Notice that this is experiment dependent, and may
very well not be true if fewer points were used to ex-
tract the shadow edges, or if the image were more
noisy, or more distorted. In those cases, both error
terms should be retained. In the present analysis, we

propose to derive an expression of the variance of the
error in depth estimation �2Zc

assuming that the main
source of noise comes from temporal processing. In the
experimental section, we verify that the �nal variance
expression agrees numerically with accuracies achieved
on real scan data.

C.1 Derivation of the depth variance �
2
Zc

Every pixel xc on the image sees the shadow pass-
ing at time a ts(xc), called the shadow time, that is
estimated through temporal processing (see section
2.4). This estimation is naturally subject to errors,
leading to inaccuracies in the �nal 3D reconstruction.
The purpose of that analysis is to study how damag-
ing those errors truly are on the �nal structure, and
quantify them. Assume that for a given pixel xc, an
additive temporal error Æts(xc) is made on its shadow
time estimate: ~ts(xc) = ts(xc) + Æts(xc). This typ-
ically leads the algorithm to assign to the pixel xc
the \wrong" shadow plane �(ts(xc) + Æts(xc)) for the
geometrical triangulation step. Equivalently, one can
think that the plane �(ts(xc) + Æts) has been associ-
ated with the \wrong" pixel xc in the image. Although
it does not change anything to the problem, that way
of centering the reasoning onto the shadow plane in-
stead of the pixel actually signi�cantly simpli�es the
whole analysis. Indeed, as we will show in the follow-
ing, if we assign the noise to the pixel location itself,
the time variable can then be omitted.

To be more precise, let us �rst de�ne v(xc) =
[vx(xc) vy(xc)]

T to be the velocity vector of the
shadow at the pixel xc that is orthogonal to the
shadow edge. Then, the closest point to xc that has
truly been lit by the shadow plane �(ts(xc)+ Æts(xc))
is xc + Æts(xc) v(xc). Therefore, by picking xc in-
stead, we introduce an additive pixel error Æxc

:
=

�Æts(xc) v(xc). This is the equivalent noise that can
be attributed to the pixel location xc before triangu-
lation.

One can then see that this equivalent image coor-
dinate noise is naturally related to the speed of the
shadow. Indeed, even if we assume that the time esti-
mation error Æts is identical for every pixel in the im-
age, the corresponding pixel error Æxc is generally not
uniform, neither in direction, nor in magnitude. Typ-
ically, fast moving shadow regions will be subject to
larger errors than slow moving shadow regions. Vari-
ations in apparent shadow speed can be caused by a
change in the actual speed at which the stick is moved,
a change in local surface orientation of the scene, or
both.

Before triangulation, the pixel coordinates have to
be normalized by the intrinsic parameters of the cam-
era. Let us assume, for simplicity in the notation,
that xc = [xc yc 1]T is directly the normalized, ho-
mogeneous coordinate vector associated to the pixel.
The two coordinates xc and yc are a�ected by the

14



c c 0I(x  , y  , t  )

t  (x )cs

c cI(x  , y  , t)∆

0t -1

c c 0I(x  , y  , t  -1)

1= I
σ

I

δI

σt

t∆

0t

∆

∆

0= I

t

Figure 17: Estimation error on the shadow time: The
shadow time ts(xc) is estimated by linearly interpolating the
di�erence temporal brightness function �I(xc; yc; t) between
times t0 � 1 and t0. The pixel noise (of standard deviation
�I ) on I0

:

= �I(xc; yc; t0 � 1) and I1

:

= �I(xc; yc; t0) induces
errors on the estimation of �t, or equivalently ts(xc). This error
has variance �2t .

error vector Æxc whose variance-covariance matrix is
denoted �xc (a 2 � 2 matrix). Let us derive an ex-
pression for that matrix as a function of the image
brightness noise.

Lemma: Let �I be the standard deviation of the
image brightness noise (estimated experimentally).
We can write �xc as a function of the image gradi-

ent rI(xc) at pixel xc at time t = ts(xc):

�xc =
�2I

f2c krI(xc)k
2

�
cos2 ' cos' sin'

cos' sin' sin2 '

�
(14)

where fc is the focal length of the camera (in pixels),

rI(xc) is the gradient vector of the image brightness
at the shadow, and ' the orientation angle of that
vector (orientation of the shadow edge at pixel xc):

rI(xc) =

�
Ix(xc)
Iy(xc)

�
= krI(xc)k

�
cos'
sin'

�

where:

Ix(xc)
:
=

@I(x; t)

@x

����
x=xc;t=ts(xc)

Iy(xc)
:
=

@I(x; t)

@y

����
x=xc;t=ts(xc)

Proof of lemma (eq. 14): Figure 17 shows the
principle of computing the shadow time ts(xc) from
the di�erence image �I (refer to section 2.5). For
clarity in the notation, de�ne I0

:
= �I(xc; yc; t0 � 1)

and I1
:
= �I(xc; yc; t0). Then, the shadow time ts(xc)

is given by:

ts(xc) = t0 ��t

where:

�t
:
=

I1

I1 � I0

Let �2t be the variance of the error Æts(xc) attached
to the shadow time ts(xc). In normal sampling condi-
tions (if the temporal brightness is suÆciently sampled
within the shadow transition area), the same error is
on the variable �t, and therefore �t may be directly
expressed as a function of �I , the variance of pixel
noise on I0 and I1:

�2t =

 �
@�t

@I0

�2

+

�
@�t

@I1

�2
!
�2I

�2t =
I20 + I21
ÆI4

�2I (15)

where ÆI
:
= I1 � I0 is the temporal brightness varia-

tion at the zero crossing (or equivalently at the shadow
time). One may notice from equation 15 that, as the
brightness di�erence ÆI increases, the error in shadow
time decreases. That is a very intuitive behavior given
that higher shadow contrasts should give rise to bet-
ter accuracies. Notice however that the variance �2t
is not only a function of ÆI but also of the absolute
brightness values I0 and I1. One may then consider
the maximum value of �2t for a �xed ÆI over all I0 and
I1, subject to the constraint I1 = I0 + ÆI :

�2t = max
0<I0<�ÆI

�
2 I20 + 2 I0 ÆI + ÆI2

ÆI4

�
�2I

leading to the following simpli�ed expression for �2t :

�2t =
�2I
ÆI2

(16)

To motivate that simpli�cation, one may notice that
the minimum and maximum values of �2t over all val-
ues I0 and I1 are quite similar anyway: �2I=(2 ÆI

2)
(minimum) and �2I=ÆI

2 (maximum). The maximum
may be thought as an upper bound on the error. No-
tice that ÆI is nothing but the �rst temporal derivative
of the image brightness at the pixel xc, at the shadow
time:

ÆI =
@I(x; t)

@t

����
x=xc;t=ts(xc)

This temporal derivative may also be expressed as
a function of the image gradient vector rI(xc) =
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[Ix(xc) Iy(xc)]
T and the shadow edge velocity vec-

tor v(xc) = [vx(xc) vy(xc)]
T :

ÆI = �rI(xc)
T v(xc) = �Ix(xc) vx(xc)� Iy(xc) vy(xc)

By de�nition, the edge velocity vector v(xc) is or-
thogonal to the shadow edge. Therefore it may be
also written as a direct function of the gradient vector
rI(xc):

v(xc) = s kv(xc)k
rI(xc)

krI(xc)k
= s kv(xc)k

�
cos'
sin'

�

where s is either +1 or �1 depending on the direction
of motion of the edge. Therefore,

ÆI = (�s)
rI(xc)

T
rI(xc)

krI(xc)k
kv(xc)k

ÆI = (�s) krI(xc)k kv(xc)k (17)

Consequently, by substituting (17) into (16), we ob-
tain a new expression for the temporal variance �2t :

�2t =
�2I

krI(xc)k2 kv(xc)k2

Then, the error vector Æxc transfered on the image
plane is also related to the shadow edge velocity v(xc)
and the temporal error Æts(xc):

Æxc = �Æts(xc) v(xc)

Æxc = (�s) kv(xc)k Æts(xc)

�
cos'
sin'

�

Then, the variance-covariance matrix of the noise Æxc
is (recall that s2 = 1):

�xc = kv(xc)k
2 �2t

�
cos2 ' cos' sin'

cos' sin' sin2 '

�

�xc =
�2I

krI(xc)k2

�
cos2 ' cos' sin'

cos' sin' sin2 '

�

Finally, note that this relation is valid if xc is expressed
in pixel coordinates. After normalization, this vari-
ance must be scaled by the square of the inverse of
focal length fc:

�xc =
�2I

f2c krI(xc)k
2

�
cos2 ' cos' sin'

cos' sin' sin2 '

�

which ends the proof of the lemma (eq. 14). �

Notice that if the shadow edge is roughly vertical
on the image, one may assume ' = 0, and therefore
simplify quite signi�cantly the variance expression:

�xc =
�2I

f2c I
2
x(xc)

�
1 0
0 0

�

In that case, we reach the very intuitive result that
only the �rst coordinate of xc is a�ected by noise.

Since �xc in inversely proportional to the image
gradient, accuracy improves with shadow edge sharp-
ness. In addition, observe that �xc does not directly
depend upon the local shadow speed. Therefore, de-
creasing the scanning speed would not increase accu-
racy. However, for the analysis leading to equation
14 to remain valid, the temporal pixel pro�le must
be suÆciently sampled within the transition area of
the shadow edge (the penumbra). Therefore, if the
shadow edge were sharper, the scanning should also
be slower so that the temporal pro�le at every pixel
would be properly sampled. Further discussions may
be found in section 2.7. Another consequence of equa-
tion 14 is that one may experimentally compute the
variance �xc of the transfered error directly from the

original input sequence: rI(xc) is the image gradient
at the shadow edge and �I is the pixel noise on the
image. In addition, assuming that the sharpness of
the shadow is approximately uniform over the entire
image, then �xc may also be assumed to be uniform
to a �rst approximation. That constitutes an addi-
tional simpli�cation that does not have to be retained
in practice.

The �nal expression of the variance �2Zc

of the error
attached to the depth estimate Zc may be written as
follows:

�2Zc

=

�
@Zc

@xc

�
�xc

�
@Zc

@xc

�T

One may derive the expression for the Jacobian matrix�
@Zc

@xc

�
from the triangulation equation 8:

Zc =
1

h!c; xci
=)

@Zc

@xc
= Z2

c

�
!x !y

�
where !x and !y are the two �rst coordinates of the
shadow plane vector !c. This allows to expand the
expression of �2Zc

:

�2Zc

= Z4
c

�
!x cos'+ !y sin'

fc krI(xc)k

�2

�2I (18)

This expression is directly computable from the orig-
inal input sequence, and used for scan merging (refer
to section 2.8). Several observations regarding that
expression may be found in section 2.7.
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C.2 System Design Issues
Let us consider the scanning setup as it is presented

on �gure 8 where the scan is done roughly vertically.
In that case, ' � 0, and I2y (xc) � I2x(xc) (see �gure

10). Then, the depth variance expression (18) may be
further simpli�ed to:

�2Zc

�

Z4
c !

2
x

f2c I
2
x(xc)

�2I (19)

It appears then that the �rst coordinate !x of the
shadow plane vector !c carries most of the variations
in accuracy of reconstruction within a given scan.
When designing the scanning system, an important
issue is to choose the spatial con�gurations of the
camera and the light source that maximize the over-
all quality of reconstruction, or equivalently minimize
j!xj. In order to address this issue, it is necessary to
further expand the term !x, and study its dependence
upon the geometrical variables characterizing the sys-
tem. Since the light source position is of interest here,
let us consider the case where a single plane �h is
used for scanning. In that case, the shadow plane vec-
tor !c appears as a function of the light source posi-
tion vector XS , as stated by equation 6. Assume that
�h = [�x �y �z ]

T is normalized such that �x = 1. In
addition, assume that the (Oc; Xc) axis of the camera
is approximately parallel to the plane �h (as suggested
in �gure 8). This implies that the �rst coordinate of
!h is zero. Then, the �rst coordinate !x of !c reduces
to:

!x =
1�



!h; XS

�


�h; XS

� =
hS=dh

�h; XS

� (20)

where dh and hS are the respective orthogonal dis-
tances of the camera center Oc and the light source S
to the plane �h.

For simpli�cation purposes, let us assume that the
shadow edge �h appears vertically on the image plane,
and let x be its horizontal position (on the image). As
the shadow moves from left to right, x varies from
negative values to positive values, crossing zero when
the shadow is at the center of the image. In that
speci�c scenario, the shadow edge vector reduces to:
�h = [1 0 � x]T simplifying equation 20:

1

!x
=

dh

hS
(XS � xZS) (21)

The problem of maximizing the reconstruction qual-
ity corresponds then to maximizing j1=!xj. Since that
quantity is function of the shadow edge location x, we
may observe that the accuracy of reconstruction is not
uniform throughout the scene for a given scan (unless
the depth of the light source in the camera reference
frame is zero: ZS = 0). A better understanding of

that relation may be achieved by expressing the light
source coordinate vector XS as a function of the an-
gular coordinates �, �, and � de�ning the mutual po-
sitions of the camera and the light source with respect
to the plane �h (see �gure 8):

XS =

2
4 XS

YS
ZS

3
5 =

2
664

hS
cos �
tan�

� hS
sin � sin �
tan�

+ (dd � hS) cos �

hS
cos � sin �
tan�

+ (dd � hS) sin �

3
775

Following this notation, the inverse of !x may be writ-
ten as follows:

1

!x
= dh

�
cos �

tan�
� x

�
cos � sin �

tan�
+
dh � hS

hS
sin �

��

Since during scanning, the shadow edge coordinate x
spans a range of values going from negative to positive
values, we may consider that taking x = 0 gives us an
indication of the \average" reconstruction quality:

1

!x

����
average

�

1

!x

����
x=0

= dh
cos �

tan�

Equation 19 may then be used to infer an expression
for the \average" depth variance:

�2Zc

��
average

�

Z4
c

d2h

tan2 �

cos2 �

�2I
f2c I

2
x(xc)

A next simpli�cation step may be applied, by observ-
ing that the average depth of the scene is approxi-
mately related to the height dh and the tilt angle � of
the camera through the following expression:

Zcjaverage �
dh

sin �

That relation leads us to a new expression for the \av-
erage" �Zc

:

�Zc
javerage � dh

tan�

sin2 � jcos �j

�I

fc jIx(xc)j
(22)

Notice that this quantity may be computed prior to
scanning knowing the geometrical con�guration of the
system. From that expression, it is also possible to
identify optimal con�gurations of the camera and the
light source that maximize the overall quality of the
reconstruction. See section 2.7.
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