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Abstract

A novel scene reconstruction technique is presented,
different from previous approaches in its ability to cope
with large changes in visibility and its modeling of in-
trinsic scene color and texture information. The method
avoids image correspondence problems by working in a
discretized scene space whose voxels are traversed in a
fixed visibility ordering. This strategy takes full account
of occlusions and allows the input cameras to be far apart
and widely distributed about the environment. The algo-
rithm identifies a special set of invariant voxels which to-
gether forma spatial and photometric reconstruction of the
scene, fully consistent with theinput images. The approach
is evaluated with images from both inward- and outward-
facing cameras.

1 Introduction

We consider the problem of acquiring photorealistic 3D
models of real environmentsfrom widely distributed view-
points. Thisproblem hassparked recent interest in the com-
puter vision community [1, 2, 3, 4, 5] asaresult of new ap-
plications in telepresence, virtual walkthroughs, and other
graphics-oriented problems that require realistic textured
object models.

We use the term photorealism to describe 3D recon-
structions of real scenes whose reprojections contain suf-
ficient color and texture information to accurately repro-
duceimages of the scenefrom abroad range of target view-
points. To ensure accurate reprojections, the input images
should be representative, i.e., sparsely distributed through-
out the target range of viewpoints. Accordingly, we pro-
pose two criteria that a photorealistic reconstruction tech-
nigue should satisfy:

e Photo Integrity: The reprojected model should accu-
rately reproduce the input images, preserving color,
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texture and pixel resolution

e Broad Viewpoint Coverage: Reprojections should be
accurate over alarge range of target viewpoints. This
requires that the input images are widely distributed
about the environment

The photoredlistic scene reconstruction problem, as
presently formulated, raises a number of unique challenges
that push the limits of existing reconstruction techniques.
Photo integrity requires that the reconstruction be dense
and sufficiently accurate to reproduce the original images.
This criterion poses a problem for existing feature- and
contour-based techniques that do not provide dense shape
estimates. While these techniques can produce texture-
mapped models[1, 3, 4], accuracy isensured only in places
where features have been detected. The second criterion
meansthat theinput views may befar apart and contain sig-
nificant occlusions. While some stereo methods [6, 7] can
copewith limited occlusions, handling visibility changes of
greater magnitude appearsto be beyond the state of the art.

Instead of approaching this problem as one of shapere-
construction, we instead formulate a color reconstruction
problem, in which the goal is an assignment of colors (ra-
diances) to points in an (unknown) approximately Lam-
bertian scene. As a solution, we present a voxel coloring
technique that traverses a discretized 3D space in “depth-
order” to identify voxels that have a unique coloring, con-
stant across al possible interpretations of the scene. This
approach has several advantages over existing stereo and
structure-from-motion approaches to scene reconstruction.
First, occlusions are explicitly modeled and accounted for.
Second, the cameras can be positioned far apart without de-
grading accuracy or run-time. Third, the technique inte-
grates numerousimagesto yield dense reconstructionsthat
are accurate over awide range of target viewpoints.

The voxel coloring algorithm presented here works by
discretizing scene space into a set of voxels that is tra-
versed and colored in a specia order. In this respect, the
method is similar to Collins' Space-Sweep approach [8]



which performs an analogous scene traversal. However,
the Space-Sweep algorithm does not provide a solution to
the occlusion problem, a primary contribution of this pa-
per. Katayama et a. [9] described a related method in
whichimagesare matched by detecting linesthrough dices
of an epipolar volume, noting that occlusions could be ex-
plained by labeling linesin order of increasing slope. Our
voxel traversal strategy yields a similar scene-space or-
dering but is not restricted to linear camera paths. How-
ever, their agorithm used a reference image, thereby ig-
noring points that are occluded in the reference image but
visible elsewhere. Also related are recently developed
panoramic stereo [10, 11] algorithms which avoid field of
view problems by matching 360° panoramic images di-
rectly. Panoramic reconstructions can also be achieved us-
ing our approach, but without the need to build panoramic
images (see Figs. 1 (b) and 4).

Theremainder of the paper isorganized asfollows: Sec-
tion 2 formulates and solves the voxel coloring problem,
and describes its relations to shape reconstruction. Sec-
tion 3 presents an efficient algorithm for computing the
voxel coloring from a set of images, discussing complex-
ity and related issues. Section 4 describes experiments on
real and synthetic image sequences.

2 Voxe Coloring

The voxel coloring problem is to assign colors (radi-
ances) to voxels (points) in a 3D volume so asto maximize
photo integrity with a set of input images. That is, render-
ing the col ored voxel sfrom each input viewpoint should re-
produce the original image as closely as possible. In order
to solvethis col oring problem we must consider thefollow-
ing two issues:

e Uniqueness: Multiple voxel colorings can be consis-
tent with a given set of images. How can the problem
be well-defined?

e Computation: How can avoxel coloring be computed
from a set of input images?

This section formalizes the voxel coloring problem and
explores geometrical constraints on camera placement that
enable an efficient solution. In order to addressthe unique-
ness and computation issues, we introduce a novel visibil-
ity constraint that greatly simplifies the analysis. This or-
dinal visibility constraint enables the identification of cer-
tain invariant voxelswhose coloringsare uniquely defined.
In addition, the constraint defines a depth-ordering of vox-
els by which the coloring can be computed in asingle pass
through the scene volume.

21 Notation

We assume that both the scene and lighting are station-

ary and that surfaces are approximately Lambertian. Under
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Figure 1: Compatible Camera Configurations. Both of the
following camera configurations satisfy the ordinal visibil-
ity constraint: (a) a downward-facing camera moved 360
degrees around an object, and (b) arig of outward-facing
cameras distributed around a sphere.

these conditions, the radiance at each point isisotropic and
can therefore be described by a scalar value which we call
color. We also use the term color to refer to the irradiance
of an image pixel. Theterm’s meaning should be clear by
context.

A 3D scene S is represented as a finite' set of opaque
voxels (volume elements), each of which occupies afinite
homogeneous scene volume and has a fixed color. We de-
note the set of all voxels with the symbol V. Animageis
specified by the set 7 of all its pixels. For now, assume that
pixels areinfinitesmally small.

Given an image pixel p and scene S, we refer to the
voxel V' € S that isvisibleand projectstop by V' = S(p).
The color of an image pixel p € Z isgiven by color(p,Z)
and of avoxel V by color(V,S). A scene S issaid to be
complete with respect to aset of imagesif, for every image
7 and every pixel p € Z, thereexistsavoxel V' € S such
that V' = S(p). A complete sceneis said to be consistent
with a set of images if, for every image Z and every pixel
p€eL,

color(p,T) = color(S(p),S) (1)
2.2 TheOrdinal Visbility Constraint
For concreteness, a pinhole

perspective projection model is assumed. To simplify the
analysis, we introduce a constraint on the positions of the
camerasrelativeto the scene. Thisconstraint simplifiesthe
task of resolving visibility relationships by establishing a
fixed depth-order enumeration of pointsin the scene.

Let P and @ be scene points and Z be an image from
acameracentered at C. We say P occludes @ if P lieson
thelinesegment C'Q. We requirethat theinput camerasare
positioned so as to satisfy the following constraint:

L1t is assumed that the visible scene is spatially bounded.
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Figure 2: Ambiguity in Scene Reconstruction. All five scenes are indistinguishable from these two viewpoints. Shape am-
biguity: scenes(a) and (b) have no pointsin common—no hard points exist. Color ambiguity: (c) and (d) share a point that
has a different color assignment in the two scenes. Color invariants: each point in () has the same color in every consistent
sceneinwhich it is contained. These six points constitute the voxel coloring for these two views.

Ordinal visibility constraint: There exists a

norm || - || such that for al scene points P and
@, and input images Z, P occludes ) in Z only
P < (IR

We call such a norm occlusion-compatible. For some
camera configurations, it is not possible to define an
occlusion-compatible norm. However, a norm does ex-
ist for a broad range of practical configurations. For in-
stance, suppose the cameras are distributed on a plane and
the sceneisentirely below that plane, asshownin Fig. 1(a).
For every such viewpoint, the relative visibility of any two
scene pointsdependsentirely on which pointiscloser to the
plane, so we may define || - || to be distance to the plane.
More generally, the ordinal visibility constraint is satisfied
whenever no scene point is contained within the convex
hull C of the camera centers. Here we use the occlusion-
compatible norm || P|| ., defined to be the Euclidean dis-
tance from P to C. For convenience, C is referred to as
the camera volume. Fig. 1 shows two useful camera con-
figurations that satisfy this constraint. Fig. 1(a) depicts an
inward-facing overhead camera rotating 360° around an
object. Ordinal visibility is satisfied provided the camerais
positioned dightly abovethe object. Theconstraint also en-
ables panoramic reconstructionsfrom outward-facing cam-
eras, asin Fig. 1(b).

2.3 Color Invariance

The ordinal visibility constraint provides a depth-
ordering of pointsin the scene. We now describe how this
ordering can be used in scene reconstruction. Scene recon-
struction is complicated by the fact that a set of images can
be consistent with more than onerigid scene. Determining
ascene'sspatial occupancy isthereforeanill-posedtask be-
cause avoxel contained in one consistent scene may not be
contained in another. (see Fig. 2(a),(b)). Alternatively, a
voxel may be part of two consistent scenes, but have dif-
ferent colorsin each (Fig. 2(c),(d)).

Given amultiplicity of solutionsto the color reconstruc-
tion problem, the only way to recover intrinsic scene in-
formation is through invariants— propertiesthat are satis-
fied by every consistent scene. For instance, consider the
set of voxels that are contained in every consistent scene.
Laurentini [12] described how these invariants, called hard
points, could be recovered by volume intersection from bi-
nary images. Hard points are useful in that they provide
absolute information about the true scene. However, such
pointsarerelatively rare; someimagesmay yield none(see,
for example, Fig. 2). Inthis section we describeamorefre-
guently occurring type of invariant relating to color rather
than shape.

A voxel V isacolor invariant with respect to a
set of imagesif, for every pair of scenesS and S’
consistent with theimages, V € S NS’ implies
color(V,S) = color(V,S")

Unlike shape invariance, color invariance does not re-
quire that a point be contained in every consistent scene.
As aresult, color invariants are more prevalent than hard
points. In particular, any set of images satisfying the or-
dina visihility constraint yields enough color invariantsto
form a compl ete scene reconstruction, as will be shown.

Let 7,,...,7,, be a set of images. For a given
image point p € Z; define V, to be the voxel in
{S(p) | S consistent} thatisclosest to the cameravolume.
We claim that V,, isacolor invariant. To establish this, ob-
servethat V, € SimpliesV, = S(p), forif V, # S(p),
S(p) must be closer to the cameravolume, which isimpos-
sible by the definition of V. It followsfrom Eq. (1) that V,
has the same color in every consistent scene; V,, is a color
invariant.

Thevoxel coloringof animageset 74, . ..
defined to be:
S ={V|pel;1<i<m}

s I 1S



Fig. 2(e) showsthe voxel coloring for the pair of images
in Fig. 2. These six points have a unique color interpreta-
tion, constant in every consistent scene. They also com-
prise the closest consistent scene to the camerasin the fol-
lowing sense—every point in each consistent scene is ei-
ther contained inthevoxel coloring or is occluded by points
in the voxel coloring. An interesting consequence of this
closeness biasis that neighboring image pixels of the same
color produce cusps in the voxel coloring, i.e., protrusions
toward the camera volume. This phenomenon is clearly
shown in Fig. 2(e), where the white and black points form
two separate cusps. Also, observe that the voxel coloring
is not aminimal reconstruction; removing the two closest
pointsin Fig. 2(e) <till leaves a consistent scene.

2.4 Computing the Voxel Coloring

In this section we describe how to compute the voxel
coloring from a set of images that satisfy the ordinal vis-
ibility constraint. In addition it will be shown that the set
of voxels contained in the voxel coloring form a complete
scene reconstruction that is consistent with the input im-
ages.

Thevoxel coloring iscomputed onevoxel at atimeinan
order that ensures agreement with the images at each step,
guaranteeing that all reconstructed voxels satisfy Eq. (1).
To demonstratethat voxel coloringsform consistent scenes,
we also have to show that they are complete, i.e., they ac-
count for every image pixel as defined in Section 2.1.

In order to make sure that the construction is incremen-
tally consistent, i.e., agreeswith theimagesat each step, we
need to introduce aweaker form of consistency that applies
to incomplete voxel sets. Accordingly, we say that a set
of voxels with color assignments is voxel-consistent if its
projection agrees fully with the subset of every input im-
age that it overlaps. More formally, a set S is said to be
voxel-consistent withimagesZ, , . . ., Z,, if for every voxel
V e Sandimagepixelsp € Z; andg € Z;, V = S(p) =
S(q) implies color(p,Z;) = color(q,Z;) = color(V,S).
For notational convenience, define Sy, to be the set of all
voxelsin S that are closer than V' to the camera volume.
Scene consistency and voxel consistency are related by the
following properties:

1. If Sisaconsistent scenethen {V} U Sy isavoxel-
consistent set for every V € S.

2. SupposesS iscompleteand, for eachpointV € S, VU
Sy isvoxe-consistent. Then S is a consistent scene.

A consistent scene may be created using the second
property by incrementally moving farther from the camera
volume and adding voxels to the current set that maintain
voxel-consistency. To formalize this idea, we define the
following partition of 3D spaceinto voxel layersof uniform

distance from the camera volume:

vé = {VI[IIVlle =d} @
v = v ©
i=1
whered,, ..., d, isanincreasing sequence of numbers.

The voxel coloring is computed inductively as follows:

SP1 = {V |V e€Vy,{V} voxe-consistent}
SPr = {V|V eV, {V}USP\_, voxel-consistent}
SP = {V |V =8P,(p) for somepixel p}
We clam SP = S. To prove this, first define

Si = {VI|V €& |Vl < d} S € SP
by the first consistency property. Inductively, assume that
Sp—1 C SPj_1 andletV € S;. By thefirst consistency
property, {V} U Sy, is voxel-consistent, implying that
{V}USP_, isaso voxel-consistent, because the second
set includes the first and SPy, 1 isitself voxel-consistent.
It followsthat S C SP,.. Note also that SP,. is complete,
sinceone of its subsetsiscomplete, and hence consistent by
the second consistency property. SP contains all the vox-
elsin SP, that are visible in any image, and is therefore
consistent aswell. Therefore SP isaconsistent scene such
that for each pixel p, SP(p) isat least ascloseto C asS(p).
Hence SP = S. m]

In summary, the following propertiesof voxel colorings
have been shown:

¢ Sisaconsistent scene
e Every voxel in S isacolor invariant

e S iscomputable from any set of images satisfying the
ordinal visibility constraint

3 Reconstruction by Voxel Coloring

In this section we present a voxel coloring algorithm
for reconstructing a scene from a set of calibrated images.
The agorithm closely follows the voxel coloring construc-
tion outlined in Section 2.4, adapted to account for im-
age discretization and noise. As before, it is assumed that
3D space has been partitioned into a series of voxel lay-
ers V', ..., V4" increasing in distance from the camera
volume. The images 7, ...,7Z,, are assumed to be dis-
cretized into finite non-overlapping pixels. The cameras
are assumed to satisfy the ordinal visibility constraint, i.e.,
no scene point lies within the camera volume.

If avoxel V' isnot fully occluded in image Z;, its pro-
jection will overlap a nonempty set of image pixels, ;.
Without noise or quantization effects, a consistent voxel
should project to a set of pixelswith equal color values. In
the presence of these effects, we evaluate the correlation of



the pixel colors to measure the likelihood of voxel consis-
tency. Let s be the standard deviation and n the cardinal-

ity of U ;. Suppose the sensor error (accuracy of irradi-
j=1

ance measurement) is approximately normally distributed

with standard deviation oy. If o isunknown, it can be es-

timated by imaging a homogeneous surface and comput-

ing the standard deviation of image pixels. The consistency

of avoxel can be estimated using the likelihood ratio test:
v = =D distributed as y? [13).

g

31 Voxiel Coloring Algorithm
Theadgorithm is asfollows:

S=190
for i=1,...,r do

for every VeV¢ do
project to Iy,...,Z,, conmpute Ay
if Av <thresh then S=SU{V}

Thethreshold, thresh, correspondsto the maximum al-
lowable correlation error. An overly conservative (small)
value of thresh results in an accurate but incomplete re-
construction. On the other hand, alarge threshold yields a
more complete reconstruction, but one that includes some
erroneousvoxels. In practice, thresh should be chosen ac-
cording to the desired characteristics of the reconstructed
model, in terms of accuracy vs. completeness.

Much of the work of the algorithm lies in the computa-
tion of \y. The set of overlapping pixels depends both on
the shape of Vs projection and the set S of possibly oc-
cluding voxels. To simplify the computation, our imple-
mentation used a square mask to approximatethe projected
voxel shape. The problem of detecting occlusionsis solved
by the scene traversal ordering used in the algorithm; the
order is such that if V' occludes V' then V' is visited be-
fore V'. Therefore, occlusions can be detected by using a
one-bit mask for each image pixel. Themask isinitialized
to 0. When avoxel V' is processed, 7; is the set of pixels
that overlap Vs projectionin Z; and have mask values of 0.
These pixels are marked with masks of 1 if Ay < thresh.

Voxel traversal can be made more efficient by employ-
ing alternative occlusion-compatible norms. For instance,
using the axis-aligned bounding box of the cameravolume
instead of C, and L, instead of L, givesriseto asequence
of axis-aligned cube-shaped layers.

3.2 Discussion

The algorithm
visits each voxel exactly once and projectsit into every im-
age. Therefore, the time complexity of voxel coloring is:
O(vozxels = images). To determine the space complexity,
observe that evaluating one voxel does not require access

to or comparison with other voxels. Consequently, voxels
need not be stored in main memory during the algorithm;
thevoxelsmaking up thevoxel coloringwill simply be out-
put one at atime. Only the images and one-bit masks need
to be allocated. Thefact that the space and time complexi-
ties of voxel coloring are linear in the number of imagesis
essential in that large numbers of images can be processed
at once.

The agorithm differsfrom stereo and optical-flow tech-
niquesin that it does not perform window-based image cor-
relation in the reconstruction process. Correspondencesare
found during the course of scene traversal by voxel pro-
jection. A disadvantage of this searchless strategy is that
it requires very precise camera calibration to achieve the
triangulation accuracy of stereo methods. Accuracy and
run-time also depend on the voxel resolution, a parameter
that can be set by the user or determined automatically to
match the pixel resolution, calibration accuracy, and com-
putational resources.

Importantly, the approach reconstructs only one of the
potentially numerous scenes consistent with the input im-
ages. Consequently, it is susceptible to aperture problems
caused by image regions of near-uniform color. These re-
gionscause cuspsin thereconstruction (seeFig. 2(€)), since
voxel coloring yields the reconstruction closest to the cam-
eravolume. Thisisabias, just like smoothnessisabiasin
stereo methods, but one that guarantees a consistent recon-
struction even with severe occlusions.

4 Experimental Results

The first experiment involved 3D reconstruction from
twenty-one views spanning a 360° object rotation. Our
strategy for calibrating theviewswassimilar tothat in[14].
Instead of aturntable, we placed the objects on a software-
controlled pan-tilt head, viewed from aboveby afixed cam-
era(seeFig. 1(a)). Tsai'smethod [15] was used to calibrate
the camera with respect to the head, by rotating a known
object and manually selecting image features for three pan
positions. The calibration error was approximately 3%.

Fig. 3 showsthe voxel colorings computed from acom-
plete revolution of a dinosaur toy and a rose. To facili-
tate reconstruction, we used a black background and elim-
inated most of the background points by thresholding the
images. While background subtraction is not strictly nec-
essary, leaving this step out results in background-colored
voxelsscattered around the edges of the scenevolume. The
threshold may be chosen conservatively since removing
most of the background pixelsis sufficient to eliminate this
background scattering effect. The middle columnin Fig. 3
shows the reconstructions from a viewpoint corresponding
to one of the input images (shown at |eft), to demonstrate
photointegrity. Notethat evenfine detailssuch asthewind-
up rod on the dinosaur and the leaves of the rose were re-



Figure 3: Voxel Coloring of Dinosaur Toy and Rose. The objects were rotated 360° below a camera. At left is one of 21
input images of each object. The other images show different views rendered from the reconstructions.

(b) © (d)

Figure 4: Reconstruction of Synthetic Room Scene. Theinput imageswere all taken from cameras|ocated inside the room.
(a) showsthe voxel coloring and (b) the original model from anew interior viewpoint. (c) and (d) show the reconstruction
and original model, respectively, from a new viewpoint outside of the room.



constructed.

We experimented with different voxel resolutionsto de-
termine the effects of voxel sampling on reconstruction
quality. Increasing the sampling rate improved the recon-
struction quality, up to the limits of image quantization and
calibration accuracy, at the cost of increased run-time. A
low-resolution model can be built very quickly; a recon-
struction (not shown) containing 980 voxelstook lessthan a
second to compute on a250 MHz SGI Indigo2. In contrast,
the 72,497-voxel dinosaur reconstruction shown in Fig. 3
required evaluating a volume of 7 million voxels and took
roughly three minutesto compute.

The next experiment involved reconstructing asynthetic
room from camerasinside theroom. Theroominterior was
highly concave, making reconstruction by volumeintersec-
tion or other contour-based methodsimpractical. Theroom
consisted of three texture-mapped walls and two shaded
models. The models, a bust of Beethoven and a human
figure, were illuminated diffusely from above. 24 cameras
were placed at different positions and orientationsthrough-
out theroom. The optical axeswere parallel to the horizon-
tal (XZ) plane.

Fig. 4 compares the original and reconstructed models
from new viewpoints. The voxel coloring reproduced im-
ages from the room interior quite accurately (as shown in
(@), although some fine details were lost due to quantiza-
tion effects. The overhead view (c) more clearly shows
some discrepancies between the original and reconstructed
shapes. For instance, the reconstructed walls are not per-
fectly planar, as some points lie just off the surface. This
point drift effect ismost noticeablein regionswherethetex-
ture is locally homogeneous, indicating that texture infor-
mation is important for accurate reconstruction. Not sur-
prisingly, the quality of image (c) is worse than that of (a),
sincetheformer view was much farther from theinput cam-
eras. On the whole, Fig. 4 shows that the overall shape of
the scenewas captured quitewell inthereconstruction. The
recovered model contained 52,670 voxels and took 95 sec-
onds to compute.

5 Conclusions

This paper presented a new scene reconstruction tech-
niquethat incorporatesintrinsic color and texture informa-
tion for the acquisition of photorealistic scene models. Un-
like existing stereo and structure-from-motion techniques,
the method guarantees that a consistent reconstruction is
found, even under large visibility differencesacrossthein-
put images. The method relies on a constraint on the input
camera configuration that enables a simple solution for de-
termining voxel visibility. A second contribution was the
constructive proof of the existence of a set of color invari-
ants. These points are useful in two ways: first, they pro-
vide information that is intrinsic, i.e., constant across al

possible consistent scenes. Second, together they consti-
tute a spatial and photometric reconstruction of the scene
whose projections reproduce the input images.
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