
Photorealistic Scene Reconstruction by Voxel Coloring

Steven M. Seitz Charles R. Dyer

Department of Computer Sciences
University of Wisconsin, Madison, WI 53706

E-mail: fseitz,dyerg@cs.wisc.edu
WWW: http://www.cs.wisc.edu/computer-vision

1997 IEEE. Reprinted, with permission, from Proceedings of Computer Vision and Pattern
Recognition Conference (CVPR 97), pp. 1067-1073, 1997.

Abstract
A novel scene reconstruction technique is presented,

different from previous approaches in its ability to cope
with large changes in visibility and its modeling of in-
trinsic scene color and texture information. The method
avoids image correspondence problems by working in a
discretized scene space whose voxels are traversed in a
fixed visibility ordering. This strategy takes full account
of occlusions and allows the input cameras to be far apart
and widely distributed about the environment. The algo-
rithm identifies a special set of invariant voxels which to-
gether form a spatial and photometric reconstruction of the
scene, fully consistent with the input images. The approach
is evaluated with images from both inward- and outward-
facing cameras.

1 Introduction
We consider the problem of acquiring photorealistic 3D

models of real environments from widely distributed view-
points. This problem has sparked recent interest in the com-
puter vision community [1, 2, 3, 4, 5] as a result of new ap-
plications in telepresence, virtual walkthroughs, and other
graphics-oriented problems that require realistic textured
object models.

We use the term photorealism to describe 3D recon-
structions of real scenes whose reprojections contain suf-
ficient color and texture information to accurately repro-
duce images of the scene from a broad range of target view-
points. To ensure accurate reprojections, the input images
should be representative, i.e., sparsely distributed through-
out the target range of viewpoints. Accordingly, we pro-
pose two criteria that a photorealistic reconstruction tech-
nique should satisfy:

� Photo Integrity: The reprojected model should accu-
rately reproduce the input images, preserving color,
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texture and pixel resolution

� Broad Viewpoint Coverage: Reprojections should be
accurate over a large range of target viewpoints. This
requires that the input images are widely distributed
about the environment

The photorealistic scene reconstruction problem, as
presently formulated, raises a number of unique challenges
that push the limits of existing reconstruction techniques.
Photo integrity requires that the reconstruction be dense
and sufficiently accurate to reproduce the original images.
This criterion poses a problem for existing feature- and
contour-based techniques that do not provide dense shape
estimates. While these techniques can produce texture-
mapped models [1, 3, 4], accuracy is ensured only in places
where features have been detected. The second criterion
means that the input views may be far apart and contain sig-
nificant occlusions. While some stereo methods [6, 7] can
cope with limited occlusions, handling visibility changes of
greater magnitude appears to be beyond the state of the art.

Instead of approaching this problem as one of shape re-
construction, we instead formulate a color reconstruction
problem, in which the goal is an assignment of colors (ra-
diances) to points in an (unknown) approximately Lam-
bertian scene. As a solution, we present a voxel coloring
technique that traverses a discretized 3D space in “depth-
order” to identify voxels that have a unique coloring, con-
stant across all possible interpretations of the scene. This
approach has several advantages over existing stereo and
structure-from-motion approaches to scene reconstruction.
First, occlusions are explicitly modeled and accounted for.
Second, the cameras can be positioned far apart without de-
grading accuracy or run-time. Third, the technique inte-
grates numerous images to yield dense reconstructions that
are accurate over a wide range of target viewpoints.

The voxel coloring algorithm presented here works by
discretizing scene space into a set of voxels that is tra-
versed and colored in a special order. In this respect, the
method is similar to Collins’ Space-Sweep approach [8]
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which performs an analogous scene traversal. However,
the Space-Sweep algorithm does not provide a solution to
the occlusion problem, a primary contribution of this pa-
per. Katayama et al. [9] described a related method in
which images are matched by detecting lines through slices
of an epipolar volume, noting that occlusions could be ex-
plained by labeling lines in order of increasing slope. Our
voxel traversal strategy yields a similar scene-space or-
dering but is not restricted to linear camera paths. How-
ever, their algorithm used a reference image, thereby ig-
noring points that are occluded in the reference image but
visible elsewhere. Also related are recently developed
panoramic stereo [10, 11] algorithms which avoid field of
view problems by matching 360� panoramic images di-
rectly. Panoramic reconstructions can also be achieved us-
ing our approach, but without the need to build panoramic
images (see Figs. 1 (b) and 4).

The remainder of the paper is organized as follows: Sec-
tion 2 formulates and solves the voxel coloring problem,
and describes its relations to shape reconstruction. Sec-
tion 3 presents an efficient algorithm for computing the
voxel coloring from a set of images, discussing complex-
ity and related issues. Section 4 describes experiments on
real and synthetic image sequences.

2 Voxel Coloring
The voxel coloring problem is to assign colors (radi-

ances) to voxels (points) in a 3D volume so as to maximize
photo integrity with a set of input images. That is, render-
ing the colored voxels from each input viewpoint should re-
produce the original image as closely as possible. In order
to solve this coloring problem we must consider the follow-
ing two issues:

� Uniqueness: Multiple voxel colorings can be consis-
tent with a given set of images. How can the problem
be well-defined?

� Computation: How can a voxel coloring be computed
from a set of input images?

This section formalizes the voxel coloring problem and
explores geometrical constraints on camera placement that
enable an efficient solution. In order to address the unique-
ness and computation issues, we introduce a novel visibil-
ity constraint that greatly simplifies the analysis. This or-
dinal visibility constraint enables the identification of cer-
tain invariant voxels whose colorings are uniquely defined.
In addition, the constraint defines a depth-ordering of vox-
els by which the coloring can be computed in a single pass
through the scene volume.
2.1 Notation

We assume that both the scene and lighting are station-
ary and that surfaces are approximately Lambertian. Under

(a) (b)

Figure 1: Compatible Camera Configurations. Both of the
following camera configurations satisfy the ordinal visibil-
ity constraint: (a) a downward-facing camera moved 360
degrees around an object, and (b) a rig of outward-facing
cameras distributed around a sphere.

these conditions, the radiance at each point is isotropic and
can therefore be described by a scalar value which we call
color. We also use the term color to refer to the irradiance
of an image pixel. The term’s meaning should be clear by
context.

A 3D scene S is represented as a finite1 set of opaque
voxels (volume elements), each of which occupies a finite
homogeneous scene volume and has a fixed color. We de-
note the set of all voxels with the symbol V . An image is
specified by the set I of all its pixels. For now, assume that
pixels are infinitesimally small.

Given an image pixel p and scene S, we refer to the
voxel V 2 S that is visible and projects to p by V = S(p).
The color of an image pixel p 2 I is given by color(p; I)
and of a voxel V by color(V;S). A scene S is said to be
complete with respect to a set of images if, for every image
I and every pixel p 2 I, there exists a voxel V 2 S such
that V = S(p). A complete scene is said to be consistent
with a set of images if, for every image I and every pixel
p 2 I,

color(p; I) = color(S(p);S) (1)

2.2 The Ordinal Visibility Constraint
For concreteness, a pinhole

perspective projection model is assumed. To simplify the
analysis, we introduce a constraint on the positions of the
cameras relative to the scene. This constraint simplifies the
task of resolving visibility relationships by establishing a
fixed depth-order enumeration of points in the scene.

Let P and Q be scene points and I be an image from
a camera centered at C. We say P occludes Q if P lies on
the line segmentCQ. We require that the input cameras are
positioned so as to satisfy the following constraint:

1It is assumed that the visible scene is spatially bounded.
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(a) (b) (c) (d) (e)

Figure 2: Ambiguity in Scene Reconstruction. All five scenes are indistinguishable from these two viewpoints. Shape am-
biguity: scenes (a) and (b) have no points in common—no hard points exist. Color ambiguity: (c) and (d) share a point that
has a different color assignment in the two scenes. Color invariants: each point in (e) has the same color in every consistent
scene in which it is contained. These six points constitute the voxel coloring for these two views.

Ordinal visibility constraint: There exists a
norm k � k such that for all scene points P and
Q, and input images I, P occludes Q in I only
if kPk < kQk.

We call such a norm occlusion-compatible. For some
camera configurations, it is not possible to define an
occlusion-compatible norm. However, a norm does ex-
ist for a broad range of practical configurations. For in-
stance, suppose the cameras are distributed on a plane and
the scene is entirely below that plane, as shown in Fig. 1(a).
For every such viewpoint, the relative visibility of any two
scene points depends entirely on which point is closer to the
plane, so we may define k � k to be distance to the plane.
More generally, the ordinal visibility constraint is satisfied
whenever no scene point is contained within the convex
hull C of the camera centers. Here we use the occlusion-
compatible norm kPk

C
, defined to be the Euclidean dis-

tance from P to C. For convenience, C is referred to as
the camera volume. Fig. 1 shows two useful camera con-
figurations that satisfy this constraint. Fig. 1(a) depicts an
inward-facing overhead camera rotating 360� around an
object. Ordinal visibility is satisfied provided the camera is
positioned slightly above the object. The constraint also en-
ables panoramic reconstructions from outward-facing cam-
eras, as in Fig. 1(b).

2.3 Color Invariance
The ordinal visibility constraint provides a depth-

ordering of points in the scene. We now describe how this
ordering can be used in scene reconstruction. Scene recon-
struction is complicated by the fact that a set of images can
be consistent with more than one rigid scene. Determining
a scene’s spatial occupancy is therefore an ill-posed task be-
cause a voxel contained in one consistent scene may not be
contained in another. (see Fig. 2(a),(b)). Alternatively, a
voxel may be part of two consistent scenes, but have dif-
ferent colors in each (Fig. 2(c),(d)).

Given a multiplicity of solutions to the color reconstruc-
tion problem, the only way to recover intrinsic scene in-
formation is through invariants— properties that are satis-
fied by every consistent scene. For instance, consider the
set of voxels that are contained in every consistent scene.
Laurentini [12] described how these invariants, called hard
points, could be recovered by volume intersection from bi-
nary images. Hard points are useful in that they provide
absolute information about the true scene. However, such
points are relatively rare; some images may yield none (see,
for example, Fig. 2). In this section we describe a more fre-
quently occurring type of invariant relating to color rather
than shape.

A voxel V is a color invariant with respect to a
set of images if, for every pair of scenes S and S 0

consistent with the images, V 2 S \ S 0 implies
color(V;S) = color(V;S 0)

Unlike shape invariance, color invariance does not re-
quire that a point be contained in every consistent scene.
As a result, color invariants are more prevalent than hard
points. In particular, any set of images satisfying the or-
dinal visibility constraint yields enough color invariants to
form a complete scene reconstruction, as will be shown.

Let I1; : : : ; Im be a set of images. For a given
image point p 2 Ij define Vp to be the voxel in
fS(p) j S consistentg that is closest to the camera volume.
We claim that Vp is a color invariant. To establish this, ob-
serve that Vp 2 S implies Vp = S(p), for if Vp 6= S(p),
S(p) must be closer to the camera volume, which is impos-
sible by the definition of Vp. It follows from Eq. (1) that Vp
has the same color in every consistent scene; Vp is a color
invariant.

The voxel coloring of an image set I1; : : : ; Im is
defined to be:
S = fVp j p 2 Ii; 1 � i � mg
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Fig. 2(e) shows the voxel coloring for the pair of images
in Fig. 2. These six points have a unique color interpreta-
tion, constant in every consistent scene. They also com-
prise the closest consistent scene to the cameras in the fol-
lowing sense—every point in each consistent scene is ei-
ther contained in the voxel coloring or is occluded by points
in the voxel coloring. An interesting consequence of this
closeness bias is that neighboring image pixels of the same
color produce cusps in the voxel coloring, i.e., protrusions
toward the camera volume. This phenomenon is clearly
shown in Fig. 2(e), where the white and black points form
two separate cusps. Also, observe that the voxel coloring
is not a minimal reconstruction; removing the two closest
points in Fig. 2(e) still leaves a consistent scene.

2.4 Computing the Voxel Coloring
In this section we describe how to compute the voxel

coloring from a set of images that satisfy the ordinal vis-
ibility constraint. In addition it will be shown that the set
of voxels contained in the voxel coloring form a complete
scene reconstruction that is consistent with the input im-
ages.

The voxel coloring is computed one voxel at a time in an
order that ensures agreement with the images at each step,
guaranteeing that all reconstructed voxels satisfy Eq. (1).
To demonstrate that voxel colorings form consistent scenes,
we also have to show that they are complete, i.e., they ac-
count for every image pixel as defined in Section 2.1.

In order to make sure that the construction is incremen-
tally consistent, i.e., agrees with the images at each step, we
need to introduce a weaker form of consistency that applies
to incomplete voxel sets. Accordingly, we say that a set
of voxels with color assignments is voxel-consistent if its
projection agrees fully with the subset of every input im-
age that it overlaps. More formally, a set S is said to be
voxel-consistent with images I1; : : : ; Im if for every voxel
V 2 S and image pixels p 2 Ii and q 2 Ij , V = S(p) =
S(q) implies color(p; Ii) = color(q; Ij) = color(V;S).
For notational convenience, define SV to be the set of all
voxels in S that are closer than V to the camera volume.
Scene consistency and voxel consistency are related by the
following properties:

1. If S is a consistent scene then fV g [ SV is a voxel-
consistent set for every V 2 S.

2. SupposeS is complete and, for each point V 2 S, V [
SV is voxel-consistent. Then S is a consistent scene.

A consistent scene may be created using the second
property by incrementally moving farther from the camera
volume and adding voxels to the current set that maintain
voxel-consistency. To formalize this idea, we define the
following partition of 3D space into voxel layers of uniform

distance from the camera volume:

Vd
C = fV j kV k

C
= dg (2)

V =

r[

i=1

Vdi
C

(3)

where d1; : : : ; dr is an increasing sequence of numbers.
The voxel coloring is computed inductively as follows:

SP1 = fV j V 2 Vd1 ; fV g voxel-consistentg

SPk = fV j V 2 Vdk ; fV g [ SPk�1 voxel-consistentg

SP = fV j V = SPr(p) for some pixel pg

We claim SP = S . To prove this, first define
Si = fV j V 2 S ; kV k

C
� dig. S1 � SP1

by the first consistency property. Inductively, assume that
Sk�1 � SPk�1 and let V 2 Sk. By the first consistency
property, fV g [ Sk�1 is voxel-consistent, implying that
fV g[SPk�1 is also voxel-consistent, because the second
set includes the first and SPk�1 is itself voxel-consistent.
It follows that S � SPr. Note also that SPr is complete,
since one of its subsets is complete, and hence consistent by
the second consistency property. SP contains all the vox-
els in SPr that are visible in any image, and is therefore
consistent as well. Therefore SP is a consistent scene such
that for each pixel p, SP(p) is at least as close to C as S(p).
Hence SP = S . 2

In summary, the following properties of voxel colorings
have been shown:

� S is a consistent scene

� Every voxel in S is a color invariant

� S is computable from any set of images satisfying the
ordinal visibility constraint

3 Reconstruction by Voxel Coloring
In this section we present a voxel coloring algorithm

for reconstructing a scene from a set of calibrated images.
The algorithm closely follows the voxel coloring construc-
tion outlined in Section 2.4, adapted to account for im-
age discretization and noise. As before, it is assumed that
3D space has been partitioned into a series of voxel lay-
ers Vd1

C
; : : : ;Vdr

C
increasing in distance from the camera

volume. The images I1; : : : ; Im are assumed to be dis-
cretized into finite non-overlapping pixels. The cameras
are assumed to satisfy the ordinal visibility constraint, i.e.,
no scene point lies within the camera volume.

If a voxel V is not fully occluded in image Ij , its pro-
jection will overlap a nonempty set of image pixels, �j .
Without noise or quantization effects, a consistent voxel
should project to a set of pixels with equal color values. In
the presence of these effects, we evaluate the correlation of
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the pixel colors to measure the likelihood of voxel consis-
tency. Let s be the standard deviation and n the cardinal-

ity of
m[

j=1

�j . Suppose the sensor error (accuracy of irradi-

ance measurement) is approximately normally distributed
with standard deviation �0. If �0 is unknown, it can be es-
timated by imaging a homogeneous surface and comput-
ing the standard deviation of image pixels. The consistency
of a voxel can be estimated using the likelihood ratio test:

�V = (n�1)s2

�2
0

, distributed as �2 [13].

3.1 Voxel Coloring Algorithm
The algorithm is as follows:

S = ;

for i = 1; : : : ; r do

for every V 2 Vdi
C

do

project to I1; : : : ; Im, compute �V

if �V < thresh then S = S [ fV g

The threshold, thresh, corresponds to the maximum al-
lowable correlation error. An overly conservative (small)
value of thresh results in an accurate but incomplete re-
construction. On the other hand, a large threshold yields a
more complete reconstruction, but one that includes some
erroneous voxels. In practice, thresh should be chosen ac-
cording to the desired characteristics of the reconstructed
model, in terms of accuracy vs. completeness.

Much of the work of the algorithm lies in the computa-
tion of �V . The set of overlapping pixels depends both on
the shape of V ’s projection and the set S of possibly oc-
cluding voxels. To simplify the computation, our imple-
mentation used a square mask to approximate the projected
voxel shape. The problem of detecting occlusions is solved
by the scene traversal ordering used in the algorithm; the
order is such that if V occludes V 0 then V is visited be-
fore V 0. Therefore, occlusions can be detected by using a
one-bit mask for each image pixel. The mask is initialized
to 0. When a voxel V is processed, �i is the set of pixels
that overlap V ’s projection in Ii and have mask values of 0.
These pixels are marked with masks of 1 if �V < thresh.

Voxel traversal can be made more efficient by employ-
ing alternative occlusion-compatible norms. For instance,
using the axis-aligned bounding box of the camera volume
instead of C, andL1 instead ofL2, gives rise to a sequence
of axis-aligned cube-shaped layers.
3.2 Discussion

The algorithm
visits each voxel exactly once and projects it into every im-
age. Therefore, the time complexity of voxel coloring is:
O(voxels � images). To determine the space complexity,
observe that evaluating one voxel does not require access

to or comparison with other voxels. Consequently, voxels
need not be stored in main memory during the algorithm;
the voxels making up the voxel coloring will simply be out-
put one at a time. Only the images and one-bit masks need
to be allocated. The fact that the space and time complexi-
ties of voxel coloring are linear in the number of images is
essential in that large numbers of images can be processed
at once.

The algorithm differs from stereo and optical-flow tech-
niques in that it does not perform window-based image cor-
relation in the reconstruction process. Correspondences are
found during the course of scene traversal by voxel pro-
jection. A disadvantage of this searchless strategy is that
it requires very precise camera calibration to achieve the
triangulation accuracy of stereo methods. Accuracy and
run-time also depend on the voxel resolution, a parameter
that can be set by the user or determined automatically to
match the pixel resolution, calibration accuracy, and com-
putational resources.

Importantly, the approach reconstructs only one of the
potentially numerous scenes consistent with the input im-
ages. Consequently, it is susceptible to aperture problems
caused by image regions of near-uniform color. These re-
gions cause cusps in the reconstruction (see Fig. 2(e)), since
voxel coloring yields the reconstruction closest to the cam-
era volume. This is a bias, just like smoothness is a bias in
stereo methods, but one that guarantees a consistent recon-
struction even with severe occlusions.

4 Experimental Results
The first experiment involved 3D reconstruction from

twenty-one views spanning a 360� object rotation. Our
strategy for calibrating the views was similar to that in [14].
Instead of a turntable, we placed the objects on a software-
controlled pan-tilt head, viewed from above by a fixed cam-
era (see Fig. 1(a)). Tsai’s method [15] was used to calibrate
the camera with respect to the head, by rotating a known
object and manually selecting image features for three pan
positions. The calibration error was approximately 3%.

Fig. 3 shows the voxel colorings computed from a com-
plete revolution of a dinosaur toy and a rose. To facili-
tate reconstruction, we used a black background and elim-
inated most of the background points by thresholding the
images. While background subtraction is not strictly nec-
essary, leaving this step out results in background-colored
voxels scattered around the edges of the scene volume. The
threshold may be chosen conservatively since removing
most of the background pixels is sufficient to eliminate this
background scattering effect. The middle column in Fig. 3
shows the reconstructions from a viewpoint corresponding
to one of the input images (shown at left), to demonstrate
photo integrity. Note that even fine details such as the wind-
up rod on the dinosaur and the leaves of the rose were re-
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Figure 3: Voxel Coloring of Dinosaur Toy and Rose. The objects were rotated 360� below a camera. At left is one of 21
input images of each object. The other images show different views rendered from the reconstructions.

(a) (b) (c) (d)

Figure 4: Reconstruction of Synthetic Room Scene. The input images were all taken from cameras located inside the room.
(a) shows the voxel coloring and (b) the original model from a new interior viewpoint. (c) and (d) show the reconstruction
and original model, respectively, from a new viewpoint outside of the room.
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constructed.
We experimented with different voxel resolutions to de-

termine the effects of voxel sampling on reconstruction
quality. Increasing the sampling rate improved the recon-
struction quality, up to the limits of image quantization and
calibration accuracy, at the cost of increased run-time. A
low-resolution model can be built very quickly; a recon-
struction (not shown) containing 980 voxels took less than a
second to compute on a 250 MHz SGI Indigo2. In contrast,
the 72,497-voxel dinosaur reconstruction shown in Fig. 3
required evaluating a volume of 7 million voxels and took
roughly three minutes to compute.

The next experiment involved reconstructing a synthetic
room from cameras inside the room. The room interior was
highly concave, making reconstruction by volume intersec-
tion or other contour-based methods impractical. The room
consisted of three texture-mapped walls and two shaded
models. The models, a bust of Beethoven and a human
figure, were illuminated diffusely from above. 24 cameras
were placed at different positions and orientations through-
out the room. The optical axes were parallel to the horizon-
tal (XZ) plane.

Fig. 4 compares the original and reconstructed models
from new viewpoints. The voxel coloring reproduced im-
ages from the room interior quite accurately (as shown in
(a)), although some fine details were lost due to quantiza-
tion effects. The overhead view (c) more clearly shows
some discrepancies between the original and reconstructed
shapes. For instance, the reconstructed walls are not per-
fectly planar, as some points lie just off the surface. This
point drift effect is most noticeable in regions where the tex-
ture is locally homogeneous, indicating that texture infor-
mation is important for accurate reconstruction. Not sur-
prisingly, the quality of image (c) is worse than that of (a),
since the former view was much farther from the input cam-
eras. On the whole, Fig. 4 shows that the overall shape of
the scene was captured quite well in the reconstruction. The
recovered model contained 52,670 voxels and took 95 sec-
onds to compute.

5 Conclusions
This paper presented a new scene reconstruction tech-

nique that incorporates intrinsic color and texture informa-
tion for the acquisition of photorealistic scene models. Un-
like existing stereo and structure-from-motion techniques,
the method guarantees that a consistent reconstruction is
found, even under large visibility differences across the in-
put images. The method relies on a constraint on the input
camera configuration that enables a simple solution for de-
termining voxel visibility. A second contribution was the
constructive proof of the existence of a set of color invari-
ants. These points are useful in two ways: first, they pro-
vide information that is intrinsic, i.e., constant across all

possible consistent scenes. Second, together they consti-
tute a spatial and photometric reconstruction of the scene
whose projections reproduce the input images.
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