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This section surveys passive optical techniques for recovering scene shape and reflectance characteristics from images.
The objective is to acquire images of a scene observed from different viewpoints and possibly different illuminations, and
from these images to compute scene shape and reflectance at every surface point. Given estimates of shape we can fabricate
duplicate 3D models using techniques like stereo lithography. The ability to capture reflectance data, in addition to shape,
allows us to create graphical representations that can be composited into new environments, reilluminated, and rendered
from new viewpoints (see SIGGRAPH 99 Course #39 on Image-Based Modeling and Rendering for more on this topic).

We use the term passive sensing to refer to the measurement of visible radiation that is already present in the scene, in
contrast to active techniques that project light into the scene. Although active sensing can facilitate the computation of scene
structure, as discussed in sections 6-9 of these course notes, active approaches are not always feasible, especially for model-
ing distant or fast-moving objects. In addition, current active techniques like laser range scanning tend to be more expensive,
slower, and more intrusive than their passive counterparts. However, the best active methods generally produce more accu-
rate reconstructions than is possible using passive techniques. Note that the term active vision has also been used to refer
to methods in which the camera is controlled purposively to facilitate reconstruction and other tasks–this is not the meaning
intended here.

More information on passive vision techniques and related topics can be found in Section 5 (Paul Debevec’s notes).

Visual Cues

Over the years, researchers in human perception and computer vision have identified numerous cues for sensing shape and
reflectance properties and a wide range of computation strategies have emerged for exploiting these cues for 3D inference.
Practical vision algorithms have been developed to measure shape from:

� Texture

� Shading

� Focus

� Parallax

� Long-range motion

� Reflection

� Shadows

� Symmetry

� Inter-reflection

� Polarization
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While the above list is by no means complete, it demonstrates a wealth of information from which 3D shape and re-
flectance can be computed. Nevertheless, scene reconstruction is an inverse problem and generally does not admit a unique
solution, i.e., it is ill-posed [1]. Consequently, additional assumptions and heuristics are generally needed to make the prob-
lem tractable. Some prominent examples include:

� Ideal reflectance – surfaces in the scene are often assumed to satisfy ideal reflectance models. For instance, stereo
and shape-from-shading techniques generally assume a perfect Lambertian (isotropic) reflection model with no trans-
parency. Consequently these techniques perform poorly in the presence of specularities and other deviations from the
model.

� Smoothness – imposing smoothness, or regularization functionals is a very common method for making ill-posed
inverse problems well-posed [1]. Choosing the reconstruction that is smoothest yields a better-conditioned problem
but has it’s own pitfalls, for example the tendency to smooth over sharp edges or miss thin structures in the scene.

� Ideal projection – simplified projection models like orthographic projection and ideal pinhole projection are used to
make the reconstruction equations more tractable. Consequently, techniques that use these approximations pay a penalty
in terms of accuracy and are not well-suited for applications that demand high-accuracy surface measurements.

Passive Techniques

This course will consider four prominent approaches to passive 3D Photography: stereo, structure from motion, shape from
shading, and photometric stereo.

Stereo

When a point is imaged from two different viewpoints, its image projection undergoes a displacement from its position in the
first image to that in the second image. The amount of displacement, alternatively called parallax or optical flow, is inversely
proportional to distance and may therefore be used to compute 3D geometry. Given a correspondence between imaged points
from two known viewpoints, it is possible to compute depth by triangulation – intersect the rays from each optical center
through the point’s projection on the image plane. The problem of establishing correspondence is a fundamental difficulty
and is the subject of a large body of literature on stereo vision. One prominent approach is to correlate pixels of similar
intensities in two images, using an assumption that each scene point reflects the same intensity of light in the two views. The
included paper by Okutomi and Kanade [2] extends this correlation approach to two three or more images and demonstrates
that using several cameras at different camera separations, or baselines yields a significant improvement in reconstruction
accuracy.

Camera Calibration

The accuracy of stereo techniques depends critically on having precise knowledge of camera position, orientation, and inter-
nal parameters, i.e., focal length, aspect ratio, principle point, and distortion contributed by non-ideal lens optics. Therefore,
calibrating these parameters is a key part of the success of any stereo system. The first paper included in this section, by Tsai
[3], describes one of the most widely used algorithms for calibrating cameras. Tsai’s approach images a calibration object
with known geometry and solves for camera parameters and a radial distortion coefficient given the image projections of
several points on the calibration object.

Structure from Motion

Rather than image a scene with two or more cameras, an alternative approach is to acquire images from a single moving
camera and to reconstruct a 3D model from the resulting video sequence. An additional challenge in this approach is that the
camera path must be estimated since precise calibration of freely moving cameras is extremely difficult (although see [4]).
This problem of recovering scene geometry from the motion of points in the image plane of a moving camera is called struc-
ture from motion. As one of the classical problems in computer vision, there are numerous structure from motion algorithms.



Included in this volume is one such technique developed by Tomasi and Kanade [5]. Their elegant factorization method as-
sembles point measurements in a measurement matrix that is factored into the product of a motion and shape matrix using
singular value decomposition. This approach is based on an orthographic projection model.

Shape from Shading

Shape from shading is one of the simplest problems to state and one of the most complicated to solve: given a single intensity
image of a smooth curved object, how can the shape of the object be recovered [6]? This problem and its solution was
pioneered in the vision community by Berthold Horn in his 1970 doctoral dissertation [7, 8]. Given the intensity of a point
in the image and a known directional light source, Lambert’s law (I = kNL, where I is the intensity, k the reflectance, N the
unit normal, and L the light source direction) yields a one-parameter family of solutions for the surface normal. Additional
constraints are needed to make the problem well-posed–it is generally solved by assuming similarity of surface reflectance
and orientation at nearby points.

Photometric Stereo

The difficulties with shape from shading may be mitigated by acquiring two or more images of the object under different
illuminations. This is precisely the approach of photometric stereo, the subject of the third paper included in these course
notes [9]. Each image provides one constraint on the normal, and therefore two images are sufficient to recover the normal
up to a small number of possible solutions, and three images yield a unique solution for each image pixel. Photometric stereo
enables relaxing the strong smoothness conditions imposed by classical shape from shading approaches, and therefore yields
more reliable shape estimates.
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