
To appear in the SIGGRAPH conference proceedings

Modeling and Rendering Architecture from Photographs:
A hybrid geometry- and image-based approach

Paul E. Debevec Camillo J. Taylor Jitendra Malik

University of California at Berkeley1

ABSTRACT
We present a new approach for modeling and rendering existing ar-
chitectural scenes from a sparse set of still photographs. Our mod-
eling approach, which combines both geometry-based and image-
based techniques, has two components. The first component is a
photogrammetricmodeling method which facilitates the recovery of
the basic geometry of the photographed scene. Our photogrammet-
ric modeling approach is effective, convenient, and robust because
it exploits the constraints that are characteristic of architectural
scenes. The second component is a model-based stereo algorithm,
which recovers how the real scene deviates from the basic model.
By making use of the model, our stereo technique robustly recovers
accurate depth from widely-spaced image pairs. Consequently, our
approach can model large architectural environments with far fewer
photographs than current image-based modeling approaches. For
producing renderings, we present view-dependent texture mapping,
a method of compositing multiple views of a scene that better sim-
ulates geometric detail on basic models. Our approach can be used
to recover models for use in either geometry-based or image-based
rendering systems. We present results that demonstrate our ap-
proach’s ability to create realistic renderings of architectural scenes
from viewpoints far from the original photographs.

CR Descriptors: I.2.10 [Artificial Intelligence]: Vision and
Scene Understanding - Modeling and recovery of physical at-
tributes; I.3.7 [Computer Graphics]: Three-Dimensional Graph-
ics and Realism - Color, shading, shadowing, and texture I.4.8 [Im-
age Processing]: Scene Analysis - Stereo; J.6 [Computer-Aided
Engineering]: Computer-aided design (CAD).

1 INTRODUCTION
Efforts to model the appearance and dynamics of the real world
have produced some of the most compelling imagery in computer
graphics. In particular, efforts to model architectural scenes, from
the Amiens Cathedral to the Giza Pyramids to Berkeley’s Soda
Hall, have produced impressive walk-throughs and inspiring fly-
bys. Clearly, it is an attractive application to be able to explore the
world’s architecture unencumbered by fences, gravity, customs, or
jetlag.

1Computer Science Division, University of California at Berkeley,
Berkeley, CA 94720-1776. fdebevec,camillo,malikg@cs.berkeley.edu. See
also http://www.cs.berkeley.edu/˜debevec/Research

Unfortunately, current geometry-based methods (Fig. 1a) of
modeling existing architecture, in which a modeling program is
used to manually position the elements of the scene, have several
drawbacks. First, the process is extremely labor-intensive, typically
involving surveying the site, locating and digitizing architectural
plans (if available), or converting existing CAD data (again, if avail-
able). Second, it is difficult to verify whether the resulting model is
accurate. Most disappointing, though, is that the renderings of the
resulting models are noticeably computer-generated; even those that
employ liberal texture-mapping generally fail to resemble real pho-
tographs.

Modeling
Program

model

Rendering
Algorithm

renderings

user input texture maps

(a) Geometry−Based

Model−Based
Stereo

depth maps

Image
Warping

renderings

user inputimages

basic model

Photogrammetric
Modeling Program

(b) Hybrid Approach

Stereo
Correspondence

Image
Warping

renderings

(user input)

(c) Image−Based

depth maps

images

Figure 1: Schematic of how our hybrid approach combines
geometry-based and image-based approaches to modeling and ren-
dering architecture from photographs.

Recently, creating models directly from photographs has re-
ceived increased interest in computer graphics. Since real images
are used as input, such an image-based system (Fig. 1c) has an ad-
vantage in producing photorealistic renderings as output. Some of
the most promising of these systems [16, 13] rely on the computer
vision technique of computational stereopsis to automatically deter-
mine the structure of the scene from the multiple photographs avail-
able. As a consequence, however, these systems are only as strong
as the underlying stereo algorithms. This has caused problems be-
cause state-of-the-art stereo algorithms have a number of signifi-
cant weaknesses; in particular, the photographs need to appear very
similar for reliable results to be obtained. Because of this, current
image-based techniques must use many closely spaced images, and
in some cases employ significant amounts of user input for each im-
age pair to supervise the stereo algorithm. In this framework, cap-
turing the data for a realistically renderable model would require an
impractical number of closely spaced photographs, and deriving the
depth from the photographs could require an impractical amount of
user input. These concessions to the weakness of stereo algorithms
bode poorly for creating large-scale, freely navigable virtual envi-
ronments from photographs.

Our research aims to make the process of modeling architectural

To appear in the SIGGRAPH conference proceedings

scenes more convenient, more accurate, and more photorealistic
than the methods currently available. To do this, we have developed
a new approach that draws on the strengths of both geometry-based
and image-basedmethods, as illustrated in Fig. 1b. The result is that
our approach to modeling and rendering architecture requires only a
sparse set of photographs and can produce realistic renderings from
arbitrary viewpoints. In our approach, a basic geometric model of
the architecture is recovered interactively with an easy-to-use pho-
togrammetric modeling system, novel views are created using view-
dependent texture mapping, and additional geometric detail can be
recovered automatically through stereo correspondence. The final
images can be rendered with current image-based rendering tech-
niques. Because only photographs are required, our approach to
modeling architecture is neither invasive nor does it require archi-
tectural plans, CAD models, or specialized instrumentation such as
surveying equipment, GPS sensors or range scanners.

1.1 Background and Related Work
The process of recovering 3D structure from 2D images has been
a central endeavor within computer vision, and the process of ren-
dering such recovered structures is a subject receiving increased
interest in computer graphics. Although no general technique ex-
ists to derive models from images, four particular areas of research
have provided results that are applicable to the problem of modeling
and rendering architectural scenes. They are: Camera Calibration,
Structure from Motion, Stereo Correspondence, and Image-Based
Rendering.

1.1.1 Camera Calibration

Recovering 3D structure from images becomes a simpler problem
when the cameras used are calibrated, that is, the mapping between
image coordinates and directions relative to each camera is known.
This mapping is determined by, among other parameters, the cam-
era’s focal length and its pattern of radial distortion. Camera cali-
bration is a well-studied problem both in photogrammetry and com-
puter vision; some successful methods include [20] and [5]. While
there has been recent progress in the use of uncalibrated views for
3D reconstruction [7], we have found camera calibration to be a
straightforward process that considerably simplifies the problem.

1.1.2 Structure from Motion

Given the 2D projection of a point in the world, its position in 3D
space could be anywhere on a ray extending out in a particular di-
rection from the camera’s optical center. However, when the pro-
jections of a sufficient number of points in the world are observed
in multiple images from different positions, it is theoretically possi-
ble to deduce the 3D locations of the points as well as the positions
of the original cameras, up to an unknown factor of scale.

This problem has been studied in the area of photogrammetry
for the principal purpose of producing topographic maps. In 1913,
Kruppa [10] proved the fundamental result that given two views of
five distinct points, one could recover the rotation and translation
between the two camera positions as well as the 3D locations of the
points (up to a scale factor). Since then, the problem’s mathematical
and algorithmic aspects have been explored starting from the funda-
mental work of Ullman [21] and Longuet-Higgins [11], in the early
1980s. Faugeras’s book [6] overviews the state of the art as of 1992.
So far, a key realization has been that the recovery of structure is
very sensitive to noise in image measurements when the translation
between the available camera positions is small.

Attention has turned to using more than two views with image
stream methods such as [19] or recursive approaches (e.g. [1]). [19]
shows excellent results for the case of orthographic cameras, but di-
rect solutions for the perspective case remain elusive. In general,
linear algorithms for the problem fail to make use of all available

information while nonlinear minimization methods are prone to dif-
ficulties arising from local minima in the parameter space. An alter-
native formulation of the problem [17] uses lines rather than points
as image measurements, but the previously stated concerns were
shown to remain largely valid. For purposes of computer graph-
ics, there is yet another problem: the models recovered by these al-
gorithms consist of sparse point fields or individual line segments,
which are not directly renderable as solid 3D models.

In our approach, we exploit the fact that we are trying to re-
cover geometric models of architectural scenes, not arbitrary three-
dimensional point sets. This enables us to include additional con-
straints not typically available to structure from motion algorithms
and to overcome the problems of numerical instability that plague
such approaches. Our approach is demonstrated in a useful interac-
tive system for building architectural models from photographs.

1.1.3 Stereo Correspondence

The geometrical theory of structure from motion assumes that one
is able to solve the correspondenceproblem, which is to identify the
points in two or more images that are projections of the same point
in the world. In humans, corresponding points in the two slightly
differing images on the retinas are determined by the visual cortex
in the process called binocular stereopsis.

Years of research (e.g. [2, 4, 8, 9, 12, 15]) have shown that de-
termining stereo correspondences by computer is difficult problem.
In general, current methods are successfulonly when the images are
similar in appearance, as in the case of human vision, which is usu-
ally obtained by using cameras that are closely spaced relative to the
objects in the scene. When the distance between the cameras (often
called the baseline) becomes large, surfaces in the images exhibit
different degrees of foreshortening, different patterns of occlusion,
and large disparities in their locations in the two images, all of which
makes it much more difficult for the computer to determine correct
stereo correspondences. Unfortunately, the alternative of improving
stereo correspondenceby using images taken from nearby locations
has the disadvantage that computing depth becomes very sensitive
to noise in image measurements.

In this paper, we show that having an approximate model of the
photographed scene makes it possible to robustly determine stereo
correspondences from images taken from widely varying view-
points. Specifically, the model enables us to warp the images to
eliminate unequal foreshortening and to predict major instances of
occlusion before trying to find correspondences.

1.1.4 Image-Based Rendering

In an image-based rendering system, the model consists of a set of
images of a scene and their corresponding depth maps. When the
depth of every point in an image is known, the image can be re-
rendered from any nearby point of view by projecting the pixels of
the image to their proper 3D locations and reprojecting them onto
a new image plane. Thus, a new image of the scene is created by
warping the images according to their depth maps. A principal at-
traction of image-based rendering is that it offers a method of ren-
dering arbitrarily complex scenes with a constant amount of com-
putation required per pixel. Using this property, [23] demonstrated
how regularly spaced synthetic images (with their computed depth
maps) could be warped and composited in real time to produce a vir-
tual environment.

More recently, [13] presented a real-time image-based rendering
system that used panoramic photographs with depth computed, in
part, from stereo correspondence. One finding of the paper was that
extracting reliable depth estimates from stereo is “very difficult”.
The method was nonetheless able to obtain acceptable results for
nearby views using user input to aid the stereo depth recovery: the
correspondencemap for each image pair was seeded with 100 to 500
user-supplied point correspondences and also post-processed. Even

2

To appear in the SIGGRAPH conference proceedings

with user assistance, the images used still had to be closely spaced;
the largest baseline described in the paper was five feet.

The requirement that samples be close together is a serious lim-
itation to generating a freely navigable virtual environment. Cov-
ering the size of just one city block would require thousands of
panoramic images spaced five feet apart. Clearly, acquiring so
many photographs is impractical. Moreover, even a dense lattice of
ground-basedphotographswould only allow renderings to be gener-
ated from within a few feet of the original camera level, precluding
any virtual fly-bys of the scene. Extending the dense lattice of pho-
tographs into three dimensions would clearly make the acquisition
process even more difficult. The approach described in this paper
takes advantage of the structure in architectural scenes so that it re-
quires only a sparse set of photographs. For example, our approach
has yielded a virtual fly-around of a building from just twelve stan-
dard photographs.

1.2 Overview
In this paper we present three new modeling and rendering tech-
niques: photogrammetric modeling, view-dependent texture map-
ping, and model-based stereo. We show how these techniques can
be used in conjunction to yield a convenient, accurate, and photo-
realistic method of modeling and rendering architecture from pho-
tographs. In our approach, the photogrammetric modeling program
is used to create a basic volumetric model of the scene, which is then
used to constrain stereo matching. Our rendering method compos-
ites information from multiple images with view-dependenttexture-
mapping. Our approach is successful because it splits the task of
modeling from images into tasks which are easily accomplished by
a person (but not a computer algorithm), and tasks which are easily
performed by a computer algorithm (but not a person).

In Section 2, we present our photogrammetric modeling
method. In essence, we have recast the structure from motion prob-
lem not as the recovery of individual point coordinates, but as the
recovery of the parameters of a constrained hierarchy of parametric
primitives. The result is that accurate architectural models can be
recovered robustly from just a few photographs and with a minimal
number of user-supplied correspondences.

In Section 3, we present view-dependent texture mapping, and
show how it can be used to realistically render the recovered model.
Unlike traditional texture-mapping, in which a single static image
is used to color in each face of the model, view-dependent tex-
ture mapping interpolates between the available photographs of the
scene depending on the user’s point of view. This results in more
lifelike animations that better capture surface specularities and un-
modeled geometric detail.

Lastly, in Section 4, we present model-based stereo, which is
used to automatically refine a basic model of a photographed scene.
This technique can be used to recover the structure of architectural
ornamentation that would be difficult to recover with photogram-
metric modeling. In particular, we show that projecting pairs of im-
ages onto an initial approximate model allows conventional stereo
techniques to robustly recover very accurate depth measurements
from images with widely varying viewpoints.

2 Photogrammetric Modeling
In this section we present our method for photogrammetric model-
ing, in which the computer determines the parameters of a hierar-
chical model of parametric polyhedral primitives to reconstruct the
architectural scene. We have implemented this method in Façade,
an easy-to-use interactive modeling program that allows the user to
construct a geometric model of a scene from digitized photographs.
We first overview Façade from the point of view of the user, then we
describe our model representation, and then we explain our recon-
struction algorithm. Lastly, we present results from using Façade to
reconstruct several architectural scenes.

2.1 The User’s View
Constructing a geometric model of an architectural scene using
Façade is an incremental and straightforward process. Typically, the
user selects a small number of photographs to begin with, and mod-
els the scene one piece at a time. The user may refine the model and
include more images in the project until the model meets the desired
level of detail.

Fig. 2(a) and (b) shows the two types of windows used in Façade:
image viewers and model viewers. The user instantiates the com-
ponents of the model, marks edges in the images, and corresponds
the edges in the images to the edges in the model. When instructed,
Façade computes the sizes and relative positions of the model com-
ponents that best fit the edges marked in the photographs.

Components of the model, called blocks, are parameterized ge-
ometric primitives such as boxes, prisms, and surfaces of revolu-
tion. A box, for example, is parameterized by its length, width, and
height. The user models the scene as a collection of such blocks,
creating new block classes as desired. Of course, the user does not
need to specify numerical values for the blocks’ parameters, since
these are recovered by the program.

The user may choose to constrain the sizes and positions of any
of the blocks. In Fig. 2(b), most of the blocks have been constrained
to have equal length and width. Additionally, the four pinnacles
have been constrained to have the same shape. Blocks may also be
placed in constrained relations to one other. For example, many of
the blocks in Fig. 2(b) have been constrained to sit centered and on
top of the block below. Such constraints are specified using a graph-
ical 3D interface. When such constraints are provided, they are used
to simplify the reconstruction problem.

The user marks edge features in the images using a point-and-
click interface; a gradient-based technique as in [14] can be used to
align the edges with sub-pixel accuracy. We use edge rather than
point features since they are easier to localize and less likely to
be completely obscured. Only a section of each edge needs to be
marked, making it possible to use partially visible edges. For each
marked edge, the user also indicates the corresponding edge in the
model. Generally, accurate reconstructions are obtained if there are
as many correspondences in the images as there are free camera
and model parameters. Thus, Façade reconstructs scenes accurately
even when just a portion of the visible edges and marked in the im-
ages, and when just a portion of the model edges are given corre-
spondences.

At any time, the user may instruct the computer to reconstruct the
scene. The computer then solves for the parameters of the model
that cause it to align with the marked features in the images. Dur-
ing the reconstruction, the computer computes and displays the lo-
cations from which the photographs were taken. For simple models
consisting of just a few blocks, a full reconstruction takes only a few
seconds; for more complex models, it can take a few minutes. For
this reason, the user can instruct the computer to employ faster but
less precise reconstruction algorithms (see Sec. 2.4) during the in-
termediate stages of modeling.

To verify the the accuracy of the recovered model and camera po-
sitions, Façade can project the model into the original photographs.
Typically, the projected model deviates from the photographs by
less than a pixel. Fig. 2(c) shows the results of projecting the edges
of the model in Fig. 2(b) into the original photograph.

Lastly, the user may generate novel views of the model by posi-
tioning a virtual camera at any desired location. Façade will then use
the view-dependent texture-mapping method of Section 3 to render
a novel view of the scene from the desired location. Fig. 2(d) shows
an aerial rendering of the tower model.

2.2 Model Representation
The purposeof our choice of model representation is to represent the
scene as a surface model with as few parameters as possible: when

3

To appear in the SIGGRAPH conference proceedings

(a) (b) (c) (d)
Figure 2: (a) A photograph of the Campanile, Berkeley’s clock tower, with marked edges shown in green. (b) The model recovered by our
photogrammetricmodeling method. Although only the left pinnacle was marked, the remaining three (including one not visible) wererecovered
from symmetrical constraints in the model. Our method allows any number of images to be used, but in this case constraints of symmetry
made it possible to recover an accurate 3D model from a single photograph. (c) The accuracy of the model is verified by reprojecting it into
the original photograph through the recovered camera position. (d) A synthetic view of the Campanile generated using the view-dependent
texture-mapping method described in Section 3. A real photograph from this position would be difficult to take since the camera position is
250 feet above the ground.

the model has fewer parameters, the user needs to specify fewer cor-
respondences, and the computer can reconstruct the model more ef-
ficiently. In Façade, the scene is represented as a constrained hier-
archical model of parametric polyhedral primitives, called blocks.
Each block has a small set of parameters which serve to define
its size and shape. Each coordinate of each vertex of the block is
then expressed as linear combination of the block’s parameters, rel-
ative to an internal coordinate frame. For example, for the wedge
block in Fig. 3, the coordinates of the vertex Po are written in
terms of the block parameters width, height, and length as Po =
(�width;�height; length)T . Each block is also given an associ-
ated bounding box.

y

z x

wedge_width

w
ed

ge
_h

ei
gh

t

wedge_depth

Bounding Box

P0

Figure 3: A wedge block with its parameters and bounding box.

roof

first_storey

y

xz

ground_plane

y

xz

y

xz y

xz
entrance

ground_plane

first_storey

roof entrance

g (X)
1

g (X)
2

(a) (b)
Figure 4: (a) A geometric model of a simple building. (b) The
model’s hierarchical representation. The nodes in the tree repre-
sent parametric primitives (called blocks) while the links contain
the spatial relationships between the blocks.

The blocks in Façade are organized in a hierarchical tree structure

as shown in Fig. 4(b). Each node of the tree represents an individual
block, while the links in the tree contain the spatial relationships be-
tween blocks, called relations. Such hierarchical structures are also
used in traditional modeling systems.

The relation between a block and its parent is most generally rep-
resented as a rotation matrix R and a translation vector t. This rep-
resentation requires six parameters: three each forR and t. In archi-
tectural scenes, however, the relationship between two blocks usu-
ally has a simple form that can be represented with fewer parame-
ters, and Façade allows the user to build such constraints on R and
t into the model. The rotation R between a block and its parent can
be specified in one of three ways: first, as an unconstrained rotation,
requiring three parameters; second, as a rotation about a particular
coordinate axis, requiring just one parameter; or third, as a fixed or
null rotation, requiring no parameters.

Likewise, Façade allows for constraints to be placed on each
component of the translation vector t. Specifically, the user can
constrain the bounding boxes of two blocks to align themselves in
some manner along each dimension. For example, in order to en-
sure that the roof block in Fig. 4 lies on top of the first story block,
the user can require that the maximum y extent of the first story
block be equal to the minimum y extent of the roof block. With
this constraint, the translation along the y axis is computed (ty =
(first storyMAX

y � roofMIN
y)) rather than represented as a pa-

rameter of the model.
Each parameter of each instantiated block is actually a reference

to a named symbolic variable, as illustrated in Fig. 5. As a result,
two parameters of different blocks (or of the same block) can be
equated by having each parameter reference the same symbol. This
facility allows the user to equate two or more of the dimensions in
a model, which makes modeling symmetrical blocks and repeated
structure more convenient. Importantly, these constraints reduce the
number of degrees of freedom in the model, which, as we will show,
simplifies the structure recovery problem.

Once the blocks and their relations have been parameterized, it
is straightforward to derive expressions for the world coordinates
of the block vertices. Consider the set of edges which link a spe-
cific block in the model to the ground plane as shown in Fig. 4.

4

To appear in the SIGGRAPH conference proceedings

Block2

 Block1
BLOCKS

height

length

type: wedge

width

height

width

length

type: box

name: "building_width"
value: 10.0

value: 20.0
name: "building_length"

value: 2.0

value: 4.0
name: "first_storey_height"

name:"roof_height"

VARIABLES

Figure 5: Representation of block parameters as symbol references.
A single variable can be referenced by the model in multiple places,
allowing constraints of symmetry to be embedded in the model.

Let g1(X); :::; gn(X) represent the rigid transformations associated
with each of these links, where X represents the vector of all the
model parameters. The world coordinates Pw(X) of a particular
block vertex P (X) is then:

Pw(X) = g1(X):::gn(X)P (X) (1)

Similarly, the world orientation vw(X) of a particular line seg-
ment v(X) is:

vw(X) = g1(X):::gn(X)v(X) (2)

In these equations, the point vectorsP andPw and the orientation
vectors v and vw are represented in homogeneous coordinates.

Modeling the scene with polyhedral blocks, as opposed to points,
line segments, surface patches, or polygons, is advantageous for a
number of reasons:

� Most architectural scenes are well modeled by an arrangement
of geometric primitives.

� Blocks implicitly contain common architectural elements such
as parallel lines and right angles.

� Manipulating block primitives is convenient since they are at
a suitably high level of abstraction; individual features such as
points and lines are less manageable.

� A surface model of the scene is readily obtained from the
blocks, so there is no need to infer surfaces from discrete fea-
tures.

� Modeling in terms of blocks and relationships greatly reduces
the number of parameters that the reconstruction algorithm
needs to recover.

The last point is crucial to the robustness of our reconstruction al-
gorithm and the viability of our modeling system, and is illustrated
best with an example. The model in Fig. 2 is parameterized by just
33 variables (the unknown camera position adds six more). If each
block in the scene were unconstrained (in its dimensions and posi-
tion), the model would have 240 parameters; if each line segment in
the scene were treated independently, the model would have 2,896
parameters. This reduction in the number of parameters greatly en-
hances the robustness and efficiency of the method as compared to
traditional structure from motion algorithms. Lastly, since the num-
ber of correspondences needed to suitably overconstrain the mini-
mization is roughly proportional to the number of parameters in the
model, this reduction means that the number of correspondences re-
quired of the user is manageable.

2.3 Reconstruction Algorithm
Our reconstruction algorithm works by minimizing an objective
function O that sums the disparity between the projected edges of
the model and the edges marked in the images, i.e. O =

P
Err i

where Err i represents the disparity computed for edge feature i.

Thus, the unknown model parameters and camera positions are
computed by minimizingO with respect to these variables. Our sys-
tem uses the the error function Err i from [17], described below.

!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!

image plane

3D line

m

v

image edge

y

−z
x

y

−z

x

d World Coordinate
System

<R, t>

Camera Coordinate
System

predicted line:
mxx + myy + mzf = 0

(x1, y1)

(x2, y2)

h1

h2

P(s)h(s) Observed edge
segment

!!
!!

!
!

(a) (b)
Figure 6: (a) Projection of a straight line onto a camera’s image
plane. (b) The error function used in the reconstruction algorithm.
The heavy line represents the observededge segment (marked by the
user) and the lighter line represents the model edge predicted by the
current camera and model parameters.

Fig. 6(a) shows how a straight line in the model projects onto
the image plane of a camera. The straight line can be defined by
a pair of vectors hv; di where v represents the direction of the line
and d represents a point on the line. These vectors can be computed
from equations 2 and 1 respectively. The position of the camera with
respect to world coordinates is given in terms of a rotation matrixRj

and a translation vector tj . The normal vector denoted bym in the
figure is computed from the following expression:

m = Rj(v � (d� tj)) (3)

The projection of the line onto the image plane is simply the in-
tersection of the plane defined bymwith the image plane, located at
z = �f where f is the focal length of the camera. Thus, the image
edge is defined by the equation mxx+myy�mzf = 0.

Fig. 6(b) shows how the error between the observed image edge
f(x1; y1); (x2; y2)g and the predicted image line is calculated for
each correspondence. Points on the observed edge segment can be
parameterized by a single scalar variable s 2 [0; l] where l is the
length of the edge. We leth(s) be the function that returns the short-
est distance from a point on the segment,p(s), to the predicted edge.

With these definitions, the total error between the observed edge
segment and the predicted edge is calculated as:

Erri =

Z l

0

h
2(s)ds =

l

3
(h21+h1h2+h

2

2) = m
T (AT

BA)m

(4)
where:

m = (mx;my;mz)
T

A =

�
x1 y1 1
x2 y2 1

�

B =
l

3(m2
x +m2

y)

�
1 0:5
0:5 1

�

The final objective functionO is the sum of the error terms result-
ing from each correspondence. We minimize O using a variant of
the Newton-Raphson method, which involves calculating the gradi-
ent and Hessian of O with respect to the parameters of the camera

5

To appear in the SIGGRAPH conference proceedings

and the model. As we have shown, it is simple to construct sym-
bolic expressions form in terms of the unknown model parameters.
The minimization algorithm differentiates these expressions sym-
bolically to evaluate the gradient and Hessian after each iteration.
The procedure is inexpensive since the expressions for d and v in
Equations 2 and 1 have a particularly simple form.

2.4 Computing an Initial Estimate
The objective function described in Section 2.3 section is non-linear
with respect to the model and camera parameters and consequently
can have local minima. If the algorithm begins at a random loca-
tion in the parameter space, it stands little chance of converging to
the correct solution. To overcome this problem we have developed
a method to directly compute a good initial estimate for the model
parameters and camera positions that is near the correct solution. In
practice, our initial estimate method consistently enables the non-
linear minimization algorithm to converge to the correct solution.

Our initial estimate method consists of two procedures performed
in sequence. The first procedure estimates the camera rotations
while the second estimates the camera translations and the parame-
ters of the model. Both initial estimate procedures are based upon an
examination of Equation 3. From this equation the following con-
straints can be deduced:

m
T
Rjv = 0 (5)

m
T
Rj(d� tj) = 0 (6)

Given an observed edgeuij the measured normalm0 to the plane
passing through the camera center is:

m
0 =

x1
y1
�f

!
�

x2
y2
�f

!
(7)

From these equations, we see that any model edges of known ori-
entation constrain the possible values for Rj . Since most architec-
tural models contain many such edges (e.g. horizontal and vertical
lines), each camera rotation can be usually be estimated from the
model independent of the model parameters and independent of the
camera’s location in space. Our method does this by minimizing the
following objective function O1 that sums the extents to which the
rotations Rj violate the constraints arising from Equation 5:

O1 =
X
i

(mT
Rjvi)

2
; vi 2 fx̂; ŷ; ẑg (8)

Once initial estimates for the camera rotations are computed,
Equation 6 is used to obtain initial estimates of the model param-
eters and camera locations. Equation 6 reflects the constraint that
all of the points on the line defined by the tuple hv;di should lie on
the plane with normal vectorm passing through the camera center.
This constraint is expressed in the following objective function O2

wherePi(X) andQi(X) are expressions for the vertices of an edge
of the model.

O2 =
X
i

(mT
Rj(Pi(X)� tj))

2 +(mT
Rj(Qi(X)� tj))

2 (9)

In the special case where all of the block relations in the model
have a known rotation, this objective function becomes a simple
quadratic form which is easily minimized by solving a set of linear
equations.

Once the initial estimate is obtained, the non-linear minimization
over the entire parameter space is applied to produce the best possi-
ble reconstruction. Typically, the minimization requires fewer than
ten iterations and adjusts the parameters of the model by at most a
few percent from the initial estimates. The edges of the recovered
models typically conform to the original photographs to within a
pixel.

Figure 7: Three of twelve photographsused to reconstructthe entire
exterior of University High School in Urbana, Illinois. The super-
imposed lines indicate the edges the user has marked.

(a) (b)

(c)
Figure 8: The high school model, reconstructed from twelve pho-
tographs. (a) Overhead view. (b) Rear view. (c) Aerial view show-
ing the recoveredcamera positions. Two nearly coincident cameras
can be observed in front of the building; their photographs were
taken from the second story of a building across the street.

Figure 9: A synthetic view of University High School. This is a
frame from an animation of flying around the entire building.

6

To appear in the SIGGRAPH conference proceedings

(a) (b) (c)
Figure 10: Reconstructionof Hoover Tower, Stanford, CA (a) Origi-
nal photograph, with marked edges indicated. (b) Model recovered
from the single photograph shown in (a). (c) Texture-mappedaerial
view from the virtual camera position indicated in (b). Regions not
seen in (a) are indicated in blue.

2.5 Results
Fig. 2 showed the results of using Façade to reconstruct a clock
tower from a single image. Figs. 7 and 8 show the results of us-
ing Façade to reconstruct a high school building from twelve pho-
tographs. (The model was originally constructed from just five im-
ages; the remaining images were added to the project for purposesof
generating renderings using the techniques of Section 3.) The pho-
tographs were taken with a calibrated 35mm still camera with a stan-
dard 50mm lens and digitized with the PhotoCD process. Images at
the 1536� 1024 pixel resolution were processed to correct for lens
distortion, then filtered down to 768�512 pixels for use in the mod-
eling system. Fig. 8 shows some views of the recovered model and
camera positions, and Fig. 9 shows a synthetic view of the building
generated by the technique in Sec. 3.

Fig. 10 shows the reconstruction of another tower from a sin-
gle photograph. The dome was modeled specially since the recon-
struction algorithm does not recover curved surfaces. The user con-
strained a two-parameter hemisphere block to sit centered on top of
the tower, and manually adjusted its height and width to align with
the photograph. Each of the models presented took approximately
four hours to create.

3 View-Dependent Texture-Mapping
In this section we present view-dependent texture-mapping, an ef-
fective method of rendering the scene that involves projecting the
original photographs onto the model. This form of texture-mapping
is most effective when the model conforms closely to the actual
structure of the scene, and when the original photographs show the
scene in similar lighting conditions. In Section 4 we will show how
view-dependent texture-mapping can be used in conjunction with
model-based stereo to produce realistic renderings when the recov-
ered model only approximately models the structure of the scene.

Since the camera positions of the original photographs are re-
covered during the modeling phase, projecting the images onto the
model is straightforward. In this section we first describe how we
project a single image onto the model, and then how we merge sev-
eral image projections to render the entire model. Unlike tradi-
tional texture-mapping, our method projects different images onto
the model depending on the user’s viewpoint. As a result, our view-
dependent texture mapping can give a better illusion of additional
geometric detail in the model.

3.1 Projecting a Single Image
The process of texture-mapping a single image onto the model can
be thought of as replacing each camera with a slide projector that
projects the original image onto the model. When the model is not

convex, it is possible that some parts of the model will shadow oth-
ers with respect to the camera. While such shadowed regions could
be determined using an object-space visible surface algorithm, or an
image-space ray casting algorithm, we use an image-space shadow
map algorithm based on [22] since it is efficiently implemented us-
ing z-buffer hardware.

Fig. 11, upper left, shows the results of mapping a single image
onto the high school building model. The recovered camera posi-
tion for the projected image is indicated in the lower left corner of
the image. Because of self-shadowing, not every point on the model
within the camera’s viewing frustum is mapped.

3.2 Compositing Multiple Images
In general, each photograph will view only a piece of the model.
Thus, it is usually necessary to use multiple images in order to ren-
der the entire model from a novel point of view. The top images of
Fig. 11 show two different images mapped onto the model and ren-
dered from a novel viewpoint. Some pixels are colored in just one of
the renderings, while some are colored in both. These two render-
ings can be merged into a composite rendering by considering the
corresponding pixels in the rendered views. If a pixel is mapped in
only one rendering, its value from that rendering is used in the com-
posite. If it is mapped in more than one rendering, the renderer has
to decide which image (or combination of images) to use.

It would be convenient, of course, if the projected images would
agree perfectly where they overlap. However, the images will not
necessarily agree if there is unmodeled geometric detail in the build-
ing, or if the surfaces of the building exhibit non-Lambertian reflec-
tion. In this case, the best image to use is clearly the one with the
viewing angle closest to that of the rendered view. However, using
the image closest in angle at every pixel means that neighboring ren-
dered pixels may be sampled from different original images. When
this happens, specularity and unmodeled geometric detail can cause
visible seams in the rendering. To avoid this problem, we smooth
these transitions through weighted averaging as in Fig. 12.

Figure 11: The process of assembling projected images to form a
composite rendering. The top two pictures show two images pro-
jected onto the model from their respective recovered camera posi-
tions. The lower left picture shows the results of compositing these
two renderings using our view-dependent weighting function. The
lower right picture shows the results of compositing renderings of
all twelve original images. Some pixels near the front edge of the
roof not seen in any image have been filled in with the hole-filling
algorithm from [23].

Even with this weighting, neighboring pixels can still be sam-
pled from different views at the boundary of a projected image, since
the contribution of an image must be zero outside its boundary. To

7

To appear in the SIGGRAPH conference proceedings

a2

a1

virtual view

view 1

view 2

model

Figure 12: The weighting function used in view-dependent texture
mapping. The pixel in the virtual view corresponding to the point
on the model is assigned a weighted average of the corresponding
pixels in actual views 1 and 2. The weightsw1 andw2 are inversely
inversely proportional to the magnitude of angles a1 and a2. Al-
ternately, more sophisticated weighting functions based on expected
foreshortening and image resampling can be used.

address this, the pixel weights are ramped down near the boundary
of the projected images. Although this method does not guarantee
smooth transitions in all cases, we have found that it eliminates most
artifacts in renderings and animations arising from such seams.

If an original photograph features an unwanted car, tourist, or
other object in front of the architecture of interest, the unwanted ob-
ject will be projected onto the surface of the model. To prevent this
from happening, the user may mask out the object by painting over
the obstruction with a reserved color. The rendering algorithm will
then set the weights for any pixels corresponding to the masked re-
gions to zero, and decrease the weights of the pixels near the bound-
ary as before to minimize seams. Any regions in the composite im-
age which are occluded in every projected image are filled in using
the hole-filling method from [23].

In the discussion so far, projected image weights are computed at
every pixel of every projected rendering. Since the weighting func-
tion is smooth (though not constant) across flat surfaces, it is not
generally not necessary to compute it for every pixel of every face
of the model. For example, using a single weight for each face of
the model, computed at the face’s center, produces acceptable re-
sults. By coarsely subdividing large faces, the results are visually
indistinguishable from the case where a unique weight is computed
for every pixel. Importantly, this technique suggests a real-time im-
plementation of view-dependent texture mapping using a texture-
mapping graphics pipeline to render the projected views, and �-
channel blending to composite them.

For complex models where most images are entirely occluded for
the typical view, it can be very inefficient to project every original
photograph to the novel viewpoint. Some efficient techniques to de-
termine such visibility a priori in architectural scenes through spa-
tial partitioning are presented in [18].

4 Model-Based Stereopsis
The modeling system described in Section 2 allows the user to cre-
ate a basic model of a scene, but in general the scene will have ad-
ditional geometric detail (such as friezes and cornices) not captured
in the model. In this section we present a new method of recov-
ering such additional geometric detail automatically through stereo
correspondence, which we call model-based stereo. Model-based
stereo differs from traditional stereo in that it measures how the ac-
tual scene deviates from the approximate model, rather than trying
to measure the structure of the scene without any prior information.
The model serves to place the images into a common frame of ref-
erence that makes the stereo correspondence possible even for im-

(a) (b)

(c) (d)
Figure 13: View-dependent texture mapping. (a) A detail view of the
high school model. (b) A renderingof the model from the same posi-
tion using view-dependent texture mapping. Note that although the
model does not capture the slightly recessed windows, the windows
appear properly recessed because the texture map is sampled pri-
marily from a photograph which viewed the windows from approx-
imately the same direction. (c) The same piece of the model viewed
from a different angle, using the same texture map as in (b). Since
the texture is not selected from an image that viewed the model from
approximately the same angle, the recessed windows appear unnat-
ural. (d) A more natural result obtained by using view-dependent
texture mapping. Since the angle of view in (d) is different than in
(b), a different composition of original images is used to texture-map
the model.

ages taken from relatively far apart. The stereo correspondence in-
formation can then be used to render novel views of the scene using
image-based rendering techniques.

As in traditional stereo, given two images (which we call the
key and offset), model-based stereo computes the associated depth
map for the key image by determining corresponding points in the
key and offset images. Like many stereo algorithms, our method is
correlation-based, in that it attempts to determine the corresponding
point in the offset image by comparing small pixel neighborhoods
around the points. As such, correlation-based stereo algorithms gen-
erally require the neighborhood of each point in the key image to
resemble the neighborhood of its corresponding point in the offset
image.

The problem we face is that when the key and offset images
are taken from relatively far apart, as is the case for our modeling
method, corresponding pixel neighborhoods can be foreshortened
very differently. In Figs. 14(a) and (c), pixel neighborhoods toward
the right of the key image are foreshortened horizontally by nearly
a factor of four in the offset image.

The key observation in model-based stereo is that even though
two images of the same scene may appear very different, they ap-
pear similar after being projected onto an approximate model of the
scene. In particular, projecting the offset image onto the model and
viewing it from the position of the key image produces what we call
the warped offset image, which appears very similar to the key im-
age. The geometrically detailed scene in Fig. 14 was modeled as
two flat surfaces with our modeling program, which also determined
the relative camera positions. As expected, the warped offset image
(Fig. 14(b)) exhibits the same pattern of foreshortening as the key
image.

In model-based stereo, pixel neighborhoods are compared be-
tween the key and warped offset images rather than the key and off-

8

To appear in the SIGGRAPH conference proceedings

(a) Key Image (b) Warped Offset Image (c) Offset Image (d) Computed Disparity Map
Figure 14: (a) and (c) Two images of the entrance to Peterhouse chapel in Cambridge, UK. The Façade program was used to model the
façade and ground as a flat surfaces and to recover the relative camera positions. (b) The warped offset image, produced by projecting the
offset image onto the approximate model and viewing it from the position of the key camera. This projection eliminates most of the disparity
and foreshortening with respect to the key image, greatly simplifying stereo correspondence. (d) An unedited disparity map produced by our
model-based stereo algorithm.

set images. When a correspondence is found, it is simple to convert
its disparity to the corresponding disparity between the key and off-
set images, from which the point’s depth is easily calculated. Fig.
14(d) shows a disparity map computed for the key image in (a).

The reduction of differences in foreshortening is just one of sev-
eral ways that the warped offset image simplifies stereo correspon-
dence. Some other desirable properties of the warped offset image
are:

� Any point in the scene which lies on the approximate model
will have zero disparity between the key image and the warped
offset image.

� Disparities between the key and warped offset images are eas-
ily converted to a depth map for the key image.

� Depth estimates are far less sensitive to noise in image mea-
surements since images taken from relatively far apart can be
compared.

� Places where the model occludes itself relative to the key im-
age can be detected and indicated in the warped offset image.

� A linear epipolar geometry (Sec. 4.1) exists between the key
and warped offset images, despite the warping. In fact, the
epipolar lines of the warped offset image coincide with the
epipolar lines of the key image.

4.1 Model-Based Epipolar Geometry
In traditional stereo, the epipolar constraint (see [6]) is often used
to constrain the search for corresponding points in the offset im-
age to searching along an epipolar line. This constraint simplifies
stereo not only by reducing the search for each correspondence to
one dimension, but also by reducing the chance of selecting a false
matches. In this section we show that taking advantage of the epipo-
lar constraint is no more difficult in model-basedstereo case, despite
the fact that the offset image is non-uniformly warped.

Fig. 15 shows the epipolar geometry for model-based stereo. If
we consider a pointP in the scene, there is a unique epipolar plane
which passes through P and the centers of the key and offset cam-
eras. This epipolar plane intersects the key and offset image planes
in epipolar lines ek and eo . If we consider the projection pk of P
onto the key image plane, the epipolar constraint states that the cor-
responding point in the offset image must lie somewhere along the
offset image’s epipolar line.

In model-based stereo, neighborhoods in the key image are com-
pared to the warped offset image rather than the offset image. Thus,
to make use of the epipolar constraint, it is necessary to determine
where the pixels on the offset image’s epipolar line project to in the
warped offset image. The warped offset image is formed by project-
ing the offset image onto the model, and then reprojecting the model
onto the image plane of the key camera. Thus, the projection po of
P in the offset image projects onto the model at Q, and then repro-
jects to qk in the warped offset image. Since each of these projec-
tions occurs within the epipolar plane, any possible correspondence

P

Q

q
k

p
k

po

Key
Camera

Offset
Camera

approximate
model

ek

actual
structure

offset
image

key /
warped offset

image

epipolar plane

eo

epipolar lines

Figure 15: Epipolar geometry for model-based stereo.

for pk in the key image must lie on the key image’s epipolar line in
the warped offset image. In the case where the actual structure and
the model coincide at P , po is projected to P and then reprojected
to pk , yielding a correspondence with zero disparity.

The fact that the epipolar geometry remains linear after the warp-
ing step also facilitates the use of the ordering constraint [2, 6]
through a dynamic programming technique.

4.2 Stereo Results and Rerendering
While the warping step makes it dramatically easier to determine
stereo correspondences, a stereo algorithm is still necessary to ac-
tually determine them. The algorithm we developed to produce the
images in this paper is described in [3].

Once a depth map has been computed for a particular image, we
can rerender the scene from novel viewpoints using the methods
described in [23, 16, 13]. Furthermore, when several images and
their corresponding depth maps are available, we can use the view-
dependent texture-mapping method of Section 3 to composite the
multiple renderings. The novel views of the chapel façade in Fig.
16 were produced through such compositing of four images.

5 Conclusion and Future Work
To conclude, we have presented a new, photograph-based approach
to modeling and rendering architectural scenes. Our modeling
approach, which combines both geometry-based and image-based
modeling techniques, is built from two components that we have
developed. The first component is an easy-to-use photogrammet-

9

To appear in the SIGGRAPH conference proceedings

Figure 16: Novel views of the scene generated from four original photographs. These are frames from an animated movie in which the façade
rotates continuously. The depth is computed from model-based stereo and the frames are made by compositing image-based renderings with
view-dependent texture-mapping.

ric modeling system which facilitates the recovery of a basic geo-
metric model of the photographed scene. The second component is
a model-based stereo algorithm, which recovers precisely how the
real scene differs from the basic model. For rendering, we have pre-
sented view-dependenttexture-mapping, which produces images by
warping and compositing multiple views of the scene. Through ju-
dicious use of images, models, and human assistance, our approach
is more convenient, more accurate, and more photorealistic than
current geometry-based or image-based approaches for modeling
and rendering real-world architectural scenes.

There are several improvements and extensions that can be made
to our approach. First, surfaces of revolution represent an important
component of architecture (e.g. domes, columns, and minarets) that
are not recovered in our photogrammetric modeling approach. (As
noted, the dome in Fig. 10 was manually sized by the user.) Fortu-
nately, there has been much work (e.g. [24]) that presents methods
of recovering such structures from image contours. Curved model
geometry is also entirely consistent with our approach to recovering
additional detail with model-based stereo.

Second, our techniques should be extended to recognize and
model the photometric properties of the materials in the scene. The
system should be able to make better use of photographs taken in
varying lighting conditions, and it should be able to render images
of the scene as it would appear at any time of day, in any weather,
and with any configuration of artificial light. Already, the recovered
model can be used to predict shadowing in the scene with respect to
an arbitrary light source. However, a full treatment of the problem
will require estimating the photometric properties (i.e. the bidirec-
tional reflectance distribution functions) of the surfaces in the scene.

Third, it is clear that further investigation should be made into the
problem of selecting which original images to use when rendering
a novel view of the scene. This problem is especially difficult when
the available images are taken at arbitrary locations. Our current so-
lution to this problem, the weighting function presented in Section
3, still allows seams to appear in renderings and does not consider
issues arising from image resampling. Another form of view selec-
tion is required to choose which pairs of images should be matched
to recover depth in the model-based stereo algorithm.

Lastly, it will clearly be an attractive application to integrate
the models created with the techniques presented in this paper into
forthcoming real-time image-based rendering systems.

Acknowledgments
This research was supported by a National Science Foundation
Graduate Research Fellowship and grants from Interval Research
Corporation, the California MICRO program, and JSEP contract
F49620-93-C-0014. The authors also wish to thank Tim Hawkins,
Carlo Séquin, David Forsyth, and Jianbo Shi for their valuable help
in revising this paper.

References
[1] Ali Azarbayejani and Alex Pentland. Recursive estimation of motion, structure,

and focal length. IEEE Trans. Pattern Anal. Machine Intell., 17(6):562–575,June
1995.

[2] H. H. Baker and T. O. Binford. Depth from edge and intensity based stereo. In
Proceedings of the Seventh IJCAI, Vancouver, BC, pages 631–636, 1981.

[3] Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. Modeling and rendering
architecture from photographs: A hybrid geometry- and image-based approach.
Technical Report UCB//CSD-96-893, U.C. Berkeley, CS Division, January 1996.

[4] D.J.Fleet, A.D.Jepson, and M.R.M. Jenkin. Phase-based disparity measurement.
CVGIP: Image Understanding, 53(2):198–210, 1991.

[5] Oliver Faugeras and Giorgio Toscani. The calibration problem for stereo. In
Proceedings IEEE CVPR 86, pages 15–20, 1986.

[6] Olivier Faugeras. Three-Dimensional Computer Vision. MIT Press, 1993.
[7] Olivier Faugeras, Stephane Laveau, Luc Robert, Gabriella Csurka, and Cyril

Zeller. 3-d reconstruction of urban scenes from sequences of images. Techni-
cal Report 2572, INRIA, June 1995.

[8] W. E. L. Grimson. From Images to Surface. MIT Press, 1981.
[9] D. Jones and J. Malik. Computational framework for determining stereo cor-

respondence from a set of linear spatial filters. Image and Vision Computing,
10(10):699–708, December 1992.

[10] E. Kruppa. Zur ermittlung eines objectes aus zwei perspektiven mit innerer ori-
entierung. Sitz.-Ber. Akad. Wiss., Wien, Math. Naturw. Kl., Abt. Ila., 122:1939–
1948, 1913.

[11] H.C. Longuet-Higgins. A computer algorithm for reconstructing a scene from
two projections. Nature, 293:133–135, September 1981.

[12] D. Marr and T. Poggio. A computational theory of human stereo vision. Proceed-
ings of the Royal Society of London, 204:301–328, 1979.

[13] Leonard McMillan and Gary Bishop. Plenoptic modeling: An image-based ren-
dering system. In SIGGRAPH ’95, 1995.

[14] Eric N. Mortensen and William A. Barrett. Intelligent scissors for image compo-
sition. In SIGGRAPH ’95, 1995.

[15] S. B. Pollard, J. E. W. Mayhew, and J. P. Frisby. A stereo correspondence algo-
rithm using a disparity gradient limit. Perception, 14:449–470, 1985.

[16] R. Szeliski. Image mosaicing for tele-reality applications. In IEEE Computer
Graphics and Applications, 1996.

[17] Camillo J. Taylor and David J. Kriegman. Structure and motion from line seg-
ments in multiple images. IEEE Trans. Pattern Anal. Machine Intell., 17(11),
November 1995.

[18] S. J. Teller, Celeste Fowler, Thomas Funkhouser, and Pat Hanrahan. Partitioning
and ordering large radiosity computations. In SIGGRAPH ’94, pages 443–450,
1994.

[19] Carlo Tomasi and Takeo Kanade. Shape and motion from image streams under
orthography: a factorization method. International Journal of Computer Vision,
9(2):137–154, November 1992.

[20] Roger Tsai. A versatile camera calibration technique for high accuracy 3d ma-
chine vision metrology using off-the-shelf tv cameras and lenses. IEEE Journal
of Robotics and Automation, 3(4):323–344, August 1987.

[21] S. Ullman. The Interpretation of Visual Motion. The MIT Press, Cambridge, MA,
1979.

[22] L Williams. Casting curved shadows on curved surfaces. In SIGGRAPH ’78,
pages 270–274, 1978.

[23] Lance Williams and Eric Chen. View interpolation for image synthesis. In SIG-
GRAPH ’93, 1993.

[24] Mourad Zerroug and Ramakant Nevatia. Segmentation and recovery of shgcs
from a real intensity image. In European Conference on Computer Vision, pages
319–330, 1994.

10

