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Abstract

A driver is a software module that mimics an actual usage environment by generating a stream
of requests for use in simulations or in stress testing of an implemented system. ‘This paper
describes the design of a computationally efficient driver for use in performance evaluation of
file systems. Based on obscrvations of a timesharing system in a rescarch environment, it is
shown that files can be naturally classified into three cquivalence classes: System files, T'em-
porary files, and User files. 'The usage patterns of cach of these classes is shown to be radically
different, and a separate locality model is developed for cach class. T'he driver is parametcrized,
and aclual values for these parameters are derived from the experimental observations.
Parameters repesentative of other environments may be used with the driver to extend its
domain of applicability. Insights from the experimental data presented here may also be of use
in other applications such as capacity planning and file system design.

1. Introduction

The work reported in this paper arose in the context of a file system design for a network of personal
computers. The goal of this design is to provide location-transparent access to a large shared space of files, using
personal computers which are diskless or have relatively small disks. This goal is attained by applying the
concepts of caching and virtual memory to the storage of files. Further details on the design can be found

elsewhere [1, 7).
’

In order to evaluate alternative caching strategies by simulation, one needs a driver that gencrates file system
requests with interarrival times and address locality propertics similar 10 those expected in the target file system.
"this paper describes the design of such a driver, bused on experimental observations of a PIDP-10 timesharing
system in the Department of Computer Science at Carncgic-Mellon University.  An carlier study of this file
system [6] analysed its file population in detail.

The users of this system typically perform one or more of the following activities:
e Developing programs for research projects.
o Producing documents, typically research papers and disscrtations.

o Reading and updating clectronic mail and bulletin boards.
‘The system is almost never used for database or scientific computing activity. Strictly speaking, the results of this
paper only apply to the system on which obscrvations were made. However, it is likely to be of value 1o other
academic computing sites with similar usage charactcristics.

Previous work on file reference patterns has focussed on long-term locality, typically at the granularity of one
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day 13.9. 10). "T'he guestions of interest there have usually been of the form “Has this file been touched today?
Can I migrate it 1o an archive?.™ This migration typically takes place once a day and usually involves intervention
by a human operator. In contrast, our proposed network file system design involves short-term file migration
decisions. at a granularity of scconds or milliscconds.  ‘The migration occurs continuously, without human
intervention. No prior published work exists on the subject of short-term locality in file reference patterns.

‘The first half of this paper describes the structural aspects of the driver and the modelling assumptions used in
it. The later part of the paper presents experimental measurements which are used to derive parameter values

for the driver, A concluding section discusses ongoing work and extensions.

2. Methodology
T'o permit accurate performance analysis of a multi-level memory hicrarchy, a driver should mect the following
criteria;
o ‘I'he relative frequencey of use of different functions of the storage system and corrclations in their
usage patterns should be reflected in the requests generated by the driver.
o The interarrival times of generated requests should refiect those observed in the environment being
modelled by the driver.

o The requests generated by the driver should access storage addresses in a manner that accurately
reflects the Jocality patierns observed in practice.

The best way to rigorously meet all these criteria is to instrument a file system and record cvery request made
to it over a period of time. Such a trace of requests would be analogous to an instruction exccution trace of a
program. Unfortunately, this approach poses problems:

o The programming cffort involved in instrumenting a filc system is nontrivial, unless such instrumen-
tation was included as an original part of the file system design. Debugging and testing the instru-
mented file system has to be done stand-alone, in the absence of regular users. ‘This is difficult to do
on a computing resource which is heavily used all day. On the other hand, instrumenting a lightly-
used system may not yield realistic observations.!

s While a trace accurately portrays the context it was recorded in, there is no obvious way to extend it
to represent other situations. In predicting performance for unimplemented systems or for an-
ticipated Joads, one needs an casily-parameterized source of requests.

Motivated by these considerations, the approach taken here has been to develop a synthetic driver based on an
understanding of the way in which typical file systems arc used. Macroscopic observations of an actual file
system arc used to provide one set of parameter values for this driver. ‘The driver may be extended to represent
other situations by changing these parameter values. Work currently in progress to obtain microscopic obser-
vations (actual traces) is discussed in Scction S.

Since simulations are notoriously expengive in their consumption of memory and cycles, the computational
cfficiency of a driver is a matier of no small concern (o a performance analyst. Many aspects of the driver design
described here are expressly intended to address this issue.

]A nossible way to solve this dilemma is to develop the instrumentation on an identical, lightly-loaded system and move it to the target
sysiem for actual measurcments. Such a devclopment sysiem was not available 1o us.
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3. Structure of the Driver

3.1. Primitives of the Model

A file is viewed as one-dimensional array of bytes, on which Read or Write operations may be performed on a
fixed-sized quantum called a Page. No further structure is imposed on a file. Operations within a file are
assumed to be sequential, since most files are used that way in the observed system. H’()Wévcr. it would be simple
to extend this driver to model non-sequential references-by inc()fpuru(ix\g a Seek operation.

Mast file systems use a two-level abstraction to model a file: that is, a distinction is made between files which
are in active usc and those which are merely resident on sccondary storage. An Open opcration has to be
performed on a file to make it active. and a Close has 1o be done on it after it has been used. ‘The specilic
semantics of Open and Close vary from system to system. but are unimportant from the point of view of the
driver. A few file systems. notably Multies [4]. integrate the file system into the virtual memory system.  In such
systems, Open and Close operations are not available at the user level though equivalent actions are being
performed implicitly by the operating system.

"The driver design described here uses a two-level file system model, with the following primitives:
¢ Opening a file for reading (Openg) or writing (Openy).
o Closing a file (Close).
e Reading from a file (Read) or writing to it ( Write).

In addition to these basic primitives, file systems may offer other functions. We ignore those functions for one
or more of the following reasons:

o They are used rarely enough to be ignored.
For instance, certain file systems have a “scavenge” operation in which every disk block is examined
in order to reconstruct mapping tables. Such an operation is time-consuming, but occurs rarely.

o They are sufficiently undemanding of computational resources that they may be ignored for the purposes
of performance analysis.
Some file systems have a primitive that returns information on how much secondary storage has been
uscd by a Jogged-in user. The data needed to answer such a query is usually maintained in main
memory for the duration of a uscr’s log-in session. Consequently the use of this primitive hardly
impacts file system performance,

® They may be represented in terms of one or more of the operations listed above.
A frequently used operation such as listing a directory can often be represented in terms of more
basic operations. In file systems in which directorics are implemented as files, a directory listing
primitive may be viewed as a read operation on the file representing the directory.

In this paper, therefore, we restrict our attention to the primitives of the two-level file system.model and ignore

all the other operations which contribute to the complexity of file systems.
-

3.2. Domain of the Model

Every file is assumed to be uniquely identified by an integer, its Fileld. The file address space is initially
cmpty, and files are alloted monotonically increasing Filelds as they are created. The resulting flat file name
space is devoid of any structurc meaningful to human users. However, a scparate Name Server may be used to
map an arbitrary name space onto the Fileld space. A hierarchical file naming convention, meaningful to users,
can thus be supported on top of Filelds. From the point of view of the file system, such a name server would
appcar to be an application program, and file system requests generated by it in the course of name translation
would not be distinguished in any way.

All files arc assumed to be invariant, the data cntered into a file at the time of its creation being never altered
thereafier. This assumption models write-once storage media such as optical disks, whose use as an archive was
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pioncered in the file system design for whose analysis the driver was developed 1], The classical abstraction of a
long-term storage entity whose contents vary with ume is achieved by associating a fixed filename with the Fileld
of the invariant file corresponding o the current state of the cntity. In this model, overwriting a file is
represented by the creation of @ new invariant file, bound to the original filename.  Extending this driver to the
more conventional case where files may be overwritien would involve the development of a locality model for
Openy, requests, similar to the model for Openy requests described in Section 3.3,

Fach of the five file system operations is assumed to be generated by an autonomous stochastic process,
independent of the other processes. As mentioned earlier, files are read and writien sequentially in fixed-sized
pages. [t would relatively simple o madify the driver so that the offsets and sizes of such requests are distributed

according to chosen statistical distributions.,

3.3. Modelling Locality

The assumption of sequential access automatically determines the locality of Read and Write operations. 'The
first such operation on a file after it is opened uses a byte offset of zero. Each succeeding request to this file uses
a byle offset which differs from its predecessor by the page size.

The assumption of invariance determines the assignment of a Fileld 10 an Open y, operation — a number one
higher than the Fileld of the previously created file can be used. For reasons explained in Section 3.3.4, a slightly
more complicated address assignment is done in practice,

Modelling the locality of Openy operations is a more interesting problem. ‘The approach taken here is
motivated by the following observations, presented carlier [6):

o The Funcrional Lifetime (F-1.ifetime) of a filc is defined as the time difference between the creation
of a file and the last occasion on which it was read. ‘This quantity is a measure of the uscfulness of the
data in the file.

¢ In general, files tend to have shon f-lifetimes, of the order of a fow days. However, the lengths of the
tails of the f-lifetime distributions are strongly dependent on the type of file in question. Certain
files. such as those corresponding to the executable object modules of commonly used programs are
used long afier they are created: the 90-percentile value of the cumulative distribution function of
f-lifetime for this class is nearly 1500 days. On the other hand. there are files with radically diffcrent
usage properties: the corresponding 90-percentile value for files containing the output from docu-
ment processors is only about 80 days. More than 60% of such files have an f-lifetime of one day or
less.

There is also evidence to indicate that the rate of reference to files decreases with age [5. 8].  Although this
hypothesis has not been verified on our file system, it scems intuitively clear that older files are less likely to be
used than recently-created ones. In the absence of information to the contrary, it is assumed that other file
systems also possess this property.

Based on these observations, the files modelled by the driver are postulated to fall into one of three classes:

System Files ‘These are files corresponding to the exccutable modules of system programs (such as com-
pilers, linkers, and cditors) or to files used by an operating system 0 maintin relatively static
information (such as the list of users who may usc the system, cncrypied password files, and
files containing documentation of system programs and commands). Files of this class are
frequently read, rarely written, and usually remain in use long after their creation.

Temporary Files Many programs create fites which are used at most once after their creation. For cxample,
intermediate output created by different phases of a compiler arc typically not accessed after
the compilation is complete. The object files of programs being debugged, error message files
created by compilers or document processors, and files generated by document processors to
drive printing devices arc other examples of this class. Files of this class are ofien created, but
rarcly read long afier their creation.

User Files This category corresponds to files which belong to neither of the two preceding classes. Be-
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sides the properties mentioned earlier about files in general, there is little that can be assumed
about this class of files.

"I'he Jocality models used for these three classes of files are discussed in detail in the next three scctions,

3.3.1. System Files

For the purposes of this scction it is necessary Lo distinguish between the logical function fulfilled by a file and
its Iileld. Consider a typical system program. such as a Pascal compiler.-Fromi the point of view of users, it is
appropriate to speak of “the Pascal compiler.™ However this logical entity is bound to different invariant files at
different instants of time. cach corresponding to the exccutable object module of a different release of the
compiler. 1n order 1o distinguish between such a logical entity and the set of invariant files that represent that
cntity at distinet points in time, we introduce the term Sysiem Data Objecr to stand for the former.

It is assumed that there are Ny, sysiem data objects identified by the integers 1.2, ... Nyy,,. Without loss of
generality, the system data objects may be ordered in non-increasing order of usagc.2 As Figure 1 illustrates, the
relationship between system data objects and the corresponding invariant files is analogous 1o that between array
indices and array clement vatues. ‘The set of system data objects can be viewed as an array S. the clement of
index 7 representing the i system data object. ‘Ihe value of /] at any instant of time is the Fileld of the
invariant file which is currently bound to the " system data object. The assumption about ordering of sysiem
data objects implies that if i <, then Usage(S[i]) 2 Usage(S]j]}). Since the number of system data objects is
constant over time, the size of the array S is fixed. Changing the value of clement S {] corresponds to replacing
the existing version of the 7 th system object by a new one.

SUBREUEEY SIN p0,)

Fid1 | Fid2. | Fid3 s a0 ® 8 a

Figure 1: Rclationship between System Data Objects and their Invariant Files

Intuitively, a small fraction of the system data objects accounts for much of the usage. For the file system
considered in Section 4.2.2, 75% of the usage is accounted for by about 4% of the system data objects: a further
20% is accounted for by about 16%.of the system data objects, and the remaining 5% of the usage is accounted for
by 80% of the system data objects. While these obervations are strictly valid for one file system, onc would cxpect
a similar pattern of usage to be true for other file systems too. Based on this assumption, the driver partitions the
set of system data objects into three classes, with uniform probability of access within cach class. The 75-fractile
and the 95-fractile of the cumulative distribution function of usage are parameters of the driver. Figure 2 shows
the assumed probability density function of accesses, Nys and Nys corresponding to the 75-fractilc and 95-fractile

_tespectively. 75% of the accesses to system files are to system data objects in the range S[1] w0 S[ N, a further
20% to objects in the range S[N,s+1] 10 S[N,], and the remaining 5% to objects in the range S[Nys+1} 10
STNmax): »

The Fileld corresponding to this object is used as the address of the file referenced by the generated request.

-On the assumption that frequently used system data objects are more likely to have new versions created, the
driver also uscs the same probability distribution to direct Open y accesses to system data objects — the newly-
created Fileld is assigned to the selected system data object.

In summary, the locality model developed above for system files consists of a slowly-changing sct of Filelds, a
small fraction of which is very frequently accessed, a slightly Targer fraction being less frequently accessed, and
the majority being rarcly accessed.

2’l‘hc number of opens for reads is used as a measure of usage.
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Figure 2: Probability Density Function of Accesses 10 System Files

3.3.2. Temporary Files
‘I'he properties that characterize temporary files are:

® Most of them arc rarcly used after being created. Quite a few of them, in fact, arc never read!

¢ The few that arc used tend to be read within a very short time after creation, typically within a day.
An additional assumption that is madc is that the probability of access of a file of this class falls off lincarly with
time. Although there is no experimental evidence to support or contradict this hypothesis, a lincar fall off is the
simplest and most reasonable assumption that is consistent with the observation made in Scction 3.3 that the rate
of reference to files decreases with age. However, it would be relatively simple to modify the driver to incor-
porate a nonlincar falloff.

‘These assumptions are adequate (0 uniquely determine a locality model for temporary files. Suppose all files
created arc temporary files. At any instant of time = let F, be the Fileld of the most recently created file. T.et A
be the time one day before 7. and let I be the corresponding maximum Fileld. Then the Fileld of the file
accessed by Openy request generated at 7 is a random variable in the range [ to F. with a density function as
shown in Figure 3. To implement this model literally, one would have to keep a running history of Filelds
between /y and F,. Since the average number of temporary files created during a day, &, is known, an
approximation to F} is given by F, — k. Using this approximation obviates the need to keep track of a large
number of Filelds. The constant of one day is, of course, arbitrary and may bc madc a parameter of the driver.

Prohability ] |
of Access 7

| %

L A

Filelds of Temporary Files ———p

Note: Area of shaded portion cquals unity

Figure 3: Access Probability to Temporary Files

3.3.3. User Files

The primary difference between user files and temporary files is that the former tend to be accessed over a
significantly longer period after their creation. By making the same assumption of lincar falloff as for temporary
files, the locality model for user files closely resembles that for temporary files. ‘The only diffcrence is that the
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fatloff is spread over a much longer period than one day. The arguments presented in Section 3.3.2 are valid here
too, using Figure 4 instead of Figure 3, and I‘.,‘.umﬂ. m»stcud of F. The cutoff interval, 7 ~ T curggy 1 @ parameter
of the driver. Since the interval T curoy W0 e present time 7 is guite Jarge. it is advisable 1o use an approximation
W0 1 o FAhET than its exact value: I'7cu1017= Fo = (71 = 7 o)Xk where & is the average number of user files

I
created per day.

!

Probability

T M

I K l';

Teuroff

Filelds of User Files ——p

Note: Arca of shaded portion equals unity

Figure 4: Access Probability to User Files

3.3.4. Distinguishing File Types

In Section 3.3.2 it was assumed that only temporary files were being gencrated; a similar assumption about user
files was made in Section 3.3.3. These assumptions were necessary in order to avoid having the driver maintain a
history of Fileld versus file type bindings. One way of satisfving these assumptions while generating all three
types of files is to have a scparate, contiguous Fileld space for cach file type and to map these three spaces into a

global Fileld space.

The mapping scheme adopted for the driver is simple: a file with local Fileld x is assigned a global Fileld 3x if
it is a system file, 3x+ 1 if it is a temporary file, and 3x+ 2 if it is a user file. Figure 5 illustrates this mapping
scheme. It should be noted that the local Filelds are purely local to the driver — all Filelds used outside the
driver arc global Filelds. T'his mapping scheme has two virtues: it is simple, and it allows the type of a file to be
casily deduced from its Fileld.

System Fileld Space Temporary Fileld Space

(affode - - ] 321723 K EECEC

Global Fileld \- -] \r e //.\I\. *NI e | e

Space

[e[dfefefs « « |

User Fileld Space

»  Filelds in use
o Unused Filelds
Figure 5: Encoding of Filelds



446 M. SATYANARAYANAN

3.4. Driver Implementation
A driver built on the principles discussed hitherto has been built and used in simulations. ‘The implementation
is in C on Unix. and uses a preprocessor providing Simula-like facilities for discrete event simulation.

‘I'ne driver is economical in its usc of space and time. The main internal state of the driver consists of a table
containing information about currently open files in the system, which usually number in the tens or hundreds.
The otal storage used by the driver is typically a few tens of kilobytes at runtime. ‘The amount of time needed to
EONCIALE & NEW TCQUEst 1S guite small: of the order of a few hundred microseconds. ‘The dominant source of

overhead in the driver is. in fact. random number generation!

We have thus been quite successful in building a computationally incxpensive driver that intuitively maodels the

way files are used in real systems.

4. Experimental Observations of a File System
Building a specific instance of the driver reguires the following picces of information which have been left
unspecified so far:
o The interarrival time distributions of each of the five request lypes.
“I'he functional forms and means of these distributions are needed.

o The fraction of Openg, Openy. Read, and Write requests that are directed 10 each of the three file types.
It is assumed that the fraction of Close requests o a given file type is cqual to the sum of the fractions
of Openyg and Openy requests the same file type — this prevents an unbounded growth in the
number of open files.

o The 75-fractile and 95-fractile of the sysiem file usage distribution.
“I'his is needed in order o determine the 3-part distribution discussed in Section 3.3.1.

For consistency with the data reported in [6]. the measurcments described here were made on the main
timesharing PDP-10 system in the Department of Computer Science at Carncgic-Mellon University. However,
while the carlier study involved cxamination of a snapshot of the file system. the results presented here were
obtained by collecting data over a period of time. The discussion in this section is divided into two independent
parts: one concerning interarrival times, and the other dealing with usage and type-dependent file activity.

4.1.interarrival Times of Events

“The TOPS-10 operating system on the PDP-10 provides the following primitives for performing input-output:
1.ookup. Enter, Close, In, and Out. }.ookup and Enter correspond to the Openpg and Open y operations discussed
carlier. while In and Out correspond 10 Read and Write. Close does not distinguish between files which are
closed afier reading, and those which are closed after writing.

4.1.1. Experimental Technique

‘I'he opcrating system was modified so as to intercept every input-output request to it, and to present it for
cxamination to a metering routine before resuming normal processing of the request. ‘The metering routine
noted the time clapsed since the immediately preceding request of the same kind — this quantity, ¢, was one
sample of the corresponding interarrival time distribution. For cach kind of cvent, the metering routine kept
track of the total number of cvents vbscrved, and the sums 21, Ta2, Te3, 214, and Z¢3, in order to compute the
first five moments of the obscrved distributions.

At intervals of half an hour, a data collection program appended the contents of the histogram tables and
mmoment information 1o a file and then cleared this data in the metering routine. The choice of haif an hour was a
compromisc between (wo conflicting requirements:

« Intervals which were o close together would have yiclded too few sample points in cach interval.
Postulating statistical distributions on the basis of too few sample points is likely to lcad to large
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CITOFS.
* Intervals which were oo far apart might have missed significant variations in system behaviour,

caused by varying user activity during the course of the day.
The choice of half an hour yielded 48 distinet observation intervals per day, while the typical number of Enter
events (which were consistently the least frequent kind of event) per interval was about 400. - The sampling
program was automatically started by the system after ¢rashes, and the sampling epuchs were the same from day
o day. Forinstance. if"a crash occurred at 12:17 pM., the next sample would be recorded at 12:30 M. and not at
12:47 PM. as the half hour sampling interval would lead one 1o expect. The reason for this was that it was judged
o be more important to be able to correlate data from sampling intervals across different days than for cvery
sampling interval to be exactly the samce length.

Besides histogram and moment information, the information recorded by the sampling program included
event identification, a time stamp, sampling interval length, and a count of the number of jobs that had been
active during the sampling interval. The data collection was carried on for a little over five weceks, after which the
data reductions described in the following section were performed.

4.1.2. Data Reduction

Periaining to cach of the five different events, and cach of the 48 half-hour time slots, there is one observation
for cach day in the data colicction period. It is assumed that system activity is diffcrent on weekdays and
weekends, but is similar on all days within each of these two classes. The collected data can then be viewed as
samples drawn from 5x48x2 distinct stochastic processes. Using these samples, the observed mean and variance
for cach of five moments of these stochastic processes as well as their observed cumulative distribution functions
can be calculated.

Figures 6 and 7 show, for weekends and weckdays respectively, the means of the five distributions as a function
of the time of day. Since these are means of interarrival times, high system activity is indicated by a low ordinate
on the graph. During weekdays, the period from about 10 A.M. till about 6 PM. shows the most activity — this
corresponds to the normal working day. The period just afier midnight also shows very high activity, because the
operating staff run an archiving program every night. Since input-output operations for archiving arc gencrated
by the file system itsclf and are not caused by events cxternal to the file system, we ignore this period of high file
system activity after midnight and assume that the actual user-gencrated activity during this period is similar to
that in the morning, before the working day begins.

A day is partitioned into two periods, a Peak Period and a Lean Period, and cach of these periods is charac-
terized by one of the time slots associated with it. The peak period corresponds to the time slots in the interval 10
AM. to 6 PM., while the rest of the day corresponds to the lean period. During the peak period on weekdays,
there were about 43 active users on the system. This number represents a rounded average over all peak period
time slots. "There were about 21 active users during the lean period on weckdays, and about 20 active users
during weeckends. r

For cach period, the characterizing time slot is chosen to be the one at which the average rate of Lookup cvents
attains its median value for that period — this occurs at 3 PM. for the peak period and at 10 PM. for the lean
period. In view of the fact that the activity on weekends is similar to the activity at lean periods on weekdays, we
treat these two periods identically in the rest of the analysis. Thus, for each of the five cvents there are two
models that have to be built: one for peak periods on weckdays, and the other for all other periods.

4.1.3. Analytical Models

The means and standard deviations of the five different events during peak and lean periods are shown in
Table 1 and Table 2 respectively. An immediately apparent obscrvation is that the observed cocfficients of
variation arc significantly larger than one. Since hyperexponentials are the simplest Markovian models exhibit-
ing this property, attcntion was focussed on them in fitting closed-form distributions to the data. The heuristic
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Mean(ms.) | Std. Des. [ Coell. of Var.

1 ookup 3454 622.5 1.80
Inter 2495 2918 117
Close 3399 5824 1.71

In 2087 4100 1.96
Out 5574 1182.1 212

Table 1: Peak Period Interarrival Time Parameters

procedure used for curve-fitting has been described in the literature [6].

Mecan (ms.) | Std. Dev. | Coefl. of Var.

Lookup 562.1 13323 237
Enter 3389 3684.3 1.09
Close 5271 12129 230

In 3414 906.0 265
Out 1144 23412 205

Table 2: 1.ean Period Interarrival Time Parameters

The reader can get an idea of the quality of the fits from Figures 8 and 9, which are the best and worst peak
period fits o cumulative distribution functions (CDFs). To aid in visually assessing the quality of a fit, one can
usc a P-P plot [11] which plots the fitted CIDF against the observed CDF — a perfect fit would appcar as a
straight line at 45 degrees and the extent of the deviation from this line indicates the quality of the fit. For
cxample, the P-P plots cnrrcspondipg to Figures 8 and 9 are shown in Figure 10. ‘The complete set of observed
and fitied CDFs and P-P plots for cach event in both the peak and lean periods is available clsewhere [7], and is
omitied from this paper in the interests of brevity.

Almost all the fits are two-stage hyperexponentials. The sole exception is the distribution of Enter cvents
during the peak period. for which a single stage (i.c., a simplc cxponential) gives the best fit. Typically, the
maximum crror between the observed and fitted CIDFs is about 3% — in the worst case it is about 7%. However,
none of the fits is good enough to pass the Chi-squared test at the 95% level. This implies that the hyper-
cxponential approximations, while adequate for practical purposcs, are not to be assumed to be the underlying
statistical models.

Tables 3 and 4 present the parameters of the fitted distributions for peak and lcan periods respectively, the a;'s
being the probabilitics of seicction of stages and the M ;s being the corresponding means.

On the assumption that only the means of these distributions change but their shapes remain unaltered, these
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Max Error | No. of Stages a; M;(ms.)

1 ookup 3% 2 9227 2132
077 1812

Fnter 315% ! 1.0 2102
Close 6.5% 2 3108 217
6R94 474

In 2.5% 2 8744 112.2

1256 863.6

Out 3.5% 2 8530 175.6
1453 2151

Table 3: Fiued Parameters for Peak Period Interarrival Time Distributions

Max Error | No. of Stages a; M;(ms.)
Lookup % 2 09 225.2
966 2682
Enter 3% 2 8658 2066
1342 30000
Close 5% 2 8851 209
117 2429
In 15% 2 8802 17
1187 1454
Out 5% 2 7669 134.6
2201 2376

Table 4: Fitted Parameters for Lcan Period Interarrival Time Distributions

fits can be used to model hypothetical Idads. To model a load which is k tmes the actual load obscrved, the a’s
of the stages of the fitted distributions remain unaltered while the mean of cach stage is 1/k times the mean
specified in Tables 3 and 4 (recall that a higher load corresponds to a lower mean interarrival time). This load
factor, k, can thus be made a parameter of the driver.

4.2, Type-specific File Data
The goal of the experiment described in this section is twofold:
 To determine what fraction of Openg, Openy, Read, and Write operations are directed to system,
temporary, and uscr files.

© To obtain the 75-fractile and 95-fractile of the systemn file usage distribution.
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A single data collection procedure yields information on both these quantitics. ‘T'his procedure is described in the

next section, and the collected data is examined in Scction 4.2.2.

4.2.1. Experimental Technique

A vendor-supplied utility to examine system status is available on the computer sysiem being investigated.

mformation reported by this utility includes:
o Alist of all the jobs currently in the svstem aud ihe names of the programs they are running.

o A list of systemi programs for which the shared code (“high sesment™ in TOPS-10 rerminology) is
currently resident in primary memory.
This list of high scgments is a superset of the svstem programs being currently exccuted by users.
Since nonsystem programs are cither absent from this list, or are marked as private, there is a simple
way to cheek if the program being executed by a user is a sysiem program or not.

o [nformation on ihe files currently open in the sysiem.
The name of the file and the dircctory in which it resides. as well as information on whether the file is
being read or written, and the number of read or write operations performed on it so far are also
reported by the utility.

The

A batch program was set up o run this utility every hour and 1o append the data to a file. ‘This hourly

sampling of the system was carried out for about two weeks, yielding data on about 15000 files. These samples

were then used as input o a program that condenses the raw data.

4.2.2. Data Reduction and Observations
For each sample. the functions performed by the data reduction program arc as follows:

e The program being run by cach job is examined and classified as a system or nonsystem program, 1t
is assumed that the running of a program involves opening the file containing its executable code and
reading it in its entircty. An Openp for system files (if this is a system program) or user files (in the
casc of a nonsystem program) is noted. Similarly, the number of Reads 1o system or user files is
incremented by the estimate presented in [6] for the average length of an object file.

e Fach open file is classified as a system, temporary, or user file, and the corresponding counts of
Openy and Read. or Openyy and Write, are incremented. ‘The basis for this classification is as
follows:

o Each file has a 3-character suffix to the file name, catled its file extension, which characterizes
the contents of the file. If this extension indicates that a file is a temporary file, it is so
classified.

o Non-temporary files are classificd as system or user files on the basis of the directories to which
they belong. A subset of the directories in the system are classified as system directorics, and
the rest are considered user directories.  While not perfect, this classification system has not
been found to cause errogs often.

o A list of system data object names is maintained and cach obscrved usc of a system program or an
open system file increments the usage count associated with the corresponding system data object.

‘The quantities of interest mentioned in the beginning of Section 4.2 are obtained from this processed data.
Table 5 presents the obscrved fraction of operations directed to svstem, temporary, and user files. ‘Table 6 gives
the 75-fractile and 95-fractile of the CDDF of system data object usage. In accordance with intuition, a small

fraction of the system data objects account for the lion’s share of the usage.

5. Experience and Extensions

‘The driver described in this paper has been implemented and used in a simulation study of network file system
design tradeoffs. The results of this study are reported in [7). Unfortmately. the actual implementation of the
newwork file system has not progressed as rapidly as was originally hoped (for nontechnical reasons). Con-
scguently, it is not yet possible 1w compare the performance predictions made using the synthetic driver with
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Openg Openyy Read Write
Count I'raction Count Praction Count I'raction Count I'raction
System 7638 632 104 041 535158 .240- 1511 | 021
‘Temporary 709 059 1580 620 24781 031 31197 443
Liser 3734 2309 R6S 339 1665333 748 37788 536

Table 5: Fraction of Input-Output Operations to Different File Fypes

Fraciile Index of Fraction Of
Sys. Data Obj. Total
75 11 3.8%
95 58 20.3%
100 288 100%

Table 6: System Data Object Usage
actual experience. It is hoped that such a comparison will be possible in the near future.

Another large distributed file system, based on the principle of caching, is currently being implemented at
Carnegic-Mcllon University [2]. ‘This file system will have an order of magnitude more network nodes, and will
serve the entire campus community. 1t differs in two important ways from the network file system for which the
driver described in this paper was developed: entire files (rather than individual pages) have to be cached, and
files may be overwritten (they are not invariant). A version of this driver, modified to model variant files, can be
used to analyse the performance of this system. This provides another opportunity to validate the structure of the
synthetic driver described here.

An extensive experimental cffort is also under way to obtain complete trace data from a Unix file syslcm.3

Some of the questions we hope to answer by this study are:
e How do file properties differ in different systems, assuming that their user communities use files in
similar ways?
o Can the driver devcloped in this paper be used, with minor modifications, to model the reference
paticrns observed in a different syslcn'l?

« How closcly do the locality propertics of the driver correspond to the locality observed in actual
traces?

6. Summary

This paper describes the design of a synthetic driver that models short-term locality in file reference patterns.
1t also reports experimental measurcments made on an actual file system, and uscs these observations to derive
paramecters for the driver.

The approach taken here has been to develop a microscopic locality model based on macroscopic observations

3’l‘his rescarch is being done with Prof. Richard Snodgrass, in the Department of Computer Science at the University of North Carolina.
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of a file system. Three file classes (System, Temporary, and User) with strikingly different access characteristics
have been identified. and localiiv models have been developed for cach class. Simulations have been performed
using the driver. and work is in progress to calibrate it using actual traces.
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Figure 8: Fit to Interarrival Times of Lookups (Peak Period)
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Figure 9: Fit to Interarrival Times of Closes (Peak Period)
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