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Abstract

Recent work on online auctions for digital goods has explored
the role of optimal stopping theory — particularly secretary
problems — in the design of approximately optimal online
mechanisms. This work generally assumes that the size of
the market (number of bidders) is known a priori, but that
the mechanism designer has no knowledge of the distribu-
tion of bid values. However, in many real-world applica-
tions (such as online ticket sales), the opposite is true: the
seller has distributional knowledge of the bid values (e.g.,
via the history of past transactions in the market), but there
is uncertainty about market size. Adopting the perspective
of automated mechanism desjgntroduced by Conitzer and
Sandholm, we develop algorithms that compute an optimal,
or approximately optimal, online auction mechanism given
access to this distributional knowledge. Our main results are
twofold. First, we show that when the seller does not know
the market size, no constant-approximation to the optimum
efficiency or revenue is achievable in the worst case, even un-
der the very strong assumption that bid values are i.i.d. sam-
ples from a distribution known to the seller. Second, we show
that when the seller has distributional knowledge of the mar-
ket size as well as the bid values, one can do well in sev-
eral senses. Perhaps most interestingly, by combining dy-
namic programming with prophet inequalities (a technique
from optimal stopping theory) we are able to design and an-
alyze online mechanisms which are temporally strategyproof
(even with respect to arrival and departure times) and approx-
imately efficiency(revenue)-maximizing. In exploring the in-
terplay between automated mechanism design and prophet
inequalities, we prove new prophet inequalities motivated by
the auction setting.
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(e.g., in MoteLab and PlanetLab). The online aspectis char-
acteristic of some important traditional applications as well,
such as the sale of a house, where the buyers arrive and de-
part dynamically.

The design of online mechanisms has attracted research
interest since 2000 (see, e.g., a survey by Parkes in (Nisan
et al. 2007)). Designing such mechanisms is challeng-
ing because of the combination of mechanism design chal-
lenges (ensuring truthfulness — often not only about val-
uations but also about arrival and departure times) and on-
line algorithm challenges (dealing with uncertainty about fu-
ture inputs). For example, the most canonical technique for
designing truthful offline mechanisms, the Vickrey-Clarke-
Groves (VCG) scheme, is inapplicable in most online prob-
lems because it requires determination of an optimal alloca-
tion, which is generally impossible in the online setting.

Most prior work on designing online mechanisms has
adopted a worst-case adversary model, as is common in the
design of online algorithms. As a result, the guarantees
that have been proven have usually been relatively weak.
In most real applications, there is significant probabilistic
information available about the future, and it seems coun-
terproductive to ignore it. For example due to the history
of past transactions in the market, in most real-world appli-
cations the auctioneer has distributional information about
the valuations, and sometimes even the number, of bidders.
Using such probabilistic information is crucial in practice,
especially when we want to maximize revenue: for exam-
ple, being within a factor 1.1 versus 2 is drastically different
though both are constant in a theoretical sense. Our goal
in this paper is to exploit the distributional information in
online mechanism design.

Automated mechanism desjgn first introduced

Mechanism design has traditionally focused on the offline in (Conitzer & Sandholm 2002), plays a key role in
setting where all agents are present upfront. However, many this. In that approach, the mechanism is created auto-
electronic commerce applications do not fit that model be- matically — using some optimization algorithm — for
cause the agents can arrive and depart dynamically. This is the specific problem instance (including the distributional
characteristic, for example, of online ticket auctions (e.g., on information) and objective at hand. See, e.g., a survey

Priceline, Expedia, and Travelocity), search keyword auc- in (Sandholm 2003). This has important advantages:
tions (e.g., on Google, Yahoo!, and MSN), eBay-style In-

ternet auctions, pricing access to a WiFi port (e.g., at Star- ® |t can be used in settings beyond the classes of prob-

bucks) and scheduling computing jobs on a shared server 18Ms that have been successfully studied in (manual)
mechanism design to date. For example, it has been

used to generate revenue-maximizing combinatorial auc-
tions (Likhodedov & Sandholm 2005), a problem that
eludes analytical characterization even in the 2-item case.

It can circumvent the impossibility results: when the
mechanism is designed for the setting (instance) at hand,
it does not matter that it would not work on preferences
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beyond those in that setting.(), for a class of settings).

—

andg;(t,6) depends only on the types reported by agents

Even when the automatically-created optimal mechanism who report an arrival timé; which is less than or equal to

does not circumvent the impossibility, it always mini-
mizes the pain entailed by impossibility.

It can yield better mechanisms (in terms of better out-
comes and/or stronger nonmanipulability guararijees

t. We seek a direct-revelation mechanism which is truthful
(a.k.a. strategyproof) in dominant strategies (i.e., the utility
of agenti is maximized if she bids truthfully, regardless of

what other agents report). When it is a dominant strategy

than the canonical mechanisms because the mechanismfor agents to truthfully report not only their value, but also

capitalizes on the particulars of the setting, i.e. the prob-
abilistic (or other) information that the mechanism de-
signer has about the agents’ preferences.

It shifts the burden of mechanism design from humans to
a machine. That is why one can afford to do the design
anew for every instance.

their arrival and departure time, we say that the mechanism
is temporally strategyproofTo evaluate the performance of
an online mechanism, we will use two measures of solution
quality: efficiency and revenue. Thedficiencyof an out-
come is the combined welfare of all agents, }¢, ¢;v;. The
revenueof an outcome is the sum of the payments made by
the agents, i.€) ", p;. We say a mechanism jscompetitive

Put together, automated mechanism design can exploit the with respect to efficiency (resp. revenue) if the expected ef-
specific model of the problem and the distributional knowl-  ficiency (resp. revenue) of the outcome computed by the
edge about bidders’ private information such as valua- mechanism is at leasy p times the expectation of the maxi-
tions. Work has been done both on general-purpose tech- mum efficiency over all outcomes (resp., the maximum rev-
niques for automated mechanism design as well as on au- enue that can be obtained by setting a single fixed grice

tomated mechanism design approaches for specific appli-
cations. While a bit of that research has studied multi-
stage mechanisms (Sandholm & Gilpin 2006; Sandholm,
Conitzer, & Boutilier 2007) (in order to reduce the agents’
preference determination effort, communication costs, and
privacy loss), all of the prior work on automated mechanism
design has focused on offline settings where all the agents
are present upfront. In this paper we present the first work
on automated mechanism design for an online problem.

Setting

In our setting there arg identical indivisible goods (a.k.a.
units) for sale, and there are agents (a.k.a. bidders),
each of whom wants to purchase one unit. Tiee of

an agenti, 1 < i < n, is defined by an ordered triple
(a;, d;,v;), whose three components are caligdval time,
departure timeandvalue respectively. We assume quasi-
linear utilities throughout this paper, so if an agent receives
one or more units during the time intervial,, d;] with a
paymentp,, her utility for this allocation isv; — p;; for

all other allocations her utility i§. As is common in on-
line auction design (Hajiaghayi, Kleinberg, & Parkes 2004;
Hajiaghayiet al. 2005), we adopt astricted misreporting
model. Throughout this paper, unless stated otherwise, we
assumeno early arrivalsbut unrestricted departures.e.,

an agent of typéa;, d;, v;) may report any tripléa;, d;, ;)
satisfyinga; > a;. The no early arrival assumption is mo-
tivated by the view that in practice an agent would not par-

ticipate in an auction before she knows that she desires a o

unit, and we can view the time as the time when her de-
sire arises. When we assumg = d;, we call the agents
instantaneousotherwise we call therpatient

An online direct revelation mechanism consists ofe&n
location rule ¢;(t,0) (wheret denotes the time and de-
notes the vector of reported types) along withegment rule

— —

pi(0) such thatgy,(t, 6) is a monotonically non-decreasing
{0,1}-valued function oft, >, ¢;(¢,0) < k for all ¢,9,

'E.g., satisfaction oéx postincentive compatibility and/or in-
dividual rationality constraints rather than thek interimvariants.

and selling to all agents whose value is at lggst

We will assume throughout that the seller has some
distributional information about the sequence of bids to
be received. More precisely, let be a permutation of
{1,2,...,n} such tha‘aa(l) < ag2) £ - S Gg(n) and let
x be the infinite sequende, (1), vy(2); - - - » Vo (n), 0,0, .. .).
(In a truthful direct revelation mechanism, the finséntries
of the sequence represent the bid values in the order they
are received in dominant strategy equilibrium.) A probabil-
ity distribution on agent populations (i.e., finite sets of or-
dered triples(a;, d;,v;)) induces a probability distribution
on bid sequences. We will assume that there is an infinite
sequence = (y1, o, ...), whose distribution is known to
the seller, such that; = y;z;, wherez; = 1if 1 < i < n,
0 otherwise. (One may think of as the sequence of bids
which would be received if the agent population were in-
exhaustible.) We make two different types of assumptions
about the seller’s distributional information:

e Full information: The seller knows the distribution of
x. That is, the seller has distributional information about
valuations and market size.

Unknown n: The seller knows the distribution gf but
not x. That is, the seller has distributional information
about valuations but not the market size.

The following special cases will be of interest:

Independent bids: The random variableg; (1 < i <
oo) are independent.

Independent bids, fixed n: The random variables
z; (1 <1 < oo) are independent. Equivalently, the ran-
dom variablegy; are independent and the valueofis
fixed.

e li.d. bids: The random variableg; (1 < i < oo) are
independent and identically distributed.

Our contributions

This paper makes three main contributions to the theory of
online mechanism design. First, we raise the issue of de-
signing online mechanisms when the number of bidders is
not known in advance, and develop the basic possibility and



impossibility theorems which accompany this notion. Sec- in (Friedman & Parkes 2003). Such mechanisms are
ond, we present an automated mechanism design algorithm (dominant-strategy) truthful in the rare cases where the
(and other results) for the setting in which the number of underlying allocation problem admits an online algorithm
bidders is known at least probabilistically. Third, we reveal with competitive ratio 1. (Parkes & Singh 2003) have
the power of prophet inequality techniques as a toolkit for studied VCG-based online mechanisms also under a weaker
solving problems in automated online mechanism design. notion of incentive compatibility, Bayes-Nash equilibrium,

Below, we elaborate on each of these contributions. adopting the framework of Markov Decision Processes. The
Our first set of r_esults concerns the case in which t_he num- setting for this work is quite general.
ber of biddersp, is specified adversarially but the bid val- (Hajiaghayi, Kleinberg, & Parkes 2004) present constant-

ues are randomly sampled from a known distribution. We competitive online mechanisms for auctioning identical
prOVe that no meChanism can be Constant-competitive in th|S goods When each agent is assumed to arrive and depart dy_
setting, and we exhibit mechanisms whose competitive ra- namically. Unlike all previous papers, they assume each
tio is nearly logarithmic i, or logarithmic ink, the ratio agent has three pieces of private information: her value, her
between the maximum and minimum possible bids. Next arrival time and her departure time. However, they assume
we turn to the case when the valuerofis unknown, but  that the agents arrive in random order and that the value of
its distribution is known to the mechanism designer. For (the total number of agents) is known to the mechanism
settings where an upper bound enis known, we spec-  designer in advance. This work has led to several subse-
ify a dynamic program to compute, in polynomial time, the quent papers (e.g., (Babaioff, Immorlica, & Kleinberg 2007;
best non-decreasing price sequences for revenue and for effi-gredin & Parkes 2005: Hajiaghagit al. 2005; Kleinberg
ciency. We insist on non-decreasing prices to ensure tempo- 2005: Lavi & Nisan 2005: Neet al. 2005)). In the same

ral strategyproofness. For settings wheres unbounded,  setting in which each bidder has three pieces of private in-
we prove that the revenue-maximizing price sequence is formation (not necessarily random order of bidders), (Haji-
non-decreasing if and only if the distribution @fhas non- aghayiet al. 2005) study the case of re-usable goods such

increasing hazard rate. So, under that condition, requiring as processor time in which goods can be allocated to differ-
temporal strategyproofness does not compromise revenue. ent bidders at different time slots. They also present general
Our next set of results reveals a relationship between characterizations for the class of truthful online allocation
these mechanism design problems and the subj@cophet rules, which extend beyond the typical single-parameter set-
inequalities from optimal stopping theory. Specifically,  tings and formalize the role eéstricted misreportingn re-
prophet inequalities (along with the constructive proofs of versing existing price-based characterizations. (Hajiaghayi
these inequalities) allow us to design online mechanisms et al. 2005) mainly consider truthful online auctions for
with two especially desirable features: the mechanisms are ynit-length jobs; (Porter 2004) presents a truthful mecha-
temporally strategyproof, and they satisfy a provable per- nism for the variation with different length jobs in which an
formance guarantee which relates their efficiency to the op- agent derives positive utility if she is granted the resource for
timum efficiency in hindsight. These two features, in tum, a total duration equal to its job length. (Lavi & Nisan 2005)
constitute an analysis technique which allows us to show that also study an online auction setting which is closely related
the mechanism produced by the dynamic program discussedto that of (Hajiaghaykt al. 2005). Assuming unrestricted
above achieves a constant-factor approximation to the om- misreports, they prove strong negative results for determinis-

niscient surplus when is known. tic truthful auctions (no such mechanism can achieve a com-
) _ _ petitive ratio better than the number of units) and this leads
Prior work on online auctions them to consider a weaker solution conceggtt{Nash equi-

While mechanism design has traditionally focused on a librium) which admits constant-competitive mechanisms.
static problem where all the agents are present up front, there ~ Parallel and independent to our work on automated online
has been significant recent work on designing online mecha- mechanism design, (Pai & Vohra 2006) also recently con-
nisms where the agents arrive and depart over time. The first sider dynamic online auctions in the same setting as (Haji-
paper on online auctions was in 2000 (Lavi & Nisan 2000); aghayi, Kleinberg, & Parkes 2004) (but without the random
the first on online double auctions (a.k.a. exchanges) was in ordering assumption), for which they derive the revenue
2002 (Blum, Sandholm, & Zinkevich 2006). maximizing Bayesian incentive compatible selling mecha-

A recent overview article by Parkes surveys the field of Nism. They observe the failure of the revelation principle
online mechanisms (Nisagt al. 2007). Much of the work in this setting and together with (Gallien 2006), they extend
(e.g. (Blumet al. 2003; Kleinberg & Leighton 2003)) as-  Myerson’s truthful optimal auctions (Myerson 1981) to dy-
sumes that the agents arrive in a predetermined order which Namic environments. Like our results, they assume distribu-
is not under their control, and that an agent's only private in- tional knowledge of the bid valuations, but unlike our results
formation is her value. This makes it much easier to design their algorithm has exponential running time and their focus
truthful mechanisms. Some online mechanisms (e.g. (Awer- IS on characterizing dynamic optimal auctions rather than
buch, Azar, & Meyerson 2003; Lavi & Nisan 2000)) are funning time of the qlgorlthm. A_II of our algorithms in this
strategyproof against agents misstating their arrival or de- Paper have polynomial running times, and much of our work
parture time because they are based on prices which do notfocuses on the case of unknown number of bidders, which is
decrease over time. different from the assumption by Pai and Vohra.

VCG-based online mechanisms were introduced In the online mechanism design setting, to the best of our



knowledge, the only previous work to incorporate the as-
pect of unknown market size is (Mahdian & Saberi 2006).
Motivated by search keyword auctions on, for example, Ya-
hoo!, Google, and MSN, where the supply (search queries
by users, each of which results in a search results page on
which ads can be displayed) is not known in advance, they
study a multi-unit auction for a perishable item where an
unknown number of units (instead of bidders) arrive on-
line. They design approximately revenue-maximizing auc-
tions using an online algorithm similar to an algorithm used
for the ski-rental problem. However, they do not use any dis-
tributional knowledge of the bid values — which is usually
available via the history of past transactions.

Prior work on prophet inequalities

The full-information case of our online auction problem is
closely related tgorophet inequalitiesa topic which has
been studied in optimal stopping theory since the 1970’s.
For an instantaneous agent, the mechanism is required to
decide whether or not the agent will receive a unit at the mo-
ment that agent’s bid is revealed, and no later. In this special
case, the problem of designing an allocation rule which max-
imizes (or approximately maximizes) efficiency is equiva-
lent to the following problem: given the distribution of a
sequence of random variableg z,, . . ., design a sequence
of k stopping ruled; < 7 < ... < 75 to maximize the ex-
pectation of the sum,, + ...+ z,,. A great deal is known
about the solution of this problem in the case= 1, and
comparatively little is known fok > 1. The most basic
prophet inequality, discovered by Krengel, Sucheston, and
Garling, concerns the case in whiégh= 1 and the ran-
dom variables:y, xs, . . . are independent (but not necessar-
ily identically distributed). IfVV denotes the supremum of
E(z,) over all stopping rules, andM = E(sup,, z,,), then
assumingV! < oo we haveM < 2V, and the constarit is
the best possible in that setting (Krengel & Sucheston 1977;
1978). The inequality has been interpreted as meaning that
a prophet who can see the future has only a bounded advan-
tage over a gambler who observes the random variables one
by one, and this explains the name “prophet inequality”.
When the gambler has multiple choices (i.k.,> 1),
then much less is known about prophet inequalities. (As-
saf & Samuel-Cahn 2000) studied the problem of designing
k stopping rulesr; < ... < 75 to optimize the quantity
E (max;{x,}) . They proved that there exists a sequence of
k stopping rules such that the expected maximum oftthe
choices is within a factofk + 1) /k of the prophet’s payoff.
However, in the auction setting, the natural objective is to
maximize the expected sum of thehoices rather than their
expected maximum. Surprisingly, only one prior paper con-
siders this objective (Kennedy 1987). It compares the sum of

2\We define astopping rulefor a sequence:, zs, ... to be a
random variable- taking values inN U {cc}, such that for alt,
the eventr = i depends only on the values of, ..., z;. Our
convention differs from the convention adopted by most authors,
in that we allow the value = co. In auction applications, this
corresponds to allowing units to be unsold at the end of the auction.
We also adopt the conventions that = 0 whent = oo, and that
the inequalityr; < 7541 is valid whenr; = 7541 = co.

the k values chosen by the gambler witlsiaglevalue cho-
sen by the prophet. Letting/ = E(max, x,,) as before,
and lettingV;, denote the supremum &z, + ... + z,,)
over all sequences of stopping rules ..., ., Kennedy
seeks inequalities of the ford/ < «; V) which are valid
for all sequences of independent non-negative random vari-
ablesz, zs,.... He gives a recursive formula for the best
possible constanty in such an inequality. This type of “ap-
ples to oranges” comparison (one choice for the prophet,
choices for the gambler) is much less natural than a com-
parison between a prophet with choices and a gambler
with the same number of choices. In other words, letting
M, denote the expectation of the sum of thiargest sam-
ples in the sequence, z-, . . ., we desire inequalities of the
form M, < BV, valid for all sequences of independent
non-negative random variablasg, x,,.... Kennedy notes
that this objective seems much more difficult than determin-
ing the best possible constants, because the recursions
involved are much harder to manipulate. In this paper we
make progress on this problem by proving that

81n(k)

1+,/L<5 <14
512k — 7k = k

We also supply nearly tight bounds for a similar question
concerning thedditivedifference betweel), andM; when

x1, 2, ... are uniformly bounded but not necessarily inde-
pendent.

Unknown n: lower and upper bounds

In this section, we consider online auctions in which all bid-
ders’ valuations are drawn i.i.d. from a demand distribution
which is known by the algorithm designer. As argued above,
assuming advance knowledge of such valuation distributions
is well-motivated by several real-world applications such as
online ticket sales, search keyword auctions, eBay-style auc-
tions, pricing access to a WiFi port, scheduling computer
jobs on a shared server, and house sales. The main focus of
this section is the case in whieh the number of bidders, is
unknown due to the online nature of the problem.

We first show that in the case of one unit to sell and instan-
taneous agents — and even with a highly concentrated (aka.
light-tailed) demand distribution — we cannot be constant-
competitive for efficiency or revenue. Next, we show that
we can obtain logarithmic competitive ratios even in a much
more general setting with arrivals and departures.

Theorem 1. Suppose we have only one unit to seéll £

1), all bidders are instantaneous, and their valuations are
drawn i.i.d. from a demand distribution which is given to
the algorithm in advance. Without knowledgexdthe num-
ber of bidders), it is impossible for a mechanism to achieve
a constant competitive ratio with respect to revenue or effi-
ciency.

Theorem 2. There are truthful mechanisms which are
min{O(log h), O(log n(loglogn)?)} competitive (with re-
spect to both efficiency and revenue) for online auctions of
k units with bidders of arbitrary arrival-departure intervals
even whem is unknown to the auctioneer in advance. Here
h is the ratio of the maximum bid to the minimum bid.



For space reasons, we present only a sketch of the proofstime of the last bidder. The array that we fill has three di-
of Theorems 1 and 2. To prove Theorem 1, for any con- mensionsn’ is the number of bidders seen so fafrjs the
stantC' > 1 one proves the non-existence@fcompetitive number of remaining units to sell, and is the last (i.e.,
mechanisms by constructing a distribution of bids which is greatest) price at which we sold a unit so f@n', k', ¢']
supported on the sé0,1,C,C?,C3,...}, and a sequence  stores the best expected revenue (efficiency) that we can ob-
of numberg, to, . . ., such that the maximum of indepen- tain at this stage. The pseudo-code is given below.
dent samples from the given distribution is with high proba-
bility equal toC”. One then finds a value efsuch that the Algorithm OPTMech
mechanism has probability less thanC' of stopping and Input: distributionV and an upper bound onn,
selling the item at a timebetweert,._; andt,., and one sets distributionsQ;, 1 <@ <7, )

n = t,. This ensures that, with high probability, the opti- Zntzpper bgund% on_tbuilders” valuations, and
mum efficiency and revenue are equalld. By construc- » (e nUMDber of units to se

. . ; o . . ) Output:Table D and a corresponding tabR of reserve prices
tion, with high probability the mechanism either doesn'tsell 1, itialize table D byOwhenn' = N+ 1, k' =0, 0r¢ = Q + 1

the item at all, or it sells the item at a time earlier thtan,;; 2for ' — N down to0

in the latter case, the price can not be greater than the maxi-3  for 1’ = 1to k

mum of the firstt,._; bids, which by construction is at most 4 for ¢ = Q down to0

¢! with high probability. To prove Theorem 2, one con- 5 let ps.,,» be the probability (from distributionV)
siders a mechanism which guesses the value efther by of having more tham’ bidders, conditional on
choosing a uniformly random power dfbetweenl andh having seem’ of them so far

or else by choosing a random powerfrom the distribu- 6 let p> .+ be the probability (from distributio,,)

that then’th bidder has valuatiog” or higher
setreserve pricek[n', k', ¢'] = ¢”

whereq”, ¢’ < ¢ < Q maximizes

(1 - p>n’)p>q”B¢Z” + p>n’((1 - p}q”)

tion which assigns probability proportional tdog?(k) to
the number*. Having guessed the value of it then uses
the mechanism from Section 6, Corollary 23 of (Hajiaghayi,

Kleinberg, & Parkes 2004), which is constant-competitive Dn+ 1,k,q"] + psq (Byr + DI/ + 1,k — 1,¢"])).
for efficiency and revenue provided that the guessed value Here, Bys = " if we want to maximize revenue and
of n is within a constant factor of the true valueraf By =, pox if we want to maximize efficiency
o . (p= is the probability that the'th bidder has

Known distribution over n valuationz).
Until now, we have assumed that the number of bidders, The generated mechanism starts with= 0, ¥’ = k, and
was unknown to the designer, and we have adopted worst- ;/ — (.
case competitive analysis with respect to the choice. df The proof of correctness of the dynamic program can be

instead the distribution of is known, then we can make sev-  easily seen from the pseudo-code above. The proof of strat-
eral observations about the deSIgn of mechanisms to maxi- egyproofness of the resumng mechanism main|y follows
mize expected revenue or efficiency. We split the discussion from (Hajiaghayi, Kleinberg, & Parkes 2004; Hajiaghayi

into two subsections based on whether or not the distribution al. 2005) Essentia”y since the prices never decrease, there

overn has bounded support, i.e., whether or not there exists is no incentive for bidders to arrive late in the system. Since

a finite maximum number of bidders that may arrive. the prices are independent of bidders’ announced valuations,
the mechanism is also strategyproof with respect to report-
Bounded number of buyers ing valuations.

For the setting where the distributionofhas bounded sup-

port, a mechanism (sequence of prices) can be designed au- In OPTMech, different bidders can have different demand

tomatically. distributions, though in the simplest case they are all i.i.d.
from the same distributio®. We will discuss the case of
different demand distributions further when we discuss al-

f gorithms that use prophet inequalities.

Theorem 3. Assume a bounded-support distributighover

n and bounded-support distributions of bidders’ valuations.
If we insist (e.g., in order to achieve strategyproofness o
reporting arrival time$) that the price sequence be non-  nbounded number of buyers

gﬁfé?;?;}neg S(;;é;?)at ttr:]: np;ICrtTE] enc(;v; l:igr;opt)ﬁ a?s maagfmv‘;z?a%eg)t(_We now shift attention to the setting wheréas unbounded
pected efficiency and revenue (among all mechanisms with E):thaprﬁ;/tl ;%'é th\(/avg usrtr;l:r)te [J;fsﬁg\?v?rtlz rtr;%){ i(;ng TPurt\)i?lgg C?r'
non-decreasing prices) can be automatically constructed. tion, if n is drawn from a distribution wittmon-increasing

hazard rate then the optimal price sequence is inherently
non-decreasing. (Intuitively, if the option of continuing to
take future bids increases in value over time, then it is best

3In order to achieve strategyproofness of reporting arrival times, tp increase the prices over time as We".') Thls.r.neans that
it is not quite necessary for the posted prices to be increasing. One first-best revenue is achievable even while requiring tempo-
could post prices that sometimes decrease, as long as rebates (ofal strategyproofness (non-decreasing prices). On the other
additional charges) are made afterwards so that the pricesface hand, with increasing hazard rate, first-best revenue may not
tively non-decreasing. See, e.g., (Hajiaghetyal. 2005). be achievable under temporal strategyproofness.

Proof. The algorithm is based on a dynamic program that
uses backward induction on time, starting from the arrival



Theorem 4. Let there be one unit to sell, and I¢t be

the distribution from which each bidder’s valuation is in-
dependently drawn. Assume thhatis bounded and that
the support off is bounded from above. Now, if the num-
ber of buyers,n, is drawn from a distribution witton-
increasing hazard rafee., a distribution such that the func-
tion ¢(t) = Pr(n =t | n > t) is a non-increasing function

of t), then the prices in the optimal price sequence do not
decrease over time. (Analogouslygift) is increasing, the
prices in the revenue-maximizing price sequence decrease

erates a mechanism which is a constant-factor approxi-
mation to the efficiency (or revenue) of an optimal mech-
anism. This result strengthens Theorem 3, which only
asserts optimality within the class of mechanisms with
non-discriminatory non-decreasing prices. (We reiterate,
however, that the competitive ratios — and the hence the
approximation guarantee — rely on the assumption that
the value ofn is known.) To summarize, the prophet in-
equality based mechanisms can serve as an analysis tool
for the mechanisms generated by the dynamic program.

over time.) e Unlike the mechanisms generated using the dynamic pro-

gram, each mechanism here uses a constant price. There-
fore, these mechanisms are temporally strategyproof
against arbitrary temporal deviations, including early ar-
rivals.

In the special case wherds drawn from a geometric dis-
tribution, the hazard ratej(t), is constant. Using the tech-
nigue of the proof of Theorem 4 (omitted for space), it fol-
lows that it is optimal to keep posting the same price across
time. That optimal price can be found via binary search.

Theorem 4 can also be applied to any tail of a distribution Example: the case k=1

(i-e., all arrivals after some given number of arrivals), if the 1o jjjystrate these ideas, consider the problem of stopping a

tail satisfies non-increasing (increasing) hazard rate, even if sequence of independent random variabless, . . . , z,,

the entire distribution does not satisfy that condition. with known (not necessarily identical) distributions sup-
If the seller has multiple units to sell, the state includes ported on the nonnegative reals, at a stopping timeo

also the number of units that are still unsold, i.e., the MDP  ,5ximize the expectation af, . 'I:his corresponds to the

value function is a two-\{arlible function® (¢, u) instead online automated mechanism design problem with known

of a single-variable function™(¢). For any fixedu, The- , andr = 1, and with the objective of maximizing effi-

orem 4 still applies. In other words, if the hazard rate i ciency. As mentioned in the introduction, Krengel, Suche-

non-increasing (increasing), the price is non-decreasing (de- ston, and Garling proved (Krengel & Sucheston 1977;

creasing). Then, any time that a unit is soldjs decre- 1978) that there exists a stopping ralsuch that
mented by one. With less supply left, the optimal price nat-

urally does not decrease. Therefore, we can say that with
non-increasing hazard rate, price is hondecreasing even in
the multi-unit case; thus first-best revenue is achievable even
under the requirement of temporal strategyproofness.

> ).
2E(z;) > E(max =) (1)
In fact, the bound (1) is achieved by at least one of
the following two stopping rulesr, o’. First, let z* =

] o maxi<;<n ;. Next letm be median of the distribution of
Prophet inequalities z*, i.e., choosem such thatPr(z* < m) < 1/2 and

In this section we will develop online mechanisms based on Pr(z* >m) < 1/2. Finally, leto be the minimum value of
a technique from optimal stopping theory caldphet in- i such thate; > m (or 7o = n if there is no suchi) and let
equalities(described in the introduction). Prophet inequal- ¢ b€ the minimum value of such thate; > m (orm = n
ities concern the design of one or more stopping rules for if there is no such). The following theorem is due to Ester
a sequence of random variables which are often, but not al- Samuel-Cahn (Samuel-Cahn 1984).

ways, assumed to be independent. In the online auction set-Theorem 5. At least one of the numbeg&(z, ), 2E (z,-)
ting, the random variables correspond to bids, and the stop- is greater than or equal t&(z*)
ping rules specify the times when units are sold. Our con-
sideration of these stopping rules yields several benefits:

In fact, there is a simple criterion for determining which

of the stopping ruleg, o’ approximates the expectation of

e We will be able to derive competitive ratios on these E(z*). Let3 = > "' | E (max{0,z; —m}). If m < 3 then
mechanisms, i.e., comparisons between expected effi- 9E(x,) > E(z*). If m > 3 then2E(z,) > E(z*). Note
ciency (revenue) of the algorithm’s allocation and the ex-  that bothm and can be efficiently computed if the distri-
pected efficiency (revenue) of the optimum allocation that pution of each random variablg has finite support and is
can be obtained with perfect foresight and without con- given explicitly as part of the input: the value of can be
sidering any incentive compatibility (regarding reporting  found by binary search, and the valugt€an be found by
values and times). The competitive ratios hold under the directly evaluating the formula which defings
assumption that the bid values are independent random |n the online auction setting, suppose thereratgdders
variables and that the value ofis known. whose bids are independent random variables with known

e Each mechanism here uses constant non-discriminatory distributions. Letzy, x», ..., z, be then bids, in the order
prices. Therefore, the same mechanism could have beenthey are received, and let,.; = 0. One can define stop-
generated by the dynamic program of the previous sec- ping rulesc,¢’, as above, for the sequenge, ..., x,11.
tion. It follows that the competitive ratios apply to  Each of these stopping rules corresponds to an online allo-
mechanisms generated by the dynamic program as well, cation rule which sells the unit to the bidder who arrives at
which implies,a fortiori, that the dynamic program gen-  stopping timer (resp.o’) unless the stopping time is+ 1,



in which case the unit is unsold. Note that both of these allo-
cation rules can be implemented, in dominant strategy equi-
librium, by a posted price mechanism which sells the unit
to the first bidder whose bid value is strictly greater than

(in the case ofr) or greater than or equal ta (in the case

of ¢’). A posted-price mechanism with a price that does
not vary over time is temporally strategyproof (even against
arbitrary misreporting of arrival and departure times) so al-
though we designed the mechanism by reasoning about the
instantaneous agents setting, we obtained a stronger form
of incentive compatibility “for free” due to the constructive
proof of the prophet inequality. This is a theme which will
be repeated in future sections.

Selling more than one unit

Generalizing the foregoing discussion to the case when
1, n is known, and the bids are independent, we arrive at the
following question about prophet inequalities.

Question 6. If xq,29,...,2, is a finite sequence of ran-
dom variables, le®OPTy(z1,...,z,) denote the random
variable which is the sum of thé largest elements of
the set{zy,...,z,}. For a given natural numbel,
what is the smallest constarti, such that for every fi-
nite sequence of independent nonnegative random variables
x1,29,. .., 2y, there exists a sequence /lofstopping rules

T < T < ...< 1 satisfyingGrE(z,, + ...+ 25,) >
E(OPTy(x1,...,25))?

We have seen that, = 2. Surprisingly, the problem of
determining, or estimating, the value gf for £ > 1 has
not been explicitly considered in the literature on prophet
inequalities. Here we present upper and lower bounds for
0k and then discuss their implications for automated online
mechanism design.

Theorem 7.

1
144/ < B <1
T\ S S

for all sufficiently largek.

81n(k)
k

For the applications to online mechanism design, it is
of course necessary to understand the algorithm which
achieves the upper bound in Theorem 7. As inthe 1
case, the algorithm corresponds to a posted-price mecha-
nism with a fixed posted price which does not vary over
time. The price, which we denote by, is the infimum
of the set of numbers satisfying)_." | Pr(z; > my) <
k —+/2k1n(k). As above, it is easy to computey, in poly-
nomial time using a binary search, provided that the distri-
butions of the variables; have finite support and are ex-
plicitly specified as part of the input. Large deviation in-
equalities imply that with high probability the number of
bids x; exceeding the threshold value; will be between
k—+/4k In(k) andk, and when this happens the revenue and

efficiency will both be within a factor of — O(y/In(k)/k)

of optimal. This constitutes a proof sketch of the upper
bound in Theorem 7. The lower bound (whose proof is omit-
ted for space reasons) arises from considering the following

sequence of independent random variablgss determin-
istically equal tol if 1 < ¢ < 4/k/8, uniformly distributed
in {0,2} if \/k/8 <i <2k + +/k/8, and deterministically
equal too for all larger values of.

The fact that the pricen; does not vary over time and
does not depend on bids received implies, as before, that
the allocation rule may be implemented by a posted-price
mechanism that satisfies temporal strategyproofness, even
when agents can lie arbitrarily about arrival and departure
times.

Unknown n and dependent bids

We now turn to cases in which the elements of the sequence
x1,x9,... are not necessarily independent, but their joint
distribution is known to the mechanism designer. A spe-
cial case of this problem arises in the case of independent
bids but an unknown value of which is drawn from some
known distribution. For arbitrarily distributed sequences
of non-negative random variables, it is impossible to ob-
tain non-trivial prophet inequalities with a multiplicative
bound such as (1). However, if we assume that the ran-
dom variablesry, xs, . .., z,, are uniformly bounded (tak-
ing values in[0, 1], without loss of generality), then there
are non-trivialadditive bounds relatingz,, + ... + z,, to
OPTy(x1,...,2,). For example, in the cade = 1 there
always exists a stopping rute such thatE(z,) + 1/e >
OPTy(z1,...,x,), and the constant/e is asymptotically

the best possible astends to infinity (Hill & Kertz 1983).

For the casé& > 1, we present here a simple additikg2-
approximation.

Theorem 8. For any sequence of random variables
1,9, ..., 2, taking values betweehand 1, there is a se-
guence of stopping times; < 75 < ... < 7% such that

E(zy +...+2r) +k/2 > E(OPT,(21,...,2p).

In fact; 1 may be taken to be the smallgst 7; satisfying
x; > 1/2, or ;41 = oo if NO suchj exists.

As in the preceding two subsections, the stopping rules
achieving the bound in Theorem 8 correspond to a posted-
price mechanism with a price that does not vary over time
(namely, a price ofi /2), so the allocation rule can be im-
plemented by a mechanism which satisfies temporal strate-
gyproofness.

The following theorem demonstrates that, unfortunately,
the O(k) additive error term in Theorem 8 can not be im-
proved by more than a constant factor, even when bids are
i.i.d. samples from a known distribution amdis randomly
sampled from a two-element set.

Theorem 9. Suppose that is sampled uniformly at ran-
dom from the sefk, k3} and that the bidscy, zs, ..., 2,
are i.i.d. random samples from the distribution which as-
signs probabilityl — 1/k to the valuel/2 and probabil-
ity 1/k to the valuel. For any sequence of stopping rules
1 <...< T, We have

k
E(z, —|—...+ka)+§—1 < E(OPTy(z1,...,2,)). (2)



Conclusions and open problems

In this paper for the first time, we designed automated mech-
anism design techniques for designing online mechanisms
— in order to exploit distributional information about val-
uations of bidders who arrive online. Sometimes even the
number of bidders is not known in advance. Along the way,
we identified a rich interplay between these problems and
prophet inequalities from statistics. We also proved new
prophet inequalities motivated by the auction setting.

This is also a fertile area for future research. Suppose that
we have patient (not instantaneous) bidders who have arrival

Friedman, E. J., and Parkes, D. C. 2003. Pricing WiFi at star-
bucks: issues in online mechanism design. ABM Conference
on Electronic Commerc@40-241.

Gallien, J. 2006. Dynamic mechanism design for online com-
merce.Operations Research4:291-310.

Hajiaghayi, M.; Kleinberg, R.; Mahdian, M.; and Parkes, D.
2005. Online auctions with re-usable goodsAGM Conference

on Electronic Commercd 65-174.

Hajiaghayi, M. T.; Kleinberg, R.; and Parkes, D. C. 2004. Adap-
tive limited-supply online auctions. IACM conference on Elec-
tronic Commercge71-80.

Hill, T. P., and Kertz, R. P. 1983. Stop rule inequalities for uni-

and departure times as well as valuations. Suppose moreover formly bounded sequences of random variableans. Am. Math.

that the mechanism designer knows the joint distribution of
the entire input — the number of bidders, and all three pa-
rameters of their types. What is the complexity of designing
the optimal mechanism? Is there still a dynamic program of
subexponential size (or even PSPACE)? If the answer is no,
what about approximation? (Pai & Vohra 2006) have a dy-
namic program for designing an optimal auction, but it has
an exponential number of states. Even if bidders cannot lie
about their arrival and departure times (only about their val-
uations) and all valuations are i.i.d. from the same distribu-
tion of polynomially-bounded support, it is unclear whether
there is an efficient algorithm to design an optimal mecha-

S0c.278:197-207.

Kennedy, D. P. 1987. Prophet-type inequalities for multi-choice
optimal stopping Stoch. Proc. Applic24:77-88.

Kleinberg, R., and Leighton, T. 2003. The value of knowing a de-
mand curve: Bounds on regret for on-line posted-price auctions.
In Symposium on Foundations of Computer Science

Kleinberg, R. 2005. A multiple-choice secretary algorithm with
applications to online auctions. IACM-SIAM Symposium on
Discrete Algorithms630—-631.

Krengel, U., and Sucheston, L. 1977. Semiamarts and finite val-
ues.Bull. Am. Math. So83:745-747.

Krengel, U., and Sucheston, L. 1978. On semiamarts, amarts,
and processes with finite value. In Kuelbs, J., dobability on

nism. The same questions can be asked in the reusable good Banach Spaces

setting, i.e., when at every time slot there is one unit which
may be allocated at that time but not at any other time.
It would also be desirable to obtain tight upper and lower

bounds in Theorem 7 (possib, = 1 + ©(,/1/k)), The-

orem 8 (possiblyt/e), and Theorem 2 (possibly(logn)).
Another open (but not practically important) problem is the
case of unit supplyi = 1) when bidders can have only two
possible valuations (say, and k) or when there are only
two possible values af. In the former case, there is a sim-
ple 2-competitive randomized algorithm (via the approach
of Theorem 2) and in the latter case there is an obvious 2-
competitive randomized algorithm which guesses one of the
two values uniformly at random, and then applies an opti-
mal pricing policy assuming that this guess is correct. But
can we get a competitive ratio better tHaim either case?
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