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Abstract

In some urban transit systems, passengers are legally required
to purchase tickets before entering but are not physically
forced to do so. Instead, patrol units move about through
the transit system, inspecting tickets of passengers, who face
fines for fare evasion. This setting yields the problem of com-
puting optimal patrol strategies satisfying certain temporal
and spacial constraints, to deter fare evasion and hence max-
imize revenue. In this paper we propose an initial model of
this problem as a leader-follower Stackelberg game. We then
formulate an LP relaxation of this problem and present initial
experimental results using real-world ridership data from the
Los Angeles Metro Rail system.

Introduction
In some urban transit systems, including the Los Angeles
Metro Rail system, passengers are legally required to buy
tickets before boarding although there are no gates or turn-
stiles physically denying access to the ticketless. (There are,
quite literally, no barriers to entry, as shown in Figure 1.) In-
stead, security personnel are deployed throughout the transit
system, randomly inspecting passenger tickets; fare-evaders
face significant penalties when caught.

Figure 1: Entrance of a LA Metro Rail station.

With approximately 80,000 riders daily on the LA Metro,
fare evasion can cause significant revenue loss. The Los An-
geles Sheriffs Department (LASD) deploys uniformed pa-
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trols on board trains and at stations for fare-checking and
crime-prevention. With limited resources, however, it is im-
possible to cover all locations at all times, thus requiring
some mechanism for choosing the times and locations for
inspections to occur. Given the nature of the patrol setting,
any predictable patterns in such a patrol schedule may well
be observed and exploited by the potential fare-evaders. This
places us in the leader-follower Stackelberg setting, in which
LASD (the leader) commits to a randomized patrol strategy
and potential fare-evaders (the followers) observe the patrol
strategy before choosing their best courses of action. Thus
we face the problem of developing patrol strategies that effi-
ciently utilize limited resources to best deter rational, adap-
tive fare-evaders. That is, we seek patrol strategies that will
best incentivize riders to purchase their tickets rather than
evade the fare.

In this work we initiate the study of optimal deterrence of
fare-evasion in urban transit systems, in settings character-
ized by the following assumptions:
• Known passenger types: The total number of passengers

using the metro system as well as the distribution of pas-
senger types is fixed and independent of the inspection
strategy. Passenger type is specified by the passenger’s
preferred route and time of trip.

• Fixed route: Each passenger takes his/her preferred route
at his/her preferred time regardless of the patrolling strat-
egy.

• Rational, risk-neutral agents: Riders make a binary de-
cision of buying or not buying the ticket (the decision
to ride having already been made), in order to minimize
their expected total cost, following for simplicity the clas-
sic economic analysis of rational crime (Becker 1968;
Becker and Landes 1974). Of course, it may be that some
conscientiousness riders purchase tickets irrespective of
expected costs; our focus here is on providing incen-
tives to the portion of the ridership that does weigh these
choices. Although in general riders may be risk-averse (or
even risk-seeking, i.e., deciding not to buy a ticket so as to
gamble for fun), here we assume all riders are risk-neutral.

• Stackelberg game: The rider observes the patrol strategy
before making the ticket purchase decision.

• Zero-sum game: Unlike other sorts of punishment de-
ployed in criminal justice, fines issued result in revenue to



the state. Therefore the optimization objective we choose
for the leader is to maximize total revenue to the transit
system (total ticket sales plus penalties), i.e., to recover as
great a fraction of the ticket price per passenger as possi-
ble.

The equilibrium strategy of the police in this zero-sum game
is essentially a maximin strategy, where fare-evaders maxi-
mize their utilities as if the inspection strategy is known.

The leader-follower Stackelberg game model has been the
topic of much recent research (Tambe 2011) and has been
applied to a number of real-world security domains, includ-
ing the Los Angeles International Airport (Paruchuri et al.
2008), the Federal Air Marshals Service (Tsai et al. 2009),
and the Transportation Security Administration (Pita et al.
2011). Urban transit systems, however, present unique com-
putational challenges. There are exponentially many possi-
ble patrol strategies, each subject to both the spatial and tem-
poral constraints of travel within the transit network under
consideration. Explicitly representing a randomized strategy
(i.e. a probability distribution over all pure strategies) would
be impractical.

Instead, we introduce the transition graph, which captures
the spatial as well as temporal structure of the domain, and
we solve for the optimal (fractional) flow through this graph,
by linear programming (LP). Although such a flow (which
we refer to as a relaxed solution) does not directly yield a
patrol strategy, it can be interpreted as a marginal distribu-
tion from which to generate actual patrols; how to do so is
a topic of our ongoing research. Moreover, because the LP
formulation is a relaxation of the problem, its optimal solu-
tion value upper-bounds the true optimal, which can be used
in evaluating the performance of particular strategies.

Finally, we perform simulations in which we solve for
such optimal relaxed solutions in problem instances con-
structed based on actual ridership data provided by the
LASD and publicly available timetables, for three LA Metro
train lines (Blue, Gold, and Green). A distribution on rider
types is estimated by sampling from the ridership level data.
Our initial results suggest the possibility of significant fare
evasion deterrence and hence prevention of revenue loss. We
conclude by discussing plans for future work.

Setting
Train System
We now describe the problem setting in detail. In this game,
a pure leader strategy is a patrol, i.e., a sequence of pa-
trol actions (defined below), of bounded duration. The two
possible pure follower strategy are buying and not buying.
We formulate this problem as a Stackelberg game, with one
leader and multiple followers.1 Each follower observes the
strategy the leader commits to and plays a best response.
There are many follower types, one for each source, desti-
nation, and departure time triple (corresponding to the set of

1We use interchangeably the terms patrol strategy and leader
strategy, as well as the terms rider and passenger. We sometimes
use the term police to refer to those carrying out the patrol.

all riders who take such a trip). In general the leader’s strate-
gies will be mixed; without loss of generality the followers’
strategies can be assumed to be pure.

The train system consists of a single line (i.e., a path
graph with stations as nodes) on which trains travel back
and forth, in general with multiple trains traveling simul-
taneously. The system operates according to a fixed daily
schedule, with trains arriving at stations at (finitely many)
designated times throughout the day. We refer to the entire
path that a given train takes through this graph, from the start
station to the terminal station, as a train path. Therefore we
can model time as slotted, focusing only on the time steps at
which some (instantaneous) train arrival/departure event oc-
curs. We use the (directed) transition graph G = 〈V,E〉 to
encode the daily timetable of the metro line, where a vertex
v = 〈s, t〉 corresponds to some pair of station s and discrete
time point t.

Patrols

There are a fixed number γ of deployable patrol units, each
of which may be scheduled on a patrol of duration at most
κ hours (with, e.g., κ = 7). There are two sorts of patrol ac-
tions, which a given patrol unit can alternate between on its
shift: on-train inspections (in which police ride the train, in-
specting their fellow passengers), and in-station inspections
(in which they inspect passengers as they exit the station). A
pure patrol strategy is represented mathematically as a path
in G. An edge e represents an atomic patrol action, i.e., in-
specting in-station from the time of one train event at that
station to the next (at that station) or inspecting on-train as it
travels from one station to the next. In particular, there is an
edge from v = 〈s, t〉 to v′ = 〈s′, t′〉 if:

• s′ is either the predecessor or successor of s in the station
sequence and 〈s, t〉 and 〈s′, t′〉 are two consecutive stops
for some train in the train schedule, or

• s′ = s, t < t′, and there is no vertex 〈s, t†〉 such that
t < t† < t′ (representing a minimal “stay at a station”
action).

Each edge e has a length le equal to the corresponding action
duration and an effectiveness value fe, which represents the
percentage of the relevant ridership inspected by this action.
(For on-train inspections, this depends on the ridership vol-
ume at that location and time of day and on the duration; for
in-station inspections, we assume that all exiting passengers
are inspected, and so set the effectiveness to 1.) A valid pure
patrol strategy is then a set of paths P1, ..., Pγ , each of size
at most κ, i.e.,

∑
e∈Pi le ≤ κ.

Example 1 A simple scenario with 3 stations (A,B,C) and
4 discrete time points (7am, 8am, 9am, 10am) is given in
Figure 2. The dashed lines represent staying actions; the
solid lines represent traveling actions. There are 4 trains in
the system; all edge durations are 1 hour. A sample train
path here is 〈A, 7am〉 → 〈B, 8am〉 → 〈C, 9am〉. In this
simple example, if κ = 3 and γ = 1, then the valid pure
leader strategies consist of all paths of length 3.



Figure 2: The transition graph of a tiny toy example problem
instance.

Riders
The ticket price (for any trip within the transit system) is
a nominal fee, with the fine for fare-evasion much greater.
The ticket fee is fixed (if paid) but the receipt of a fine for
fare-evading is uncertain; based on the likelihood of being
caught, the rider must make a decision as to whether to
buy a ticket. We assume the riders are rational, risk-neutral
economic actors (Becker 1968; Becker and Landes 1974),
who make this choice in order to minimize expected cost.
(Equivalently, we can assume that some riders are conscien-
tious, but that selfish or rational riders are distributed evenly
among all passenger types.)

A rider’s type is defined by the path he takes in the graph.
Because there is a single train line, we assume that riders
never pause in stations, i.e., do not follow any “stay” edges
in the middle of the trip; on the other hand the last edge of
any evader type should always be staying at the destination
station for the minimum amount of time, representing the
action of “exiting” the station (the rider would be inspected
by the police doing in-station inspection at the same station
at the same time). Therefore the space Λ of rider types cor-
responds to the set of all subpaths of train paths. (When G
is drawn as in Figure 2, all rider paths are “diagonal” except
for the last edge.) We identify a rider type λ with the corre-
sponding path. A metro line with N stops and M trains will
have a total of less than MN(N−1)

2 rider types.
Given a patrol path P , the inspection probability for a

rider of type λ ∈ Λ is:

min{1,
∑

e∈P∧λ

fe} (1)

We justify this probability as follows. First, consider on-train
inspections. We assume that during an on-train inspection
riders are inspected in sequence, from one end of the train
to the other. The fraction of the train that is inspected in a
given inspection action will depend on the ridership volume
and the duration of the segment. Given sufficiently many
consecutive on-train inspection actions, therefore, the pa-
trol will work its way through the entire train and capture
all (remaining) fare-evaders. Therefore, unlike in the setting

where inspections choose a random sample of train riders,
the probabilities are added rather than multiplied. Now also
consider in-station inspections. Since a rider of course only
leaves one station when taking a single trip, a rider will en-
counter at most one in-station inspection. We assume that in
an in-station inspection, all departing riders are inspected,
and so (1) remains valid.2

Objective

The leader’s utility, equal to total expected revenue, can be
decomposed into utilities from bilateral interactions against
each individual follower. This implies that the game is
payoff-equivalent to a Bayesian Stackelberg game between
one leader with one type and one follower with multiple pos-
sible types. Specifically, we denote the prior probability of
a rider type λ ∈ Λ (proportional to its ridership volume) by
pλ.

Furthermore, these utility functions imply that the game
is zero-sum, in which case the Stackelberg equilibrium is
equivalent to the max-min solution. Although such zero-sum
Bayesian games are known to be solvable by linear program-
ming (Ponssard and Sorin 1980), that approach would be im-
practical here due to the exponential number of pure leader
strategies.

LP Formulation

In this section, we formulate a linear program which defines
a relaxation of the problem of choosing a maximum-revenue
patrol strategy. As noted above, the leader’s space of pure
strategies is exponentially large. Therefore we instead com-
pactly represent patrol strategies by marginal probabilities
on edges xe of the transition graph, i.e., by the probabilities
that inspection actions appear within the chosen patrol path.

In order to be able to restrict our attention to unique source
and sink nodes, we add to the transition graph a source v+

with edges to all possible vertices where a patrol can start
and a sink v− with edges from all possible vertices where
a patrol can end. (These additional dummy edges have zero
duration and zero effectiveness.) We denote the set of possi-
ble starting vertices reachable from v+ by V + and the set of
possible ending vertices leading to v− by V −. We also use
notation V t to denote the set of vertices whose discrete time
component is less than or equal to t.

Then the following linear program provides an upper

2In a more general setting in which either in-station inspections
inspect only a random fraction of exiting passengers or if on-train
inspections are performed randomly (with replacement), (1) will
upper-bound the true inspection probability.



bound on the optimal revenue achievable:

max
x,u

∑
λ∈Λ

pλuλ

s.t. uλ ≤ min{ρ, τ
∑
e∈λ

xefe}, for all λ (2)∑
e∈E

le · xe ≤ γ · κ (3)∑
v∈V +∩V t

x(v+,v) ≤
∑

v′∈V −∩V t+κ
x(v′,v−), for all t

(4)∑
v∈V +

x(v+,v) =
∑
v∈V −

x(v,v−) ≤ γ (5)

∑
(v′,v)∈E

x(v′,v) =
∑

(v,v†)∈E

x(v,v†), for all v (6)

0 ≤ xe ≤ 1, uλ ≥ 0 (7)

Here uλ denotes the expected value paid by a rider of type
λ, and so vλuλ is the expected total revenue from riders of
this type; xe is the probability of a patrol on edge e.

Constraint (2) indicates that the rider will best-respond,
by bounding the expected cost to a rider of type λ by both
the ticket price and the expected fine if such a rider chooses
not to buy. Here

∑
e∈λ xefe equals the expected number of

times that a rider of this type will be inspected, which upper-
bounds the probability of inspection, hence indeed upper-
bounding the amount that this rider will pay. (The 1 from (1)
can be omitted because ρ < τ .)

Constraint (3) limits the total number of time units to γ ·κ;
moreover, the total flow that enters the system before time t
must exit the system before time t+κ, as restricted by Con-
straint (4). (Both these constraints are less strict than limiting
each of the γ units to duration κ.) Constraint (5) indicates
that the total flow allowed to enter the system and the total
flow that must exit the system must be equal and less than or
equal to γ, the number of total units allowed. Finally, Con-
straint (6), enforces conservation of flow, which clearly is
satisfied by any mixed patrol strategy.

Evaluation
This section presents our initial evaluation based on real
metro schedules and rider traffic data. The linear program
given above is solved using CPLEX 12.2 on a standard
2.8GHz machine with 4GB main memory. We first describe
the data sets used, followed by experimental results.

Data Sets
We created three different data sets, each using a Los An-
geles Metro Rail line: Blue, Gold, and Green. For each
line, we created its temporal graph using the corresponding
timetable available at http://www.metro.net. Imple-
menting the LP requires a fine-grain ridership distribution
of potential fare evaders (recall that in our LP formulation, a
follower type corresponds to a pair of boarding station / time
and disembarking station / time). Because the distribution of
fare evaders among the passenger population is difficult to

obtain since even when a fare evader is caught, his or her in-
tended trip may not be revealed, we assume (as stated above)
that potential fare-evaders are evenly distributed among the
general population, for which ridership statistics are made
available to us by LASD.

In our experiments, we create the follower distribution
using hourly boarding and alighting counts derived from
data provided by the Los Angeles Sheriff Department. The
LASD data includes boarding and alighting counts for every
hour; we sample based on these to create a fine-grain rider-
ship distribution. The inspection effectiveness fe of an edge
is set based on the assumption that 10% of a train can be in-
spected per minute,3 capped at 1, i.e., fe = min{.1 · le, 1}.
The ticket fare is set to $1.5 (the actual current value) while
the fine is set to $100.4 Table 1, 2, and 3 summarize the de-
tailed statistics for each individual Metro line.

# of stations # of trains Avg. # of daily passengers
20 287 76631

# of vertices # of edges # of follower types
4986 9890 44632

Table 1: Metro Blue Line Statistics.

# of stations # of trains Avg. # of daily passengers
13 257 22148

# of vertices # of edges # of follower types
3227 6298 19583

Table 2: Metro Gold Line Statistics (prior to the opening of
the east Los Angeles extension).

# of stations # of trains Avg. # of daily passengers
14 217 38314

# of vertices # of edges # of follower types
2891 5681 19045

Table 3: Metro Green Line Statistics.

Experimental Results
In our experiments, we fix the number of inspectors to 1 but
vary the maximum number of hours that an inspector can
patrol from 4 hours to 7. Figure 3(a) shows the total runtime
required to set up the LP, including the creation of the tem-
poral graph and the conversion to the LP. As can be seen, it
takes significantly longer to create the LP for the Blue line
than for the other two lines since the Blue line is consider-
ably larger than the others in terms of graph size and (thus)

3In these initial experiments, the ridership volume is for sim-
plicity ignored here.

4In fact, fare evaders in Los Angeles can be fined $200, but they
also may be issued warnings. Of course, if we could increase the
fine dramatically the rider would have much less incentive for fare
evasion, and we can achieve better revenue. However a larger fine
might not be feasible legally.
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Figure 3: Experimental results.

number of follower types. Figure 3(b) shows the runtime re-
quired by CPLEX to solve the LP created. Again, solving the
LP for the Blue line takes significantly longer than solving
for the other two lines since it has more variables and con-
straints due to a larger graph size. Increasing the number of
patrol hours seems to make the problem harder—the runtime
increases almost consistently for all the three lines (with the
only exception at the Blue line with six patrol hours).

Figure 3(c) shows the percentage of fare-evaders in
the optimal (relaxed) solution. Recall that in our game-
theoretical formulation, a passenger will fare-evade if and
only if the expected fine is lower than the ticket price. Given
the fine / fare ratio of 100 : 1.5, all passengers inspected
with probability lower than 1.5% will become fare-evaders,
while the rest will always buy tickets. As can be seen in Fig-
ure 3(c), the fare-evasion rate decreases almost linearly in
the number of additional patrol hours beyond 4. An optimal
7-hour patrol (relaxed) strategy can lower the fare-evasion
rate to 6% for the Blue line, 0.5% for the Gold line, and
0.03% for the Green line.

Finally, Figure 3(d) shows the expected value per passen-
ger in the optimal (relaxed) solution. The passenger can al-
ways pay the ticket price for $1.5 and will only evade the
ticket when the expected fine is lower. Hence the theoretical
maximum achievable is $1.5 when every passenger buys the
ticket. As we can see, the per passenger value increases with
number of patrol hours, converging to the theoretical upper
bound of $1.5. An optimal 4-hour (relaxed) patrol strategy
can already provide reasonably good expected value: 1.36
for the Blue line (90.7% of the maximum), 1.44 for the Gold
line (95.9%), and 1.43 for the Green line (95.1%).

Conclusions and Future Research
In this paper we presented initial results from a research ef-
fort on generating fare-inspection strategies in urban transit
systems. We modeled the domain as a Stackelberg game,

and by compactly representing the leader’s mixed strategies
as flows in the transition graph, we were able to formulate
a relaxation of the problem as a compact LP. We find in
our simulations that our computed (relaxed) solutions effec-
tively deter fare evasion and ensure high levels of revenue.

We plan to continue developing and eventually deploy our
system with the LA Metro system. Towards this goal, many
interesting and important research questions remain open.
We list some of them below.

• Sampling from marginal probability distributions to
obtain feasible patrols. The solutions of our LP are
marginals, i.e., expected coverage of each edge in the tran-
sition graph. The next task is to compute the actual ran-
domized strategy, either as a mixture of a small number
of patrols, or as a sampling procedure that outputs a pa-
trol drawn from some distribution, ideally such that the
resulting expected coverage of the edges matches the LP
solution. This is a topic of our ongoing research.

• Relaxing the zero-sum assumption. In our initial model
described here, we assumed that utilities correspond to
the total monetary transfer between passengers and tran-
sit authority, resulting in a zero-sum game. It would be
interesting to explore non-zero-sum models, in order to
model non-risk-neutral fare evaders and/or leaders with
additional objectives, such as minimizing crime.

• Exploring other strategic options. So far we have mod-
eled each passenger’s choice as either buying or not buy-
ing the ticket. In practice they could have other options,
such as taking an earlier or later train, boarding and/or
disembarking at different (but nearby) stations, or decid-
ing against riding the metro altogether. The opposite could
also happen where some currently non-riding person de-
cides to become a rider.

• Modeling human behavior. The passengers are human
decision-makers and thus might not be perfect optimizers.
Incorporating such behavior models of the adversary in
security games (Pita et al. 2010; Yang et al. 2011) may
potentially increase the robustness of our solutions.

• Beyond static models. In practice, this game is (of
course) repeated over time. If we can get sufficiently in-
formative data on the total revenue, this would allow us
to evaluate different models of fare-evaders, correspond-
ing to different leader strategies, and choose the best one.
One potential direction would be to automate this process
of picking the best model of the fare-evaders based on the
historical performance of the models, utilizing ideas from
online/reinforcement learning and opponent modeling.
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M. 2009. IRIS: a tool for strategic security allocation in
transportation networks. In AAMAS (Industry Track).
Yang, R.; Kiekintveld, C.; Ordóñez, F.; Tambe, M.; and
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