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Abstract

In automated negotiation systems consisting of self-interested agents, contracts have

traditionally been binding, i.e., impossible to breach. Such contracts do not allow the

agents to e�ciently deal with future events. This de�ciency can be tackled by using

a leveled commitment contracting protocol which allows the agents to decommit from

contracts by paying a monetary penalty to the contracting partner. The e�ciency of

such protocols depends heavily on how the penalties are decided. In this paper, dif-

ferent leveled commitment protocols and their parameterizations are experimentally

compared in sequences of multiple contracts. In the di�erent experiments, the agents

are of di�erent types: self-interested or social welfare maximizing, and they can carry

out game-theoretic lookahead or be myopic. Several meeting technologies, ways of set-

ting the contract price, and ways of setting and increasing the penalties are compared.

Surprisingly, self-interested myopic agents reach a higher social welfare quicker than

cooperative myopic agents when decommitment penalties are low. The social welfare

in settings with agents that perform lookahead does not vary as much with the de-

commitment penalty as the social welfare in settings that consist of myopic agents. In

all of the settings, the best way to set the decommitment penalties is to choose low

penalties, but ones that are greater than zero. This indicates that leveled commitment

contracting protocols outperform both full commitment protocols and commitment free

protocols.1
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1 Introduction

Systems which include automated negotiation are starting to play an increasingly important

role in our society. One reason is the technology push of a growing standardized global com-

munication infrastructure|e.g., IP, WWW, Java, HTML, XML, and KQML|over which

separately designed agents belonging to di�erent organizations can interact in an open envi-

ronment in real-time, and safely carry out transactions [Sandholm, 1997, Choi et al., 1997].

Another form of technology push comes from advances in automated negotiation technol-

ogy itself (see e.g. [Sandholm, 1996, Sandholm and Vulkan, 1999, Sandholm et al., 1999a,

Sandholm and Lesser, 1997, Sandholm, 1993, Rosenschein and Zlotkin, 1994, Kraus, 1993]).

The second reason for increased importance of automated negotiation is strong application

pull for computer support for contracting, especially at the operative decision making level.

For example, we are witnessing the advent of small transaction commerce on the Internet for

purchasing goods, services, information, communication bandwidth, etc. [Choi et al., 1997].

Automated negotiation is also proliferating into business-to-business commerce, for example

in electricity markets [Ygge and Akkermans, 1996, Sandholm and Ygge, 1997] and trans-

portation exchanges [Sandholm, 1993]. Furthermore, there is an industrial trend toward

virtual enterprises: dynamic alliances of small, agile enterprises which together can take

advantage of economies of scale when available|e.g. by being able to respond to larger and

more diverse orders than they could individually|but do not su�er from diseconomies of

scale.

Multiagent technology facilitates the automated formation of such dynamic alliances on

a per order basis by automated contracting. Such automation can save labor time of human

negotiators, but in addition, other savings are possible because computational agents are

often more e�ective at �nding bene�cial contracts and contract combinations than humans

are in strategically and combinatorially complex settings.

Contracts in automated negotiation systems consisting of self-interested agents have

traditionally been binding, i.e., impossible to breach. Such contracts do not allow the

agents to act e�ciently upon future events because contracts might become unfavorable

to one or both of the agents after the contracting. If the agents were allowed to breach

contracts, they could accommodate changes in the environment more e�ciently and the

social welfare (sum of the agents' payo�s) would improve. In the case of self-interested
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agents, there is a need to compensate the party who is the victim of a decommitment. On

the other hand, in systems with cooperative agents, decommitting from contracts without

reprisals can be accepted, even after the other party has partly completed the task of the

contract [Sen and Durfee, 1994, Sen and Durfee, 1998, Smith, 1980], since each agent wants

to maximize the sum of all agents' pro�t.

Contingency contracts have been proposed as an instrument for increasing the economic

e�ciency of contracts between self-interested agents in settings of incomplete information

about future events [Rai�a, 1982]. In these contracts the obligations of the contract are

made conditional on future events. Contingency contracts can increase the payo� of both

parties, so contracts not possible with full commitment protocols may become bene�cial for

both parties. However, it may be impossible to anticipate and enumerate all future events.

Monitoring all events after the contract is made can also be impractical. If some events

are observable by only one of the parties, another problem arises: one party can have an

incentive to lie about the events in order to be better o� himself.

Recently, leveled commitment contracts were proposed as an alternative instrument for

increasing the economic e�ciency of contracts between self-interested agents in settings of in-

complete informationabout future events [Sandholm and Lesser, 2000, Sandholm and Lesser, 1995].

In a leveled commitment contract, each agent can decommit from the contract by simply

paying a decommitment penalty to the other contract party. The decommitment penalties

are decided at the time of contracting and the penalties do not need to be the same for the

contract parties. It was shown through game-theoretic analysis that this leveled commit-

ment feature increases the Pareto e�ciency of contracts and can make contracts individually

rational to both parties even in cases where full commitment contracts cannot. Furthermore,

leveled commitment contracts can never be worse than full commitment contracts because

they can emulate the latter by setting su�ciently high penalties. In another paper, algo-

rithms were presented for computing the decommitting equilibria given a contract, as well as

algorithms for optimizing the contract itself (price and penalties) [Sandholm et al., 1999b].

In a further paper, it was shown that certain sequential and simultaneous decommitting pro-

tocols surprisingly lead to the same sum of the agents' payo�s if the contract is optimized

for each of the protocols separately [Sandholm and Zhou, 2000]. All of these analyses have

focused on a single contract only. This paper focuses on sequences of leveled commitment

contracts.

3



Leveled commitment contracts enable pro�table construction of composite contracts

from basic contracts [Andersson and Sandholm, 1998a]. As an example setting, we have

shown that in task allocation, contracts of a single task at a time usually lead to only

local optima, and that this problem can be addressed by cluster contracts (where multi-

ple tasks are negotiated over atomically), swap contracts (where tasks are swapped be-

tween agents), and multiagent contracts (where a contract has more than two parties)

[Sandholm, 1998, Sandholm, 1996, Andersson and Sandholm, 1999]. Leveled commitment

contracts allow any of these composite contracts to be constructed from a sequence of basic

contracts. This may avoid the need for these more complex combinatorial contract types.

For example, say that the only pro�table contract is one where agent A gives task t1 to

agent B, and agent C gives task t2 to agent A. Now A can make the unpro�table contract

with B in anticipation of the contract with C which will make the combination pro�table.

Then, if C does not agree to the contract with A, agent A can decommit from the contract

that it made with B.

With leveled commitment protocols there is no need for an agent to conduct a feasibility

check before contracting. If it turns out that the agent cannot ful�ll the contract obliga-

tions, e.g., due to lack of resources, the agent can decommit. Similarly, the agent does not

need to perform a complete computation of the marginal cost of taking on the contract

obligations before accepting the contract. Instead, the agent can complete the computation

after contracting. If the contract turns out to be unbene�cial, the agent can decommit. This

allows the agent to act faster and with less constraints in the contracting process than if it

always had to perform a feasibility check and a thorough marginal cost calculation before

contracting. The system also becomes more e�cient computationally if only one agent (the

one that takes on the task) conducts a thorough marginal cost calculation, than if all the

agents that bid for the task would carry out such a calculation.

The concept of breaching contracts in the real world has been analyzed in the economics

of law (see e.g. [Posner, 1977]). The main ideas are that the party that breaches must

compensate the victim for lost pro�t and that the penalties for breaching should be set so

that the social welfare is maximized.

Strategic thinking behind contracting and one-sided decommitment among self-interested

agents has also been studied via modeling the setting as a Markov-process [Park et al., 1996].

In that work it was assumed that the agents expect none of their bids to be accepted, which
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makes the approach inconsistent with noncooperative equilibrium analysis of game theory.

Diamond and Maskin (1979) have studied systems in which both agents can decommit

from a contract by paying a decommitment penalty to the other party of the contract.

Those penalties can be set in di�erent ways: they can be compensatory or privately decided

(i.e. liquidated; not necessarily decided by the parties of the contract { maybe imposed by

a court) in the contract. The compensatory decommitment penalties are favored because

of e�ciency, i.e., they provide, whenever possible, an increasing mutual welfare between

the agents that enter a new contract. However, the social welfare may decrease because

of the ine�ciency arising from the contract that is breached. Another argument for the

compensatory penalties is that they are exactly the penalties that two rational parties

would agree on for privately decided penalties. One reason for having over-compensating

penalties is that one agent can make himself more trustworthy and the expected utility of

the other agent will increase enough to make the contract possible [Posner, 1977]. Hence,

over-compensating penalties can increase the space of possible contracts. However, it would

limit the space of possible decommitments.

Leveled commitment contracts can also be useful in auctions of multiple goods where

a bidder's valuation for a combination does not equal the sum of the bidder's valuations

of the individual goods. If the bidder does not receive a complete bundle that she desires,

she could decommit|for a predetermined penalty|from the items of the partial bundle

that she did get. Similarly, one could allow the auctioneer to take back an item from a

winning bidder for predetermined penalty (the idea being that some other bidder may now

bid higher given what items he has decommitted from and what items the auctioneer has

taken back from him). In the Federal Communications Commission's bandwidth auction

the bidders were allowed to retract their bids [McAfee and McMillan, 1996, Cramton, 1997,

Plott, 1997, Ledyard et al., 1997]. In case of a retraction, the item was opened for reauction.

If the new winning price was lower than the old one, the bidder that retracted the bid had to

pay the di�erence. This guarantees that retractions do not decrease the auctioneer's payo�.

However, unlike our leveled commitment contracts, this mechanism exposes the retracting

bidder to considerable risk because she does not know the penalty when decommitting.

Also unlike our leveled commitment contracts, that mechanism only allows one party of the

contract (bidder) to decommit. The auctioneer cannot take back items.
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1.1 Setting the decommitment penalties

In leveled commitment contracts, the penalties could be chosen freely by the agents, in

which case each agent would try to optimize the penalties in its favor. The negotiation will

be more complex if the agents can decide the penalties themselves compared to when they

are set by the protocol because there would be more variables to agree on in order for all

parties to accept a contract. If the penalties are set by the protocol, the negotiation becomes

easier, but the result may not be optimal (e.g., �xed penalties do not guarantee that it is is

pro�table for the agents to decommit in all situations where a decommitment is mutually

pro�table for the agents involved in the contract).

Another method is to relate the decommitment penalty to the price of the contract.

This could be done by choosing the penalty as a percentage (or a more complex function)

of the price. Another way is to make the penalties compensate the victim of the breach for

its lost pro�t. Because the victim would have an incentive to lie about the expected pro�t,

a mechanism for calculating the lost pro�t would be necessary. The state of both agents

might have changed since the contract was made, so the expected lost pro�t at contracting

time and breaching time may di�er. In the extreme, the lost pro�t for the victim can be

negative at breaching time, that is, also the victim of the breach bene�ts from being freed

from the contract obligations.

A breach close to the execution deadline of the contract or late in a negotiation is likely

to be more costly for the victim since it can be hard to �nd someone else to contract with

within a short amount of time. In order to prevent such occurrences, the decommitment

penalties can be increased over time.

This paper studies leveled commitment contracting protocols in order to conclude which

mechanism should be used for setting the decommitment penalties among qualitatively dif-

ferent agents. Several environments are studied, and in each of them, 16 protocols with many

parameterizations are tested. The next section presents the experimental setup. Section 3

introduces the di�erent types of agents of this study. Section 4 presents the di�erent leveled

commitment contracting protocols of the study. The results are presented in Section 5.

Section 6 o�ers conclusions, and Section 7 lays out avenues for future research.
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2 Experimental setup

To investigate the performance of di�erent mechanisms of setting the decommitment penal-

ties, the agents are divided into two subsets: contractors and contractees. The contractors

have one task each and a cost associated with the task. A contractor considers contracting

out its task to a contractee that could handle the task at a lower cost than the contractor.

The contractees do not have any tasks initially. They have resources to handle a maximum

of one task each at a cost. The cost of handling the task depends on the contractee and

the task. The fallback position of a contractor is the cost of handling the task it has at the

start of the negotiation. The fallback values of the contractees are zero (they have no tasks

or pending expenses at the beginning of the negotiation).

In our experiments, there were two contractors and two contractees. These numbers

were kept small so that we were able to allow a reasonable number of meeting (contracting)

rounds in the game without precluding the possibility for an agent to exactly solve the

game. If larger numbers of agents would have been allowed with these numbers of rounds,

it would have become computationally intractable to solve the game by lookahead in the

game tree. In such games one cannot (due to computational complexity) determine how a

rational agent would act.

Initially each agent was randomly assigned a cost for handling each task. The contractors'

costs were drawn uniformly in the interval [100; 200] and the contractees' in the interval

[0; 100]. The experiment was executed for 100 randomly generated problem instances with

5 negotiation rounds in each. The number of negotiation rounds was assumed to be common

knowledge. In each round, one chosen contractor gets a chance to make a contract with

one chosen contractee. The contractors never negotiate with each other. Neither do the

contractees.

To compare the di�erent protocols, the ratio bound was used: social welfare of the

solution obtained by a given protocol divided by the optimal social welfare. The mean

ratio bounds (over the 100 problem instances) were calculated for all the di�erent leveled

commitment protocols and agent types. In other words, each protocol was tested with each

agent type on each problem instance. In addition to the means, the 95% con�dence intervals

were computed from which the results could be statistically analyzed. These con�dence

intervals are also shown in each graph.
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In the experiments with a randommeeting technology, we did not rely on a randomization

device to establish the outcome of a given protocol and agent type on a given problem

instance since that would have introduced unnecessary variance into the results. Instead,

all possible outcomes were enumerated and the true expected value of the ratio bound was

computed.

3 Types of agents in this study

Four types of agents are included in the study. In each experiment, agents of the same type

were matched against each other. All of the agents are assumed to be risk neutral. There

are two dimensions along which the agent types di�er: the amount of lookahead the agent

performs before it accepts or rejects a proposed contract, and how self-interested the agent

is.

3.1 Agents with and without lookahead

The agents of this study either perform full lookahead or none at all. An agent that does

full lookahead solves the current subgame of the game tree by looking ahead all the way

to the leaves of the tree. The agent agrees to the contract if and only if the expected

payo� of agreeing is greater than rejecting, i.e., such an agent acts strategically exactly as

game theory prescribes. The myopic agents that perform no lookahead only consider the

immediate payo� of the contract under negotiation. Such an agent agrees to the contract if

the contract increases the agent's immediate payo�.

3.2 Individually rational and cooperative agents

The agents can be self-interested (SI ). Such an agent only agrees to a contract if it increases

the agent's own payo� (expected or immediate, depending on whether the agent performs

lookahead or not). Alternatively, an agent can be an explicit social welfare maximizer (SWF-

maximizer), i.e., a cooperative agent. Such agents consider the summed payo�s of all agents

in the system when deciding to accept or reject a contract. That is, a SWF-maximizer can

agree to a contract even if that makes the agent worse o� as long as the social welfare in

the system increases.
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Our motivation of studying these two agent types was the following. In cooperative dis-

tributed problem solving (see, e.g., [Durfee et al., 1989]), the systems designer is in control

of the interaction mechanism (rules of the game) and each agent's strategy. In such settings,

the system designer would design the agents to be SWF-maximizers. On the other hand, in

multiagent systems|used, for example, for electronic commerce|the system designer can

only design the interaction mechanism while each agent is designed by and represents a dif-

ferent self-interested real-world party such as a company or an individual in the negotiation.

In such settings, it is reasonable to assume that the agents will be self-interested. We study

how much welfare loss self-interest causes in di�erent settings, and as show that, surprisingly,

in certain settings self-interested agents lead to higher social welfare than SWF-maximizing

agents.

4 Types of leveled commitment protocols

In this section we de�ne leveled commitment contracts, and present the di�erent leveled

commitment contracting protocols of the experiment. The leveled commitment contracts of

this study are de�ned as follows:

De�nition. 1 A leveled commitment contract is a tuple hC; �i, where C is the underlying

full commitment contract and � is the set of decommitment penalties. Let AC be the set of

agents involved in the contract C. Then � will consist of one decommitment penalty for each

pair of agents in AC , so j�j = jACj
2
�jACj

2
.

This de�nition has the nice feature of separating the leveled commitment framework

from the obligations of the contract, called the underlying contract C. This means that the

leveled commitment protocol can be applied to any type of full commitment contract. If

an agent wants to decommit from the underlying contract, it has to pay the decommitment

penalties stated in � to all agents involved in the contract. In the most common case where

there are two agents involved in a contract, this means paying a penalty to the other contract

party. In the experiments of this paper, each contract occurs between two parties only.

The concept of leveled commitment is not speci�c to task allocation problems, although

the experiments of this paper focus on task allocation. All the leveled commitment protocols

in this study have as their underlying contract, C, a contract that transfers one task from

9



one agent to another (with sidepayments as will be discussed).

The following subsections introduce the di�erent leveled commitment contracting proto-

cols tested in this study. They di�er based on how the decommitting penalties are set, how

the contract price is determined, and what is the order in which agents meet each other to

explore the possibility of a contract.

4.1 Ways of setting the decommitting penalties

Four di�erent mechanisms of deciding the decommitment penalties are studied: �xed ; per-

centage of contract price; increasing and decided at the time of contracting ; and increasing

and decided at the time of breaching.

4.1.1 Decommitment penalties as a �xed value (FIX-protocol)

In the FIX-protocol, all contracts have the same �xed decommitment penalty. It is de-

cided prior to the start of the negotiation and it stays constant throughout the negotiation.

Experiments with six di�erent values of the �xed decommitment penalty were conducted.

Table 1 summarizes the di�erent values.

FIX-protocol PER-protocol CON-protocol

BRE-protocol

0 0.1 0.25

5 0.25 0.5

10 0.4 0.75

15 0.5 1.0

30 0.75 2.0

50 1.0 4.0

Table 1: Parameterizations in the study of leveled commitment protocols in di�erent en-

vironments. (Note that 10% is written as 0.1 in the tables for the PER-, CON-, and

BRE-protocols.)
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4.1.2 Decommitment penalties as a percentage of the contract price (PER-

protocol)

In the PER-protocol, the decommitment penalty is a percentage of the price of the contract.

The same percentage is used for all contracts throughout the negotiation. The particular

percentages that are used in the experiments are presented in Table 1. The experiments

suggested that it does not make sense to explore penalties that exceed the contract price in

this case.

4.1.3 Decommitmentpenalties decided at the time of contracting (CON-protocol)

In the CON-protocol, the decommitment penalty of each contract is �xed at contracting

time. However, the later the contracting time, the higher the penalty. Speci�cally, the

penalty is increased linearly with contracting time. It starts from zero and goes to a per-

centage of the contract price.2 Table 1 presents the percentages for setting the highest

penalty. As the table shows, in some of the experiments we allowed the later penalties to

exceed the contract price signi�cantly.

4.1.4 Decommitmentpenalties decided at the time of breaching (BRE-protocol)

In the BRE-protocol, the decommitment penalty of each contract is �xed at the time of

breach. The later the breaching time, the higher the penalty. Speci�cally, the penalty is

increased linearly over time, starting from zero. A contract that is breached on the last round

of the game has the highest penalty. This highest penalty is a percentage of the contract

price. Table 1 shows the speci�c percentages used in the experiments. Again, in some of

the experiments we allowed the later penalties to exceed the contract price signi�cantly.

4.2 Methods of computing the contract price

The price of a contract that is under consideration is set so that the pro�ts of the two agents

of that contract are equal. However, the pro�ts can be calculated in two di�erent ways:

2
Since a contract that is made on the last round of the game cannot be breached because the game ends,

the highest penalty is applied to the contract that is made at the second to last round of the game (if an

agreement is made at that round). A contract made in that round can be breached on the last round.
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� \Fallback protocols": Each agent's pro�t is computed as the agent's payo� un-

der the contract under consideration minus the agent's fallback payo�. The current

payo�s from existing contracts do not factor into this calculation. Neither do the de-

commitment penalties that the agents may need to pay to undo an existing contract.

� \Current protocols": Each agent's pro�t is computed as the agent's payo� under

the contract under consideration minus the agent's payo� under its current contract

(this is the agent's fallback payo� if the agent is not under contract) minus the de-

commitment penalty that the agent has to pay.

4.3 Sequencing of contracts: the meeting technology

The order in which the agents meet for negotiation is either deterministic or random.

In the deterministic model, the order is decided prior to negotiation (contractor 1 meets

contractee 1, contractor 1 meets contractee 2, : : :, contractor 2 meets contractee 1, : : :).

In the random model, in each round of the game, one contractor and one contractee are

randomly picked to negotiate with each other. In either case, the negotiation protocol is

sequential, that is, only two agents|one contractor and one contractee|negotiate in each

round.

If the agents are individually rational, a contract is accepted if the payo�s (immediate or

with lookahead) after the contract will be greater for both the contractor and the contractee

compared to the payo�s before a potential acceptance of the contract. If one of the agents is

indi�erent, that is, the contract does not increase its payo�, the other agent decides whether

or not to make the contract. If both the agents are indi�erent, the contract is rejected.

4.4 Summary of the dimensions varied in this study

Before presenting our results, let us summarize the di�erent agent design dimensions and

protocol design dimensions that were varied in this study:

1. Agents conducted lookahead or were myopic.

2. Agents were self-interested (SI) or social welfare maximizing (SWF).

3. The decommitment penalty was �xed, a percentage of contract price, increasing

based on contract time, or increasing based on decommit time.
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4. The contract price was determined either based on the original fallback positions of

the two agents that are considering a contract, or based on the current situations of

those two agents.

5. The meeting technology was either deterministic or random.

5 Results

The results are presented in the following order. First, the agent types are compared,

then the methods of sequencing the contracts, and then the di�erent ways of deciding on a

contract price. Finally, the best protocols for each agent type are discussed.

5.1 Comparison of agent types

Overall, agents that performed lookahead reached a higher social welfare than myopic agents.

By de�nition, the social welfare maximizers that conduct full lookahead always reach the

best solution that is reachable given the sequence of the contracts. Under the deterministic

meeting technology, these agents always reached the global optimum (Figures 1 and 2).

Comparing the myopic agents (self-interested and social welfare maximizing) using de-

terministic meetings, the self-interested agents surprisingly outperformed the social welfare

maximizers (recall that the evaluation criterion is social welfare) in the region of low decom-

mitment penalties (Figures 3 and 4). They did that for all eight deterministic protocols.

Without lookahead, not even social welfare maximizing agents will reach the global opti-

mum in a limited number of negotiation rounds in general. The reason why self-interested

agents lead to higher average social welfare than social welfare maximizing agents is that it

is often advantageous for the social welfare in the long run to conduct a decommit that is

myopically social welfare decreasing. When this type of breach occurs among self-interested

agents, the breacher gains immediately by de�nition, and the other party of the contract

su�ers a loss that exceeds the breacher's gain, but is freed to look for good deals in later

negotiation rounds (with no need to pay a decommitting penalty to accept such a new

contract). For some instances, if the negotiation contained more rounds, the social welfare

maximizing agents reached the same social welfare as the self-interested ones.

In several cases the myopic agents performed almost as well as the agents with full
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Figure 4: Myopic agents; deterministic meetings.
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lookahead (Figures 1-8). There is a clear trade-o� between reaching the globally optimal

solution, and computation cost. In these experiments, with small problem sizes, the agents

do not gain much by performing a full lookahead compared to myopic agents with well set

decommitment penalties. It is considerably more complex to perform a full lookahead than

no lookahead, and for large problem instances a full lookahead is not possible at all due to

intractability. On the other hand, the decommitment penalties do not have to be chosen so

carefully if the agents perform a full lookahead. That is because the agents can evaluate the

future events and act upon that knowledge up front, reducing the risk in a commitment.

5.2 Comparison of contract sequencing methods

Comparing the deterministic and random meeting technologies, the deterministic method

always yielded a lower (better) ratio bound (Figures 1-8). That can be explained by the

fact that the best possible ratio bound that is achievable with the random method is greater

than one. That is because the ratio bound is averaged over all possible outcomes, including

those that never can reach the optimum. The extreme example is when the same contractor

and contractee meet each other in every round of the negotiation. In such cases, the other

agents do not get to participate in the reallocation process at all, leading to suboptimal

social welfare.

The best achievable result with the random method was always reached by the social

welfare maximizers that conduct full lookahead. For the meeting sequences where the ran-

dom protocol could theoretically perform well (i.e., where all the agents participated in the

negotiation), it did indeed perform well.

5.3 Comparison of methods for computing the contract price

Of the two methods of computing the contract price, the method that computes the pro�t

from the original static fallbacks was never better than the method that computes the

pro�ts from the current situation which includes penalties|if the optimal method and

parameterization for setting the decommitment penalties for each agent type and meeting

technology was used (Table 2).

For other penalty setting methods and parameterizations, the best method of setting the

price varied. With a deterministic meeting technology, the method that considers the current
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Figure 8: Myopic agents; random meetings.
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pro�t performed better for low penalties (however, for zero penalties, the method based on

static fallbacks performed better) (Figures 1-4). With a random meeting technology, the

method based on static fallbacks performed better for low penalties, but the method that

considers current pro�t was better in the middle range of penalties (Figures 5-8). For the

high range, they were roughly equally good.

5.4 Comparison of methods and parameterizations of setting the

decommitment penalty

Table 2 summarizes which method of setting the penalties was best for di�erent agent types

under di�erent meeting technologies. For all the protocols, the optimal choice of parameters

was to use a low decommitment penalty (or a low percentage of the contract price) which

was still greater than zero. Neither zero penalties nor high penalties performed well.

One interesting phenomenon is that for the protocols where the penalties increase over

time, especially if they increase as a function of the contract time, it can be bene�cial to have

them increase to signi�cantly more than the contract price if the agents are myopic and self-

interested. For example, in Figure 8 top, the �nal penalty that led to the best average social

welfare was twice the contract price. A similar phenomenon can be observed in Figure 6

top. One explanation for this phenomenon is that average social welfare decreases if these

self-interested agents breach close to the end of the game because that can leave the old

contract partner with no contract at all.

Another interesting point is that for every meeting technology, agent type, price deter-

mination mechanisms, and penalty setting mechanism, the average social welfare has only

one local optimum (in the parameter of how hefty the decommitment penalty should be).

This is clear in each one of the �gures. This suggests that it might be relatively easy to

learn the optimal parameter value for setting the penalties using adaptation.

6 Conclusions

In automated negotiation systems with self-interested agents, it has traditionally not been

possible to breach contracts. Because of that, the agents have been lacking the ability

to act e�ciently in a dynamic environment since they cannot accommodate future events

e�ciently. Contingency contracts have been suggested to solve this problem but in many
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Random meetings

Lookahead Myopic

Self- Increasing penalty based on breach time Penalty as percentage of contract price

interested Price based on current deals Price based on current deals

Mean ratio bound = 1.92 Mean ratio bound = 1.93

Social All Increasing penalty based on contract time

welfare Price based on current deals

maximizing Mean ratio bound = 1.87 Mean ratio bound = 1.90

Deterministic meetings

Lookahead Myopic

Self- Penalty as percentage of contract price Increasing penalty based on breach time

interested Price based on current deals Price based on current deals

Mean ratio bound = 1.04 Mean ratio bound = 1.04

Social All Increasing penalty based on contract time

welfare or Increasing penalty based on breach time

maximizing Price based on current deals

Mean ratio bound = 1.00 Mean ratio bound = 1.23

Table 2: Summary of the optimal choice of leveled commitment contracts for di�erent

meeting technologies and agent types. In this comparison, the best parameterization for

each protocol was used. A mean ratio bound of 1 means that the social welfare maximizing

solution is found every time. A mean ratio bound of 2 would mean that on average, half of

the available welfare is captured.

environments they are not practical as was discussed. Another alternative is to renegotiate,

but that incurs extra negotiation overhead and requires all parties of the contract to accept

the new contract. Recently we introduced leveled commitment contracts as an alternative,

more practical, instrument for capitalizing on the gains that uncertain future events provide

[Sandholm and Lesser, 2000, Sandholm and Lesser, 1995]. In such a contract, agents can

decommit from a contract by paying a penalty to the other contract party(ies). It was

shown through game-theoretic analysis of strategic decommitting games that this leveled

commitment feature increases the Pareto e�ciency of contracts and can make contracts

individually rational to both parties even in cases where full commitment contracts cannot

[Sandholm and Lesser, 2000].
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The e�ciency of leveled commitment protocols depends on how the contract price

and the decommitment penalties are set. Previously we analyzed isolated leveled com-

mitment contracts, proving interesting results using game-theoretic equilibrium analysis

[Sandholm and Lesser, 2000, Sandholm and Zhou, 2000]. We also developed algorithms for

computing the optimal decommitting strategies given a contract, and algorithms for op-

timizing the contract itself (price and penalties) [Sandholm et al., 1999b]. Using these al-

gorithms we o�er a service for optimizing leveled commitment contracts on the web at

http://ecommerce.cs.wustl.edu/contracts.html. However, that theoretical work has

focused on optimizing a contract in isolation.

In this paper we studied sequences of multiple leveled commitment contracts. Again,

the e�ciency of the protocols depends on how the decommitment penalties are decided. We

studied several di�erent methods of setting them. If it would be possible for the agents

to choose the penalties freely, they would try to optimize the penalties in their favor. As

a result, the negotiation would be more complex: there would be more variables to agree

on in order for both (all) parties of the contract to accept. On the other hand, if the

penalties are set by the protocol, complexity would be eliminated from that negotiation.

For example, the penalties could be �xed at a certain level by the protocol, but this may

lead to suboptimal results. Another method is to relate the decommitment penalty to the

price of the contract. The penalty can be either a percentage or a more complex function

of the contract price. Another approach is to choose the penalties so that they compensate

the victim of the breach for its lost pro�t. In that case, the agent would have an incentive

to lie about the expected pro�t, so a non-manipulable mechanism for calculating the lost

pro�t would be necessary.

A breach close to the execution deadline of the contract, or late in a negotiation, is

likely to be more costly to the victim of the breach since it could be hard to �nd someone

to contract with in a short amount of time. In order to discourage such occurrences, the

decommitment penalties can be increased over time.

Methods for setting the penalties were compared while holding the parameters for each

method at the best observed level. Fixed penalties were never best. Penalties set as a

percentage of the contract price, increasing with contract time, and increasing with decom-

mitting time all had selective superiority depending on the meeting technology and agent

type.
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As expected, deterministic meeting technologies (sequences of pairing the agents for ne-

gotiation) were better than random ones. Of the two methods of computing the contract

price, the method that computes the pro�t from the current situation, including penal-

ties, was better than the method that computes the pro�ts from the static initial fallback

positions|if the optimal parameterization for each protocol was used. For other param-

eterizations, the best method of setting the price varied. The method that considers the

current pro�t performed well for low penalties with the deterministic protocol. The method

based on fallback positions performed well under low penalties with the random meeting

technology, while the other method performed better for penalties in the mid-range. For

the high range, the methods were roughly equally good.

Surprisingly, self-interested myopic agents reached a higher social welfare quicker than

cooperative myopic agents when decommitment penalties were low. The social welfare in the

settings with agents that performed lookahead did not vary as much with the decommitment

penalty as the social welfare in settings that consisted of myopic agents. For a short range

of values of the decommitment penalty, the myopic agents performed almost as well as the

agents that looked ahead.

In all of the settings that we studied, the best way to set the decommitment penalties

was to choose relatively low penalties. However, allowing decommitting for free was not

optimal. Neither were high penalties. This is a further justi�cation for leveled commitment

contracts. The best protocol was to have low decommitment penalties and a low rate of

increase of the penalties. This veri�ed our intuitions about setting decommitting penalties.

Another interesting point is that for every meeting technology, agent type, price determi-

nation mechanisms, and penalty setting mechanism, the average social welfare has only one

local optimum (in the parameter of how hefty the decommitment penalty should be). This

suggests that it might be relatively easy to learn the optimal parameter value for setting

the penalties using adaptation.

7 Future research

While in this paper we paired agents of the same type against each other, in the future we

plan to experiment with heterogeneous populations of agents (some that are myopic and

some that conduct full lookahead, as well as some that are self-interested and some that
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are social welfare maximizing). We are also planning to increase the spectrum of lookahead

to allow for partial lookahead. Also from a theoretical perspective it would be extremely

important to develop normative ways of controlling partial lookahead in game trees. This is

because in many practical sequential games it is intractable to compute a rational strategy

due to the intractability of a full lookahead in the game tree. Yet it is unfounded to simply

assume myopic behavior: by partial lookahead a self-interested agent could manipulate a

mechanism that is designed under that assumption. It would be desirable to design an

agent that searches the game tree optimally given its limited computational capabilities

(this might involve di�erent levels of lookahead on di�erent branches of the tree). Clearly

this would have far reaching repercussions on the design of interaction mechanisms.

Yet another important part of our future work will be to come up with better ways of

deciding the contract price and decommitment penalties. In this paper they were imposed

by the protocol, but alternatively the agents could be allowed to choose them. We have

already developed algorithms for setting the price and penalties optimally according to

a game-theoretic analysis in the context of a single contract, but in settings with multiple

sequential contracts this remains challenging. We also strive to develop bargaining protocols

that lead the agents to choose contract prices and decommitment penalties that are e�cient

for the contract parties, the systems as a whole, or both whenever possible.

Even among mechanisms where the penalties are imposed by the protocol, signi�cant fu-

ture research remains. For example, would it be bene�cial to set the penalty as a percentage

of the bene�ts of a contract instead of as a percentage of the contract price?

Answers to these questions would advance the state of the art in automated negotiation,

but could also lead to useful prescriptions for non-automated negotiation and contract law.
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